• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-energy(40 keV)proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties?

    2019-02-25 07:22:54SanShengWang王三勝FangLi李方HanWu吳晗YuZhang張玉SulemanMuhammad穆罕默德蘇爾曼PengZhao趙鵬XiaoYunLe樂(lè)小云ZhiSongXiao肖志松LiXiangJiang姜利祥XueDongOu歐學(xué)東andXiaoPingOuyang歐陽(yáng)曉平
    Chinese Physics B 2019年2期
    關(guān)鍵詞:張玉趙鵬蘇爾

    San-Sheng Wang(王三勝),Fang Li(李方),Han Wu(吳晗),Yu Zhang(張玉),Suleman Muh.ammad(穆罕默德蘇爾曼),Peng Zhao(趙鵬),Xiao-Yun Le(樂(lè)小云),Zhi-Song Xiao(肖志松),Li-Xiang Jiang(姜利祥),Xue-Dong Ou(歐學(xué)東),and Xiao-Ping Ouyang(歐陽(yáng)曉平),

    1 Key Laboratory of Micro-nano Measurement,Manipulation and Physics,Ministry of Education,Beihang University,Beijing 100191,China

    2 Beijing Institute of Spacecraft Engineering Environment,Beijing 100094,China

    Keywords:superconductors,proton radiation,micro-Raman spectra,electrical transport

    1.Introduction

    Applications of superconductors have entered into a new phase of rapid development with the remarkable discovery of high-temperature superconductors. The YBa2Cu3O7-x(YBCO)high-temperature superconductor is one of the most promising materials for sensitive magnetometers and communications applications,which is used in various devices such as superconducting quantum interference devices[1,2]and hightemperature superconductor filters.[3]

    As is well known,proton radiation can affect the transition temperature TC,radiation-induced resistivity,critical current density JC,and even phase transition in YBCO thin films.Xiong et al.[4]showed that 300-keV proton irradiation reaching a fluence of 1.3×1016p/cm2can reduce the TCof epitaxial YBCO thin films and also proposed that TCvaries as a function of proton fluence.Maisch et al.[5]irradiated 100 μm-150 μm-thick YBCO films with 6-MeV and 63-MeV protons to study the temperature dependence of radiation-induced resistivity.Weaver et al.[6]measured radiation-induced shifts in TCof 0.5-μm-thick YBCO samples and 1.1-μm-thick Tl2Ca2BaCu2O8samples irradiated with 3-MeV protons reaching a fluence higher than 1016p/cm2.Meyer et al.[7]deduced an orthorhombic-to-tetragonal phase transition in YBCO thin films from x-ray diffraction(XRD)patterns after 300 keV-proton irradiation.Although there had been a substantial amount of research into the effects of near MeV,[4,8]MeV,[5,6,9]and near GeV[10]proton irradiation on the properties of high-temperature superconductor YBCO,a few studies reported the electrical transport properties and microstructural characteristics under proton irradiation with energy of dozens of keV.[11]This was because of the neglected effects of low-energy proton radiation damage. However,there has been a surge in the applications of high temperature superconductors,especially limit-current-sustainable applications in a complex radiation environment.

    In this work,we present the micro-Raman characterization and electrical transport properties of epitaxial YBCO thin films irradiated by high- fluence low-energy protons.The YBCO thin films are irradiated with 40 keV protons of fluences of 1014,1015,and 1016p/cm2. In this work,we point out that flux creep has an extremely negative effect on the application of high-temperature superconducting YBCO thin films and related devices,which has important implica-tions in the field of superconductors.The main components of proton-radiation-induced damage are elucidated by using micro-Raman spectroscopy and XRD studies.The results of electrical transport measurements suggest that the major contribution to 40 keV-proton radiation damage is the formation of point-like disorders.

    2.Experimental details

    Epitaxial YBCO thin films with a thickness of 240 nm were prepared on(100)LaAlO3substrates using a typical trifluoroacetic metalorganic deposition method.The details of film preparation have been reported previously.[12]In brief,trifluoroacetic acid and acetates of Y,Ba,and Cu were selected to prepare the coating solution.Through a decompression distillation stage,the precursor solution was coated onto a 2 inchdiameter(1 inch=2.54 cm)double-polished LaAlO3substrate by a dip coating method.The gel film was subsequently heattreated in two stages,viz.pyrolysis and sintering,in a specially designed furnace system.The high-quality uniform film obtained was cut into several small pieces with dimensions of 10.0 mm(l)×10.0 mm(w),where l and w are the length and the width of the film,respectively.A conventional lithography technique was used to fabricate high-temperature superconducting micro-bridges.The dimensions of the superconducting micro-bridges were 2000μm(l)×20μm(w)×240 nm(t),where t is the thickness of the YBCO film.During argon ion beam etching process with a Kaufman ion source,the temperature of the sample was maintained between 16°C and 20°C using a cooling water circulation system.Furthermore,all the samples were subjected to lithography and ion beam etching process.This approach minimizes the differences among the initial samples due to specimen preparation.

    Proton radiation can destroy the copper-oxide bonds at conducting CuO2planes and Cu-O chains in that changing the oxygen content.The values of JC[13,14]and TC[15,16]are closely related to the oxygen content rather than amorphous layers induced by irradiation in high-temperature superconducting bulks and films.To eliminate the possible in fluence of amorphous layers and substrates,a low energy of 40 keV was chosen.The range of a 40 keV proton is approximately 172.5 nm,which is smaller than the thickness of the experimental samples.To obtain the changes in the resistivities and the microstructures at different displacement damage numbers,experiments were carried out at three different proton fluences,i.e.,1014,1015,and 1016p/cm2,provided by a Van de Graaff accelerator at the Institute of Semiconductors,Chinese Academy of Sciences.The incident direction was parallel to the c axis of the superconducting film,and the film was kept at 293 K at a low beam flux 1.0×1012p/(cm2·s)to minimize the in fluence of heating diffusion.The microstructures of the YBCO samples were characterized by micro-Raman spectroscopy and XRD through using a LabRAM HR Evolution Raman microscope system and a Philips X’Pert MRD diffractometer,respectively.Micro-Raman spectroscopy was performed at 293 K by using a 532 nm laser,and the XRD patterns were obtained using CuKαradiation(λ =0.15406 nm).The electrical transport measurements were performed using a physical property measurement system(PPMS;Quantum Design,Inc.,USA).

    3.Experimental results and discussion

    The radiation induced microstructure evolution in superconducting YBCO thin films is discussed in this paper.Changes in the microstructure of YBCO samples can arise from atomic displacements,and other microstructural changes are caused under different high- fluence proton radiation conditions.

    3.1.Micro-Raman studies

    The Raman spectrum shows peaks of orthorhombic YBCO phases at 116,145,335,440,and 500 cm-1,which are associated with the Ba Agmode,Cu2Agmode,O2+/O3-outof-phase B1gmode,O2+/O3+in-phase Agmode,and O4 Agmode,respectively.The typical micro-Raman spectra showing the c-axis vibrational modes of orthorhombic YBCO are shown in Fig.1.

    Fig.1.Micro-Raman spectra showing the c-axis vibrational modes of orthorhombic YBCO.

    Figure 2(a)shows the micro-Raman spectra of the asgrown YBCO thin films and YBCO thin films irradiated at fluences of 1014,1015,and 1016p/cm2.The position of apical O4 provides an accurate estimation of the oxygen content[17]as itis directly related to the oxygen contentin the CuO2plane.Figure 2(b)shows the variations in the position of the peak at 500 cm-1for the different samples.The peak shifts to lower wavenumber values for a fluence of less than 1016p/cm2.The shift towards lower wavenumbers indicates reduction in the oxygen content and formation of additional defects due to proton irradiation in CuO2plane.This phenomenon proves the occurrence of superconducting-to-non-superconducting phase transition.This is also confirmed by the motion of Cu2along the c axis in CuO2planes.A lower oxygen content is expected to result in a red shift as shown in Fig.2(c).The carrier concentration in CuO2plane is one of the most critical parameters that in fluence TC.The Raman spectra suggest that defects in the conducting CuO2planes,such as increased oxygen vacancies and interstitials,can result in an increase in the normal state resistivity,but a decrease in TC.That is confirmed by the electrical transport measurements,which are discussed later.We observe that the wavenumber,in Figs.2(b)and 2(c),changes non-monotonically with the proton irradiation fluence.It is likely that the excessive broken Cu-O chains generate excessive oxygen atoms,which shift to the position of O2 and O3 as well as O5 or act as interstitial atoms.The shift to the position of O2 and O3 can produce an increase of oxygen content in the CuO2plane.And,the inconsistent changes of wavenumbers are also found in Figs.2(b)and 2(c).This is due to the discrepancy in displacement energy between Cu2atoms and oxygen atoms,and the displacement energy of oxygen atoms in the Cu-O chains is much lower than that of oxygen atoms in the CuO2plane.

    Fig.2.Micro-Raman spectra of YBCO thin films,showing(a)comparison of micro-Raman spectrum between as-grown samples and samples irradiated at fluences of 1014,1015,and 1016 p/cm2;variations in the position of(b)O4 peak,(c)Cu2 peak,(d)out-of-plane O2+/O3-peak,and(e)O4/(O2+/O3-)peak.

    Analysis of the O2+/O3-out-of-phase mode to give a quantitative measure of the oxygen content has been controversial;nevertheless,it is generally accepted that this peak has an intrinsic Fano-like asymmetry in orthorhombic YBCO,while it is symmetric in tetragonal YBCO.Figure 2(d)shows the variations in the position of the peak at 335 cm-1.It is evident that this peak attains Lorentzian symmetry with proton fluence increasing.The symmetry of the peak is related to the lower value of content.Moreover,the peak at 335 cm-1shows a red shift with irradiation further increasing,which is related to longer bond length and tensile stress.It is believed that the tensile stress can be caused by other radiation-induced microstructural damages,like small clusters,besides atomic displacements.

    As reported previously,[18]the peaks of YBCO phases that appear at approximately 335 cm-1and 500 cm-1in the Raman spectra of orthorhombic YBCO are generally indicative of a-axis and c-axis oriented grains,respectively,with their relative proportions represented by the ratio of a/c intensity;here,the a-axis orientation is tilted from the vertical direction to the substrate.Figure 2(e)shows the c/a intensity ratio between the as-grown sample and the irradiated sample.Their relative proportion exhibits a pronounced maximum at a fluence of 1014p/cm2,and then starts to decrease with proton fluence increasing.This tendency is attributed to the increase in the number of c-axis oriented grains up to a fluence of 1014p/cm2and subsequent decrease with further irradiation.The increase in c-axis orientation can be attributed to a decrease in the number of tilted grains caused by compressive stress in the low- fluence proton irradiation process.Compressive stress is produced in an YBCO/LAO system due to the lattice mismatches between the film and the LAO substrate.While the radiation-induced damages which induce red shift at a peak of 335 cm-1(Fig.2(d)),mitigate the compressive stress at low- fluence proton irradiation.Meanwhile,the reduced compressive stress release in intergrains,which leads to the improvement of c-axis orientation.With further irradiation,the rate of c-axis orientation deterioration caused by radiation-induced damages is faster than that caused by the reduction of compressive stress.Therefore,their relative proportion subsequently decreases with further irradiation.The reduced c-axis orientation of the films is also confirmed by the increase of the full width at half maximum(FWHM)of YBCO(005)peak in the XRD studies.

    As mentioned above,the proton radiation-induced damage consists of radiation-induced atomic displacements and small clusters. It has been confirmed that atomic displacements result in orthorhombic-to-tetragonal phase transitions because of increased oxygen vacancies and interstitials.Therefore,it is considered that the tensile stress deduced from the variation in the position of the peak at 335 cm-1may be linked to small clusters.However,the components of proton radiation-induced small clusters are unknown.

    Raman scattering measurement is an extraordinarily sensitive technique for the qualitative evaluation of secondary phases.Additional phonon features of the peaks at approximately 300,400,and 600 cm-1appear in the Raman spectra of the irradiated samples as shown in Fig.2(a).The peak at 300 cm-1is attributed to the presence of CuO,and the peaks at 400 cm-1and 600 cm-1are attributed to the presence of cation disorders(CDs),like Ba2Cu3O5.9.[19]It should be noted that there is no variation in the intensity of the peak at 300 cm-1with proton fluence,while the intensity of the peaks at approximately 400 cm-1and 600 cm-1increase with the fluence of proton irradiation increasing.This indicates that the superconducting phase is partly converted to the nonsuperconducting second phase,i.e.,the CD phase,after being irradiated by low-energy protons.Consequently,it is inferred that this non-superconducting second phase is the main componentofsmallclusters.Moreover,the CDphase is a directindication of the formation of defects in the Cu-O chains,which can affect the superconducting and other properties of YBCO thin films by interfering with the carrier concentrations in the CuO2planes.We deduce that radiation-induced small clusters can increase the normal-state resistivity and also reduce the T C.

    3.2.XRD studies

    Figure 3 shows the typical XRD patterns of the asgrown YBCO thin films and the YBCO thin films irradiated by fluences of 1014,1015,and 1016p/cm2. From the XRD patterns,the as-grown YBCO thin films appear to be well oriented along the c axis,and a very small number of secondary phases,such as Ba2Cu2O5and Ba2Cu3O5.9,exist.With particle fluence increasing,the intensities of YBCO(003),YBCO(005),and YBCO(006)peaks gradually decrease(Figs.3(b)-3(d)),while the YBCO(001),YBCO(002),YBCO(004),and YBCO(007)peaks gradually disappear(Figs.3(c)and 3(d)). The decrease in the intensities of the YBCO peaks indicates that there appears a superconducting-to-non-superconducting phase transition in the irradiated thin film.There is another important method used to evaluate phase transition:by comparing the oxygen content and the c-axis length.Table 1 shows the values of caxis length,oxygen content,and FWHM of the YBCO(005)peak deduced from the XRD data.The length of orthorhombic YBa2Cu3O7-xand tetragonal YBa2Cu3O6are 1.1676 nm and 1.1819 nm,respectively.The oxygen content is evaluated from the following equation[20]

    Fig.3.Typical XRD patterns of(a)as-grown YBCO thin films,and YBCO samples irradiated by fluences of(b)1014,(c)1015,and(d)1016 p/cm2.

    Table 1.Values of c-axis length,oxygen content,and FWHM of YBCO(005)peak of YBCO films.

    Fig.4.Plots of c-axis length,oxygen content,and FWHM of YBCO(005)peak versus proton fluence of YBCO films.

    The oxygen content of the irradiated films is significantly lower than that of the as-grown film as shown in Fig.4(a).The oxygen atoms displaced during proton irradiation result in an orthogonal-to-tetragonal transition of the crystal lattice.This confirms the results obtained from Raman spectroscopy measurements.In contrast,the value of FWHM increases linearly with proton fluence as shown in Fig.4(b).It is worth noting that the oxygen content and the c-axis orientation decrease with the fluence of proton irradiation increasing.The difference between the XRD and the micro-Raman spectroscopy results can be attributed to the difference in the probe depth between the two measurement methods:dozens of nanometers for micro-Raman spectroscopy and the whole thickness of the thin film,approximately 240 nm for XRD.Furthermore,the radiation damages are different at different depths.Figure 5 shows the ion range distribution and ion distribution projected on the X Z plane for240 nm-thick YBCO films as calculated by using stopping and range of ions in matter(SRIM)/transport of ions in matter(TRIM)program.[21,22]The proton incidence energy is 40 keV and the incident angle is normal to the sample.The calculation number is 10000 times to guarantee that the errors are within 10%of the experimental results.The radiation damage at higher depth is bigger than that at the zones near the surface.In addition,a small number of protons and recoil cations collide with the substrate,which induces the intensities of LAO(001)and LAO(002)peaks to gradually decrease with particle fluence increasing as shown in Figs.3(c)and 3(d).

    In summary,by micro-Raman spectroscopy and XRD,the main component of proton radiation-induced defects in YBCO thin films is found to be the partial transition of the superconducting orthorhombic phase to semiconducting tetragonal phase and non-superconducting secondary phases.

    3.3.Electrical transport properties

    Figure 6 shows the temperature dependence of resistivity of the as-grown and the irradiated YBCO samples under an external magnetic field,where the external magnetic field is parallel to the c axis.When the temperature approaches the onset of superconducting transition temperature TC(onset),the resistivity begins to change significantly as Cooper-pairs start to de-pair.In this temperature region,the samples gradually transform from the superconducting state into the normalstate.It is worth noting that irrespective of the external magnetic field,TC(onset)decreases with proton fluence increasing.This trend is consistentwith previously reported result.[23]The lowtemperature region,in which the flux is pinned and thermal loss is negligible,is generally used in practical applications(Figs.6(a)and 6(b)).However,at a fluence of 1015p/cm2,zero-resistance temperature(TC0)is not observed even at a temperature of 10 K as shown in the inset of Fig.6(c).At temperatures below approximately 60 K,the resistivity increases with temperature decreasing,which is clearly observed.The analysis of micro-Raman spectrum and XRD data indicate that the main reason for this phenomenon is the partial transition of the superconducting orthorhombic phase to semiconducting tetragonal phases and non-superconducting secondary phases.

    Fig.6.Temperature dependence of resistivity for H‖c for(a)as-grown YBCO thin films and YBCO thin films irradiated by fluences of(b)1014 p/cm2 and(c)1015 p/cm2.

    We determine the dependence of normalized resistivity on the reciprocal of temperature at magnetic fields of 0,1,2,3,and 4 T as shown in Fig.7.For a clear observation of the low-temperature region,we transform the y-axis scale into the logarithmic scale and the x-axis scale into 1/T.The straight line regime in ln R versus 1/T curves indicates a flux dynamics that corresponds to the characteristics of flux creep in this temperature range.[24]In this temperature range,the samples are dominated by thermal activation.We further investigate the field dependence of the activation energy U0from the slope of Fig.7.

    Fig.7.Reciprocal-of-temperature dependence of resistivity for B‖c for(a)as-grown YBCO thin films and(b)YBCO thin films irradiated by a fluence of 1014 p/cm2.

    Figure 8 indicates that the U0of the as-grown films is smaller than that of the irradiated films at a fluence of 1014p/cm2.The blue line and red line are fit to a power law relation of U0∝ H-αwith the critical exponent α =0.38897 for the as-grown samples and α=0.24786 for the irradiated samples( fluence of 1014p/cm2),respectively.Dimensional crossover behavior is not observed,perhaps because the selected region of the magnetic field is too small.However,the theoretical value of the critical exponent α in a single or collective(elastic)creep theory[25-29]is higher than that obtained in this experiment.So,the weak power law distribution of U0can be obtained by the plastic- flux creep theory,[24,30-32]indicating that plastic deformation and entanglement of vortices in weakly pinned vortex liquid is caused by disorders of point-like defects.[23]In contrast to splayed columnar defects introduced by nearly GeV energy proton irradiation and ion irradiation,previous TEM results[9,33-35]have shown that near MeV or MeV proton irradiation mainly produces damages such as point-like disorders,consisting of point defects and small clusters(2 nm-5 nm),which has an obvious effect on superconducting properties.Here,from the variations in U0and the SRIM/TRIM simulations(Fig.5),it can be concluded that 40-keV-proton radiation mainly produces point-like disorders.It should be noted that these disorders,consisting of semiconducting tetragonal phase and non-superconducting secondary phase,will introduce flux creep by thermally assisted flux flow,[24-27,36]which could increase noise and reduce the precision of superconducting devices.

    Fig.8. Magnetic field dependence of U0 of(red)unirradiated and(blue)irradiated YBCO thin film.The blue line and red line are fit to U0∝ H-α with critical exponent α =0.39±0.016 for the as-grown samples and α =0.25±0.014 for the irradiated samples(1014 p/cm2).

    4.Conclusions

    The micro-Raman spectroscopy and XRD results indicate that the main component of proton-radiation-induced defects is partial transformation of the superconducting orthorhombic phase into semiconducting tetragonal phases and non-superconducting secondary phases,including the CD phase.The electrical transport measurements show a significant change in TCand an increase in magnetic resistivity,but a decrease in TCwith fluence of proton irradiation increasing in YBCO thin films.This behavior confirms the results obtained from spectroscopy measurements.Moreover,electrical transport measurements suggest that 40-keV-proton radiation mainly produces point-like disorders.These point-like disorders arising from atomic displacements and clusters can cause flux creep by thermally assisted flux flow.Flux creep has an extremely negative effect on the applications of hightemperature superconducting YBCO thin films and related devices.Therefore,it is necessary to reduce the effect of flux creep in proton environments.These studies are expected to be useful for the future research in this respect.

    Acknowledgment

    We would also like to thank the SRIM/TRIM for the technical support.

    猜你喜歡
    張玉趙鵬蘇爾
    熱噴涂技術(shù)在汽車(chē)零部件中的應(yīng)用及其工藝
    遇見(jiàn)漢語(yǔ),遇見(jiàn)最美好的自己
    文化交流(2018年10期)2018-10-11 01:58:40
    “同分異構(gòu)體”知識(shí)解談
    汪仁斌、張玉設(shè)計(jì)作品
    尋找失蹤的少女
    社團(tuán)少年
    社團(tuán)少年
    Overview of the Major 2012-2013 Northern Hemisphere Stratospheric Sudden Warming:Evolution and Its Association with Surface Weather
    消失的癌癥
    祝您健康(2012年6期)2012-04-29 00:44:03
    蘇爾科夫與俄羅斯主流意識(shí)形態(tài)
    亚洲精品久久成人aⅴ小说| 亚洲视频免费观看视频| 亚洲激情在线av| 51午夜福利影视在线观看| 成人黄色视频免费在线看| 熟女少妇亚洲综合色aaa.| 中文字幕av电影在线播放| 手机成人av网站| 乱人伦中国视频| 99在线人妻在线中文字幕| 又大又爽又粗| 9色porny在线观看| 夜夜看夜夜爽夜夜摸 | 国产精品av久久久久免费| 国产成人影院久久av| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 国产精品久久久av美女十八| 日日干狠狠操夜夜爽| 色婷婷av一区二区三区视频| 在线国产一区二区在线| 久久精品91蜜桃| 少妇被粗大的猛进出69影院| 免费人成视频x8x8入口观看| 成熟少妇高潮喷水视频| 国产成人av激情在线播放| 午夜91福利影院| 一边摸一边抽搐一进一出视频| 国产一区二区三区视频了| 另类亚洲欧美激情| 桃红色精品国产亚洲av| 制服人妻中文乱码| 在线观看免费视频日本深夜| 久热这里只有精品99| 国产精品av久久久久免费| 精品久久久久久电影网| 日韩免费高清中文字幕av| 日韩精品青青久久久久久| 久久香蕉国产精品| 亚洲人成伊人成综合网2020| 咕卡用的链子| 免费少妇av软件| 国产精品爽爽va在线观看网站 | 19禁男女啪啪无遮挡网站| 国产精品成人在线| 一级毛片女人18水好多| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 日韩欧美三级三区| 高清毛片免费观看视频网站 | 亚洲第一av免费看| 日日干狠狠操夜夜爽| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 男女下面进入的视频免费午夜 | 久久精品aⅴ一区二区三区四区| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 日韩国内少妇激情av| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 午夜a级毛片| 国产亚洲欧美在线一区二区| 91国产中文字幕| 久久久国产成人精品二区 | 五月开心婷婷网| www.www免费av| 亚洲精品国产一区二区精华液| 亚洲精品久久午夜乱码| 变态另类成人亚洲欧美熟女 | 日本精品一区二区三区蜜桃| 91av网站免费观看| 这个男人来自地球电影免费观看| 99在线视频只有这里精品首页| 欧美黄色淫秽网站| 人人妻人人添人人爽欧美一区卜| 不卡av一区二区三区| 丝袜在线中文字幕| 成人三级黄色视频| 亚洲精品美女久久久久99蜜臀| 久久人妻熟女aⅴ| 久久香蕉激情| √禁漫天堂资源中文www| 麻豆一二三区av精品| 国产视频一区二区在线看| 久久人人精品亚洲av| 久久香蕉国产精品| 国产黄色免费在线视频| 国内久久婷婷六月综合欲色啪| 精品高清国产在线一区| netflix在线观看网站| 国产精品亚洲一级av第二区| 涩涩av久久男人的天堂| 搡老岳熟女国产| 男女床上黄色一级片免费看| 国产成年人精品一区二区 | 国产在线精品亚洲第一网站| 一本大道久久a久久精品| 国产无遮挡羞羞视频在线观看| 日韩成人在线观看一区二区三区| 一二三四社区在线视频社区8| 日日干狠狠操夜夜爽| 99久久国产精品久久久| 久久影院123| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人的私密视频| 亚洲第一青青草原| 天堂中文最新版在线下载| 在线观看免费午夜福利视频| 国产高清videossex| 午夜福利影视在线免费观看| 99久久久亚洲精品蜜臀av| 在线永久观看黄色视频| 天堂中文最新版在线下载| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 激情在线观看视频在线高清| 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频| 性少妇av在线| 国产精品免费视频内射| 99国产精品免费福利视频| 三级毛片av免费| 国产精品久久久久成人av| 久久精品aⅴ一区二区三区四区| 大香蕉久久成人网| 成人精品一区二区免费| 一区福利在线观看| 亚洲人成电影观看| 在线国产一区二区在线| 久久天堂一区二区三区四区| 99精品久久久久人妻精品| 国产熟女xx| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 黄色毛片三级朝国网站| 国产一区在线观看成人免费| 欧美色视频一区免费| 一级毛片高清免费大全| 国产精品国产av在线观看| 制服诱惑二区| 亚洲中文日韩欧美视频| 午夜视频精品福利| 男人舔女人下体高潮全视频| 亚洲色图av天堂| 色在线成人网| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| av欧美777| 国产精品久久视频播放| 亚洲avbb在线观看| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 成人亚洲精品一区在线观看| 久9热在线精品视频| 看片在线看免费视频| 亚洲 国产 在线| 天堂√8在线中文| 99精品久久久久人妻精品| 色综合婷婷激情| 国产精品综合久久久久久久免费 | 中文亚洲av片在线观看爽| 国产在线观看jvid| 国产免费现黄频在线看| 一边摸一边抽搐一进一小说| 国产成人啪精品午夜网站| 老司机亚洲免费影院| av天堂在线播放| 久久精品人人爽人人爽视色| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 欧美日韩精品网址| 在线观看一区二区三区激情| 黄色视频,在线免费观看| 国产精品秋霞免费鲁丝片| 我的亚洲天堂| 国产一区在线观看成人免费| 精品国产一区二区久久| 亚洲人成网站在线播放欧美日韩| 亚洲九九香蕉| av国产精品久久久久影院| 久久亚洲真实| 91老司机精品| 在线视频色国产色| 久久九九热精品免费| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三区在线| 在线观看午夜福利视频| 久久精品亚洲精品国产色婷小说| 长腿黑丝高跟| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| 久久精品亚洲av国产电影网| 欧美性长视频在线观看| 亚洲中文av在线| 高清av免费在线| 色哟哟哟哟哟哟| 性色av乱码一区二区三区2| 丰满迷人的少妇在线观看| 国产亚洲精品第一综合不卡| 这个男人来自地球电影免费观看| 高清欧美精品videossex| 亚洲成人国产一区在线观看| 91麻豆av在线| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 琪琪午夜伦伦电影理论片6080| 午夜久久久在线观看| 老熟妇仑乱视频hdxx| 久久人妻熟女aⅴ| 我的亚洲天堂| 少妇被粗大的猛进出69影院| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 亚洲全国av大片| 国产精品永久免费网站| 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| 丰满的人妻完整版| 亚洲五月天丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产视频一区二区在线看| 九九久久精品国产亚洲av麻豆| 男女视频在线观看网站免费| 高清毛片免费观看视频网站| 久久伊人香网站| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 最近在线观看免费完整版| 窝窝影院91人妻| av在线观看视频网站免费| 免费大片18禁| 男人狂女人下面高潮的视频| 成年版毛片免费区| 欧美午夜高清在线| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 亚洲在线观看片| 久久国产乱子免费精品| 97超级碰碰碰精品色视频在线观看| 成年女人看的毛片在线观看| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件 | 1000部很黄的大片| 俺也久久电影网| 757午夜福利合集在线观看| 久久精品综合一区二区三区| 国内精品久久久久精免费| 一区福利在线观看| 国产日本99.免费观看| 亚洲 欧美 日韩 在线 免费| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 国产大屁股一区二区在线视频| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 久久国产精品影院| 色精品久久人妻99蜜桃| h日本视频在线播放| 超碰av人人做人人爽久久| 国产精品野战在线观看| 亚洲av成人av| 男女那种视频在线观看| 在线免费观看的www视频| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 久久亚洲真实| 成年免费大片在线观看| 舔av片在线| 性色avwww在线观看| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 99国产综合亚洲精品| 又爽又黄无遮挡网站| 亚洲国产精品久久男人天堂| 亚洲精品在线美女| 亚洲无线在线观看| 久久久国产成人免费| 99久久精品国产亚洲精品| 真实男女啪啪啪动态图| 国产午夜精品论理片| 免费在线观看影片大全网站| 亚洲精品日韩av片在线观看| 麻豆国产97在线/欧美| 一边摸一边抽搐一进一小说| 亚洲第一欧美日韩一区二区三区| 免费观看精品视频网站| 国产乱人伦免费视频| 午夜福利在线在线| 欧美黑人欧美精品刺激| 女人十人毛片免费观看3o分钟| 一进一出抽搐动态| 亚洲在线观看片| 中文亚洲av片在线观看爽| 久久热精品热| 五月玫瑰六月丁香| 成人午夜高清在线视频| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 51国产日韩欧美| 国产v大片淫在线免费观看| 在线播放国产精品三级| 午夜日韩欧美国产| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 亚洲国产欧美人成| 男女之事视频高清在线观看| 亚洲精品一区av在线观看| 麻豆国产97在线/欧美| 亚洲五月婷婷丁香| 看免费av毛片| 国产三级中文精品| 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 18+在线观看网站| 婷婷六月久久综合丁香| 丝袜美腿在线中文| 性欧美人与动物交配| netflix在线观看网站| av天堂在线播放| 观看美女的网站| 观看免费一级毛片| 2021天堂中文幕一二区在线观| 国产精品久久视频播放| 亚洲中文日韩欧美视频| 黄色女人牲交| 成人性生交大片免费视频hd| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 欧美另类亚洲清纯唯美| 色哟哟哟哟哟哟| 日本a在线网址| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 亚洲国产精品合色在线| 国产欧美日韩精品亚洲av| 如何舔出高潮| 精品一区二区三区视频在线观看免费| 亚洲av成人av| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 亚洲精品亚洲一区二区| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 老司机深夜福利视频在线观看| 亚洲av美国av| 国产单亲对白刺激| 色哟哟哟哟哟哟| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 国内揄拍国产精品人妻在线| 少妇人妻精品综合一区二区 | 人妻丰满熟妇av一区二区三区| 3wmmmm亚洲av在线观看| 无人区码免费观看不卡| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看| 久久久精品大字幕| 国产一区二区激情短视频| 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 国产精品野战在线观看| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 欧美成人性av电影在线观看| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 亚洲精品亚洲一区二区| 一级av片app| 日韩中字成人| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 怎么达到女性高潮| 亚洲最大成人av| 亚洲一区二区三区不卡视频| 69av精品久久久久久| 亚洲av二区三区四区| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 悠悠久久av| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久亚洲 | 亚洲色图av天堂| 一区二区三区免费毛片| 精品一区二区三区人妻视频| 无人区码免费观看不卡| 91av网一区二区| 亚洲美女搞黄在线观看 | 搡老岳熟女国产| 中文字幕免费在线视频6| 黄色女人牲交| 看免费av毛片| 欧美性感艳星| 国产黄片美女视频| 国产精华一区二区三区| 又粗又爽又猛毛片免费看| 精品欧美国产一区二区三| 成年版毛片免费区| 黄色一级大片看看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久com| 国产在视频线在精品| 欧美黑人欧美精品刺激| 国产亚洲精品综合一区在线观看| 51午夜福利影视在线观看| 国产黄片美女视频| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| av黄色大香蕉| 深夜精品福利| 人人妻人人看人人澡| 欧美一区二区亚洲| 国产乱人伦免费视频| 青草久久国产| 97碰自拍视频| 欧美另类亚洲清纯唯美| 波多野结衣高清作品| a级一级毛片免费在线观看| 最近视频中文字幕2019在线8| 国产探花极品一区二区| 高清毛片免费观看视频网站| 97碰自拍视频| 国产精品久久电影中文字幕| 欧美精品国产亚洲| 成人永久免费在线观看视频| 亚洲精华国产精华精| 国产精品一区二区性色av| 无人区码免费观看不卡| 少妇被粗大猛烈的视频| 天堂网av新在线| 国产精品自产拍在线观看55亚洲| 国产黄片美女视频| av女优亚洲男人天堂| 色在线成人网| 国产大屁股一区二区在线视频| 女生性感内裤真人,穿戴方法视频| 国产免费男女视频| 最后的刺客免费高清国语| 国产爱豆传媒在线观看| 婷婷丁香在线五月| 国产高清视频在线观看网站| 欧美+日韩+精品| 夜夜爽天天搞| 久久久久久九九精品二区国产| 又爽又黄无遮挡网站| 一进一出好大好爽视频| 久久久久久久久中文| 丝袜美腿在线中文| 亚洲成人久久性| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 亚洲精华国产精华精| 成人毛片a级毛片在线播放| 免费看日本二区| 亚洲av.av天堂| 小蜜桃在线观看免费完整版高清| 日韩av在线大香蕉| 国产高潮美女av| 亚洲第一欧美日韩一区二区三区| 美女高潮喷水抽搐中文字幕| 91狼人影院| 日韩欧美精品免费久久 | 亚洲精品粉嫩美女一区| 亚洲欧美日韩东京热| 俺也久久电影网| 神马国产精品三级电影在线观看| 欧美高清性xxxxhd video| АⅤ资源中文在线天堂| 老司机深夜福利视频在线观看| 男插女下体视频免费在线播放| 大型黄色视频在线免费观看| 99热这里只有精品一区| 亚洲国产欧美人成| 亚洲色图av天堂| 日韩有码中文字幕| 精品久久久久久久久亚洲 | 悠悠久久av| 蜜桃亚洲精品一区二区三区| 精品乱码久久久久久99久播| 色5月婷婷丁香| 俺也久久电影网| 免费看a级黄色片| 午夜久久久久精精品| 嫩草影院精品99| 黄色日韩在线| 很黄的视频免费| 日本 av在线| 日日夜夜操网爽| 69av精品久久久久久| 一进一出抽搐gif免费好疼| 中出人妻视频一区二区| 久久精品影院6| 久久久久国产精品人妻aⅴ院| 欧美色视频一区免费| 婷婷色综合大香蕉| 成人欧美大片| 色播亚洲综合网| 成人毛片a级毛片在线播放| 校园春色视频在线观看| 九色成人免费人妻av| 亚洲av五月六月丁香网| 51国产日韩欧美| 亚洲美女黄片视频| 国产精品久久久久久久久免 | 美女cb高潮喷水在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美98| 亚洲av美国av| 免费看光身美女| 亚洲国产色片| av欧美777| 看黄色毛片网站| 午夜老司机福利剧场| 久久人人精品亚洲av| 亚洲在线观看片| 成人午夜高清在线视频| 中文字幕av成人在线电影| www.熟女人妻精品国产| a级毛片a级免费在线| 九九在线视频观看精品| 国产成人欧美在线观看| 少妇的逼好多水| 激情在线观看视频在线高清| 无人区码免费观看不卡| 宅男免费午夜| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| 热99在线观看视频| 91在线观看av| 毛片女人毛片| 亚洲精品成人久久久久久| av专区在线播放| 丝袜美腿在线中文| 熟女电影av网| 能在线免费观看的黄片| 午夜福利18| 最近最新中文字幕大全电影3| 美女xxoo啪啪120秒动态图 | 欧美3d第一页| АⅤ资源中文在线天堂| 亚洲经典国产精华液单 | 免费av毛片视频| 特级一级黄色大片| 亚洲人成电影免费在线| 久久这里只有精品中国| 欧美高清成人免费视频www| 青草久久国产| 午夜a级毛片| 亚洲国产日韩欧美精品在线观看| 久久午夜亚洲精品久久| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 午夜福利视频1000在线观看| 久久精品国产自在天天线| 欧美高清成人免费视频www| 亚洲最大成人手机在线| 午夜a级毛片| 日日摸夜夜添夜夜添av毛片 | 免费观看精品视频网站| 亚洲五月天丁香| 日韩成人在线观看一区二区三区| 国产av麻豆久久久久久久| a在线观看视频网站| 日韩中字成人| 9191精品国产免费久久| 欧美色视频一区免费| 色综合亚洲欧美另类图片| 伊人久久精品亚洲午夜| 午夜激情欧美在线| 五月玫瑰六月丁香|