• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility?

    2019-02-25 07:22:54GuanqiongWang王冠瓊DelongXiao肖德龍JiakunDan但家坤YangZhang張揚(yáng)NingDing丁寧XianbinHuang黃顯賓XiaoguangWang王小光ShunkaiSun孫順凱ChuangXue薛創(chuàng)andXiaojianShu束小建
    Chinese Physics B 2019年2期
    關(guān)鍵詞:小建丁寧王冠

    Guanqiong Wang(王冠瓊),Delong Xiao(肖德龍),Jiakun Dan(但家坤),Yang Zhang(張揚(yáng)),?,Ning Ding(丁寧),Xianbin Huang(黃顯賓),Xiaoguang Wang(王小光),Shunkai Sun(孫順凱),Chuang Xue(薛創(chuàng)),and Xiaojian Shu(束小建)

    1 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2 Institute of Fluid Physics,Chinese Academy of Engineering Physics,Mianyang 621900,China

    Keywords:Z-pinch,electrothermal instability,magnetohydrodynamics(MHD)simulations

    1.Introduction

    With the development of pulsed power technology,the fast Z-pinches could produce 1.8 MJ of soft x-rays with peak powers greater than 200 TW in a pulse of 4.5-ns duration,using cylindrical nested wire-array of fine metal wires made of tungsten carrying a current rising to 20 MA over 100 ns on the Z machine at Sandia National Laboratories.[1]Such an intense shot-pulse x-ray source can be employed to indirect drive inertial confinement fusion(ICF),like the dynamic hohlraum.[2]Meanwhile,the Z-pinch also shows the potential of direct drive ICF[1,3-7]due to the huge magnetic pressure and the plenty of driven energy,such as the recent magnetized liner inertial fusion(MagLIF)concept.[6,8]Unfortunately,fast Z-pinches are inherently hydrodynamically unstable and are predominantly susceptible to the magneto-Rayleigh-Taylor(MRT)instability,[9-11]which occurs when a light fluid(driving magnetic pressure)is pushing against a heavy fluid(liner plasma)and seriously decreases the implosion quality.

    In the experiments of MagLIF-relevant aluminum liner implosions on the Z facility,[12,13]the MRT instability seeded by machining sinusoidal perturbations(λ =200 μm,amplitude=10μm)grew to an amplitude of 500μm.However,in the same shot,perturbations from the flat region(perturbed only by surface roughness with an initial amplitude of 60-nm root-mean square)grew to an amplitude of 70μm at the identical time,i.e.,the increment of perturbations from the ‘smooth’surface was over 20 times greater than that from the sinusoidal seeded region.In addition,the comparisons of imploding Beryllium liner experiments[14,15]with magnetohydrodynamics(MHD)simulations revealed that the good agreement depended on how to model the liner’s initial outer surface.

    Simulations[16,17]and experiments in solid rods[18-20]and imploding liners[21]over the past several years suggested that the electrothermal instability(ETI),rather than the liner surface roughness,played an important role in seeding MRT instability.The ETI[16-18,22-25]is caused by the inhomogeneous Joule heating due to the characteristic relation between the resistivity and the material temperature.The dispersion relation[22]of ETI reveals that the instability structure is dependent on the derivative of the resistivity with respect to temperature.When the resistivity decreases with temperature(?η/?T < 0),such as in a plasma with Spitzer-like resistivity,axially oriented overheated “ filaments”can grow.On the other hand,when the resistivity increases with temperature(?η/?T > 0),such as for a metal in solid,liquid,and(nonionized)vapor states,electrothermal instabilities can form azimuthally correlated “striations”perpendicular to the flow of current,which are usually observed at the early stage of Z-pinch implosions.Since the striation form of ETI has the same orientation of wave vector as the MRT modes,ETI perturbations may couple to the subsequent MRT instability growth.

    Besides the thick liners for MagLIF where the aspect ratio(initial outer radius divided by initial wall thickness)is less than 10,experiments of copper cylindrical foil implosions(1.5μm in thickness and 6666.7 in aspect ratio)carried out by Nash et al.[26]indicated that the axial perturbations were clear just before the load is imploded,however,what physics caused these perturbations was not discussed.It is supposed that ETI is also the main mechanism to determine the axial perturbations in the early phases of thin liner implosions.In contrast to the thick liner,the thickness of the thin liner is much less than the skin depth of the proposed current pulse,so there might be a difference of ETI growth in the two types of liner.

    Recently,the experiments on aluminum cylindrical foil implosions were performed for the first time on the primary test stand(PTS)facility.[27]The 2-μm-thick foil was wrapped into a cylinder with one turn,so the cylindrical foil was also called the thin liner here.The liners are 15 mm in height,2μm in thickness,and 12.8 mm in diameter.From the laser shadowgraph images,it is seen that axially oriented perturbations had been visible and striated before the liner’s acceleration.It is important to interpret the experimental observations and explore the role of ETI in the formation of these striated structures at the early stage of thin liner implosions on the PTS facility.In order to investigate the evolution of ETI during the early plasma formation,two-dimensional(2D)(r,z)simulations are performed in this paper.

    This paper is organized as follows.Section 2 describes the physical model in the code,and the experiments of thin aluminum liner implosions on the PTS facility are shown in Section 3.Section 4 presents the MHD simulations for electrothermal instabilities.Finally,the conclusions are given in Section 5.

    2.Physical model

    In order to describe the plasma formation at early times and the electrothermal instability,the resistive MHD model is employed.The governing equations can be written as

    where ρ,p,and ε represent mass density,thermal pressure,and internal energy density,respectively.B is the magnetic field,E is the electrical field,J is the current density,υ is the fluid velocity,μ0is permeability,and η is the electrical resistivity.Note that the above equation set is not closed unless the equation of state is included.Obviously,the ideal gas approximation is not valid during the solid and liquid phases.Thus the equation of state should be modified to emulate the behavior of the condensed states of materials.In this work,we use MPQeos-JWGU[28]to generate tables in the SESAME-301 format which determines the internal energy and pressure as functions of the density and temperature.Figure 1 shows the thermal pressure of aluminum calculated by this model as a function of density for various temperatures.

    Fig.1.Thermal pressure versus density for various temperatures provided by MPQeos-JWGU.The unit 1 bar=105 Pa.

    It is essential to obtain the accurate electrical resistivity in order to calculate the Joule heating and the diffusion of magnetic field.Here,we adopt Lee and More’s model,[29]which spans a wide range of different material parameters and states.Figure 2 shows the dependence of the electrical resistivity of aluminum on the temperature for different densities.It can be seen that the derivative of the resistivity with respect to temperature changes sign from the state of high density with low temperature to the plasma phase with higher temperature as the material is heated and expands.

    We use a 2D Eulerian MHD code(ZEUS-2D)[30,31]to realize the models mentioned above.Originally,the resistive effect was not considered in this code and the ideal MHD equations were solved explicitly by the operator split scheme.We add the magnetic field diffusion module with the implicit scheme in the code.Here,the radiation transport is not taken into account because of the relatively low temperature at the early stage of Z-pinch implosions.Periodic boundary conditions are used at the axial boundaries.In recent experiments on the PTS facility,the thickness of liners is much less than the initial radius,and the radial width of cells must be small enough to allow the solid foil to be resolved.On the other hand,the number of cells cannot be much too large due to the limitation of the computational resource.Thus,the radial computational region(from R=6.15 mm to 6.56 mm)is set to be near the initial position of liners,but not including the pinch axis.At the radial boundaries,free flow conditions are used.Note that the material strength is not modeled in the code,and the thermal pressure cannot be balanced with the stress in the solid state.Consequently,the motion of load is set to be frozen artificially until the load temperature is higher than the melting temperature.

    Fig.2.Resistivity of Al as a function of temperature for several densities taken from Lee and More’s model.

    3.Experiments

    In experiments of cylindrical foil implosions on the PTS facility,the 2-μm thick liners are made of aluminum with a diameter of 12.8 mm(15 mm in length and 2.20 mg/cm in linear mass density).Here,shot 0319 with the peak current of 6.7 MA and the 10%-90%current rise time of 58 ns is analyzed,since more diagnostic images are taken for this shot at early times,which is beneficial to studying the early phenomena.The waveforms of current and radiation power are shown in Fig.3(a),where the peak power is at time t=135 ns.

    The four-frame laser shadowgraph images with 6-ns frame-interval,150-ps exposure time,and 25-μm resolution are used to capture the early behavior of the load,as shown in Fig.3.At 71.7 ns,the small perturbations with axial size close to the resolution limit of the laser shadowgraph emerge on the load surface,and these striation-like structures are perpendicular to the drive current.It is also clear that a significant amount of mass still exists at the initial location(R=6.4 mm)indicated by the dashed lines,which means that the bulk liner is almost at rest.Thus,it is inferred that the MRT instability has not taken place.As mentioned above,ETI can produce the alternating hot and cold azimuthally correlated bands,thus the perturbation in both mass density and interface position would be created.After that,as the instabilities develop,the amplitude of perturbations increases obviously and some spikes appear around the initial position of liner(the dashed red line).By 89.7 ns,most of the spikes have moved to the left of the dashed line,and the position of the foil border in the laser shadowgraph image is roughly between r=6.1 mm and 6.2 mm(it is hard to recognize the load-vacuum boundary accurately because of the instability structures),which means the liner is imploding.

    Fig.3.(a)Experimental drive current(solid line)and radiation power(dashed line)as a function of time for shot 0319.(b)Laser shadowgraph images at the measured times;timing relative to the start of current is indicated on each shadowgraph where the red dashed line represents the initial position of liner,and the black and green parts represent the liner region and the vacuum,respectively.The anode is on the top of shadowgraph,and the cathode is on the bottom.

    4.Simulations of early plasma formation

    A series of MHD simulations using experimental parameters have been performed with modified ZEUS-2D.The initial calculation conditions are set as follows:in the liner region,the temperature and density are 350 K and 2.7 g/cm3,respectively;the rest region(including inside and outside of the liner)is labeled as the“vacuum”where the temperature is still350 K;however,the density is10-6g/cm3.In the vacuum,an artificially high resistivity is given,so that this region can remain almost current free.In order to ensure that the number of cells is sufficient to resolve the liner and the width of cells is not too small and to increase the runtime dramatically,the radial width of cells is set to 0.33μm near the liner center and increases with radius as a fixed ratio 1.08.The radial grid with 105 cells is from R=6.15 mm to 6.56 mm.

    4.1.One-dimensional(1D)simulations

    In order to illustrate the evolution of the thin liner under Joule heating in the absence of complex instabilities,the simulations without initial perturbations are run at first.Due to the cylindrical symmetry,the physical quantities would be always uniform along the axis,and these simulations become actually one dimensional.The liner thickness is so small that the skin time τskin= μ0L2/η is very short(approximately 0.5 ns),where η is the resistivity and L is the characteristic length.In other words,it only takes 0.5 ns until the magnetic field penetrates the load completely.After that the current would flow uniformly over the cross section,both the inner and the outer edges of liner would experience almost the same Joule heating.During the first 21 ns,the liner temperature gradually increases and the liner remains stationary.Once the melting temperature isreached,the load begins to expand quickly.Figure 4 shows the radial profiles of some physical quantities at 55 ns,including temperature,density,current density,thermal pressure,and magnetic pressure.The density at the central position(R=6.4 mm)has decreased by an order of magnitude from the initial density,and the temperature increased to above 1 eV.During this period,the density in the central region is high enough to cause the relatively low resistivity,consequently the current density in this region is still large.However,the peak of current density has been located at the outer position,which means that with the formation of a conducting plasma corona,the current is shunted gradually into the plasma with low resistivity.In other words,the skin effect appears as the liner expands.

    Fig.4.Radial profiles from a simulation of thin aluminum liner at 55 ns.

    By 72 ns,the radial size of liner has exceeded 300μm,as shown in Fig.5.Note that the liner’s inner interface has a higher expansion level than the outer interface,which is constrained by the increasing magnetic pressure.As the liner expands,the current is further shunted outward and the skin effect is identified again.Figure 5 also indicates that the liner just starts to implode as a whole and most of the mass is still at the initial position,which is similar to what is shown in the laser shadowgraph image at 71.7 ns.After that,since the magnetic field in the outer regions is sufficiently large,the liner implosion becomes obvious in both laser shadowgraph images and 1D simulations.

    Fig.5.Radial profiles from a simulation of thin aluminum liner at 72 ns.

    4.2.2D simulations

    For the r direction,the initial conditions of 2D simulations are the same as those of 1D simulations mentioned above.Furthermore,the axial grid should be set in the 2D simulations,we use the mesh with 80 cells each 1.25-μm long,i.e.,with an axial length of 100μm,and a random density perturbation of 5%is used to initiate the instability growth.We also have tried to set a different perturbation level,such as 1%and 3%.In these simulations,only the initial perturbation amplitude varies,and the results show that there were no essential distinctions for the instability development and the characteristic wavelength,in agreement with Ref.[16].

    Figure 6 shows the density and temperature(Temp)maps at 55 ns from the 2D simulation,in which the axial structures of instabilities have been evident.Due to the pressure equilibrium,density and temperature perturbations have nearly opposite phases,i.e.,a maximum density corresponds to a minimum temperature,which is in agreement with Oreshkin’s model.[23]

    Previous studies[17,20]indicated that ETI could provide a seed for the subsequent MRT instability because the wave vec-tor of striations of ETI was consistent with that of MRT.In the 2Dsimulation,itisalso found thatETImay couple to the MRT instability,as shown in Fig.7.At 72 ns,the liner material as a whole has been slightly accelerated radially inwards,and the dense material with highly developed striations tends to imprint its structure onto the low density plasma.Consequently,ETI seeds the MRT instability which increasingly dominates the bulk implosion dynamics.Due to the limitation of the grid size,the calculation stops at 72 ns.

    Fig.6.Contours of density(in units of g/cm3)(a)and temperature(in unit of K)(b)from a 2D(r,z)simulation of thin aluminum liner at 55 ns.

    In order to extract wavelength components,a fast Fourier transform(FFT)is applied to the radially averaged temperature perturbations.Figure 8 shows the instability spectrum at two times,when the bulk liner plasma almost stays at its initial position.At t=55.0 ns,the characteristic wavelengths of instabilities are between 8.3μm-20.0μm,and the λ=10.0μm mode has the largest amplitude.As predicted by Oreshkin’s theory,[23]for the majority of metals in condensed state,the ETI has the minimum wavelength λmin=2π[κ(?η/?T)-1]1/2/J,and the short wavelength modes with λ<λminare suppressed because of the thermal conductivity κ.Consequently,by using the constants of aluminum in Table 1 of Ref.[23],the characteristic scales of ETI are about 10μm.Furthermore,from the more detailed calculations of the integral ETI growth,Oreshkin obtained that the wavelength of the fastest growing modes were 1μm-20μm(Fig.8 of Ref.[22]),which agrees qualitatively with our simulations.

    As instabilities develop further,the dominant wavelength tends to be longer and becomes 33.3μm by 72.0 ns.The transition from short to long wavelengths may be attributed to the inverse cascade process[32]of MRT instability,since the low density plasma in the outer region has accelerated inward in this process.In addition,how to reduce ETI is still an open question.Although the dielectric coatings can mitigate the density perturbation arising from ETI,[20,33]the coatings may be not beneficial to the x-ray radiation and yields because the load mass is increased.Recently,some experiments based on the MagLIF concept indicated that the external axial magnetic field caused the helical instability structures and the reduction in overall instability amplitude,[34]however,the effect of the axial magnetic field on ETI needs to be further investigated.

    Fig.8.Fourier transforms of the radially averaged temperature perturbations plotted at(a)55 ns and(b)72 ns.

    5.Conclusions

    The axially oriented instability structures have been observed at the early stage of cylindrical aluminum foil implosions on the PTS facility.We have performed a 2D(r,z)MHD code to simulate the thin liner behavior in the early phases based on the PTS experimental conditions.In the absence of initial perturbations,it is illustrated that the liner expands and the density drops fast;meanwhile,the current density is gradually shunted to the outer regions where the resistivity is relatively low since the surface plasma with low mass density is heated rapidly.When the magnetic pressure in the outer regions is sufficiently high,the global implosion would start.Additionally,the simulations with random density perturbations have been performed to describe the evolution of instabilities.As the liner is Joule heated nonuniformly and expands,the axial striation-form structures produced by ETI can be identified by the density and temperature maps.The range of dominant wavelength is between 8.33μm and 20.0μm,which agrees with the theoretical predictions qualitatively.It is also interesting to see that striations may naturally couple to the subsequently MRT instability at the end of the 2D simulation,when the liner starts to implode as a whole.Due to the limitation of diagnostics,the experimental results have not been compared with simulations quantitatively.In PTS experiments on the aluminum liner implosions,only the laser shadowgraph system could obtain the relatively available images showing the behavior of the liner in the early times.Other diagnostics,like the x-ray emission and extreme ultraviolet(XUV)self-emission images,hardly resolve the early instability structures because the liner temperature is relatively low during the early phases.

    Acknowledgment

    The authors would like to thank all colleagues of experimental teams and operation teams from the Institute of Fluid Physics,the Institute of Nuclear Physics and Chemistry and the Research Center of Laser Fusion,Chinese Academy of Engineering Physics(CAEP).

    猜你喜歡
    小建丁寧王冠
    小建中湯配合穴位貼敷治療十二指腸潰瘍的臨床觀察
    一“點(diǎn)”之差
    編外“魚(yú)”赴
    最怨的就是你
    “點(diǎn)”搬家
    最怨的就是你
    三月三(2015年10期)2015-10-20 16:37:25
    賽馬
    巧qiǎo 畫(huà)huà 長(zhǎng)chánɡ 頸jǐnɡ 鹿lù
    游戲惹的禍
    遼寧高考文科狀元?jiǎng)⒍幰l(fā)熱議
    深夜精品福利| 黄色成人免费大全| 九色国产91popny在线| 一级作爱视频免费观看| 欧美成人性av电影在线观看| 一级a爱片免费观看的视频| 熟妇人妻久久中文字幕3abv| 精品午夜福利视频在线观看一区| 人成视频在线观看免费观看| 国产三级黄色录像| 一区二区日韩欧美中文字幕| 村上凉子中文字幕在线| 成人特级黄色片久久久久久久| 曰老女人黄片| 在线观看舔阴道视频| 午夜久久久在线观看| 在线av久久热| 操出白浆在线播放| 久久人人精品亚洲av| 老司机深夜福利视频在线观看| 人人澡人人妻人| 成人国语在线视频| 日本一区二区免费在线视频| а√天堂www在线а√下载| 美女高潮喷水抽搐中文字幕| 午夜福利高清视频| 不卡av一区二区三区| 免费在线观看日本一区| 99热这里只有精品一区 | 日韩高清综合在线| 久久香蕉国产精品| 色综合亚洲欧美另类图片| 国产一区二区三区视频了| 中文资源天堂在线| 性欧美人与动物交配| 亚洲av第一区精品v没综合| 男人舔奶头视频| 两性午夜刺激爽爽歪歪视频在线观看 | 搞女人的毛片| 真人做人爱边吃奶动态| 亚洲av电影不卡..在线观看| e午夜精品久久久久久久| 99热只有精品国产| 亚洲精品国产区一区二| 好看av亚洲va欧美ⅴa在| 免费一级毛片在线播放高清视频| 国产aⅴ精品一区二区三区波| x7x7x7水蜜桃| 黄片大片在线免费观看| 极品教师在线免费播放| 免费高清视频大片| 久久婷婷人人爽人人干人人爱| 黄网站色视频无遮挡免费观看| 精品卡一卡二卡四卡免费| 欧美国产日韩亚洲一区| 亚洲人成伊人成综合网2020| 一边摸一边抽搐一进一小说| 俄罗斯特黄特色一大片| 午夜福利欧美成人| 香蕉国产在线看| xxxwww97欧美| 免费av毛片视频| 亚洲 欧美一区二区三区| 亚洲熟女毛片儿| or卡值多少钱| 日韩欧美国产一区二区入口| 国内精品久久久久久久电影| 在线看三级毛片| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 国产高清视频在线播放一区| 亚洲黑人精品在线| 日本免费一区二区三区高清不卡| 十分钟在线观看高清视频www| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 无人区码免费观看不卡| 一二三四社区在线视频社区8| 国产成人系列免费观看| ponron亚洲| 亚洲中文字幕日韩| 亚洲色图av天堂| 亚洲一区二区三区不卡视频| 黄色a级毛片大全视频| 91大片在线观看| 国产97色在线日韩免费| 亚洲欧美激情综合另类| 精品欧美国产一区二区三| 精品久久久久久久末码| 大香蕉久久成人网| 久久九九热精品免费| 99热6这里只有精品| 亚洲精品av麻豆狂野| 国产一区二区三区视频了| 国产欧美日韩一区二区三| a在线观看视频网站| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 久热这里只有精品99| 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 香蕉久久夜色| 久久狼人影院| 一本久久中文字幕| 窝窝影院91人妻| 午夜视频精品福利| 欧美日韩乱码在线| 久久伊人香网站| 侵犯人妻中文字幕一二三四区| 国产不卡一卡二| 欧美在线一区亚洲| 欧美大码av| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 国产精品 国内视频| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 久久久久免费精品人妻一区二区 | 一边摸一边抽搐一进一小说| 50天的宝宝边吃奶边哭怎么回事| 一进一出抽搐gif免费好疼| 欧美激情极品国产一区二区三区| 99久久国产精品久久久| 日韩国内少妇激情av| www日本黄色视频网| 成人午夜高清在线视频 | 日韩欧美三级三区| 国内精品久久久久久久电影| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 精品电影一区二区在线| 制服丝袜大香蕉在线| 亚洲精品国产一区二区精华液| 国产黄片美女视频| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区 | 88av欧美| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 久久狼人影院| 国产真实乱freesex| 中文字幕av电影在线播放| 欧美三级亚洲精品| 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区| 欧美色视频一区免费| 成人精品一区二区免费| 在线观看一区二区三区| 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 亚洲国产精品999在线| 国产真人三级小视频在线观看| 国产激情欧美一区二区| 亚洲欧美激情综合另类| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产乱码久久久久久男人| 亚洲熟妇熟女久久| 国产精品,欧美在线| 欧美激情极品国产一区二区三区| 久久中文字幕人妻熟女| 少妇裸体淫交视频免费看高清 | 男人舔奶头视频| 国产三级在线视频| 亚洲国产看品久久| 99精品欧美一区二区三区四区| 亚洲九九香蕉| 色精品久久人妻99蜜桃| 欧美一区二区精品小视频在线| 国产精品乱码一区二三区的特点| 久久久久久大精品| a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 一本精品99久久精品77| 亚洲国产精品久久男人天堂| 又大又爽又粗| 少妇裸体淫交视频免费看高清 | 少妇被粗大的猛进出69影院| 嫩草影视91久久| 天天躁夜夜躁狠狠躁躁| 精品久久久久久,| 免费在线观看完整版高清| 久久精品影院6| 琪琪午夜伦伦电影理论片6080| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 黄色丝袜av网址大全| 国产精品影院久久| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 露出奶头的视频| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 精品欧美国产一区二区三| 欧美性长视频在线观看| 亚洲中文av在线| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 国产精品 国内视频| 一区二区三区国产精品乱码| 国产欧美日韩一区二区三| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女| videosex国产| 啦啦啦观看免费观看视频高清| 波多野结衣av一区二区av| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 老汉色av国产亚洲站长工具| 午夜成年电影在线免费观看| 国产爱豆传媒在线观看 | 99国产精品99久久久久| 99热这里只有精品一区 | 中文字幕人妻熟女乱码| 最近最新中文字幕大全电影3 | 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 欧美激情 高清一区二区三区| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频| 人人澡人人妻人| 免费观看人在逋| 免费人成视频x8x8入口观看| 老司机福利观看| 国产精品国产高清国产av| 亚洲专区中文字幕在线| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 成熟少妇高潮喷水视频| 欧美性长视频在线观看| 久久久国产欧美日韩av| 午夜亚洲福利在线播放| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 51午夜福利影视在线观看| 久久青草综合色| 少妇被粗大的猛进出69影院| 国产激情久久老熟女| 嫩草影视91久久| 国产色视频综合| 亚洲午夜精品一区,二区,三区| 久久香蕉国产精品| 正在播放国产对白刺激| 男女下面进入的视频免费午夜 | 在线观看66精品国产| 91av网站免费观看| 在线国产一区二区在线| 天堂动漫精品| 在线播放国产精品三级| 日韩欧美一区视频在线观看| 在线av久久热| 91成人精品电影| 国产av又大| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 美女午夜性视频免费| 精品久久久久久久末码| 国产成人欧美在线观看| 国产成人精品无人区| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 黄色女人牲交| 老鸭窝网址在线观看| 国产区一区二久久| 亚洲av成人一区二区三| 日韩欧美国产一区二区入口| 国产精品二区激情视频| 国产色视频综合| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 久久中文看片网| 久久久久国内视频| 久久热在线av| 日本黄色视频三级网站网址| 免费电影在线观看免费观看| 欧美乱妇无乱码| 精品第一国产精品| 妹子高潮喷水视频| 久久久久久大精品| www日本在线高清视频| 日本免费一区二区三区高清不卡| 亚洲九九香蕉| 久久精品91无色码中文字幕| 午夜激情福利司机影院| 亚洲色图av天堂| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 狠狠狠狠99中文字幕| 50天的宝宝边吃奶边哭怎么回事| 99re在线观看精品视频| 中文字幕人妻熟女乱码| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 国内精品久久久久久久电影| 午夜激情av网站| 神马国产精品三级电影在线观看 | 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 美女国产高潮福利片在线看| 97碰自拍视频| 一级片免费观看大全| 99久久99久久久精品蜜桃| 国产精品一区二区三区四区久久 | 亚洲电影在线观看av| 国产又色又爽无遮挡免费看| 国产成人影院久久av| 色综合婷婷激情| 美女午夜性视频免费| 成人午夜高清在线视频 | 国产欧美日韩精品亚洲av| 免费看日本二区| 变态另类成人亚洲欧美熟女| 午夜福利一区二区在线看| 最近最新免费中文字幕在线| 老司机福利观看| 免费在线观看影片大全网站| 国产成年人精品一区二区| 一区二区三区精品91| 人人妻人人看人人澡| 国产又爽黄色视频| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 国产爱豆传媒在线观看 | 日本 欧美在线| 高潮久久久久久久久久久不卡| 麻豆成人av在线观看| 天堂动漫精品| 在线观看免费午夜福利视频| 亚洲欧美精品综合一区二区三区| 亚洲国产毛片av蜜桃av| 俺也久久电影网| 黑人欧美特级aaaaaa片| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 级片在线观看| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 免费在线观看成人毛片| 女人爽到高潮嗷嗷叫在线视频| www.999成人在线观看| 在线av久久热| 国产精品久久久久久亚洲av鲁大| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 亚洲男人的天堂狠狠| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 国产精品乱码一区二三区的特点| 国产三级黄色录像| 久久午夜综合久久蜜桃| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 成年版毛片免费区| 国产精品爽爽va在线观看网站 | 亚洲真实伦在线观看| 亚洲精品久久国产高清桃花| 国产激情欧美一区二区| av欧美777| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 欧美黑人巨大hd| 色综合婷婷激情| 欧美黑人精品巨大| 美女 人体艺术 gogo| 国产精品一区二区精品视频观看| 国产一区二区在线av高清观看| 午夜久久久在线观看| 一进一出抽搐gif免费好疼| 夜夜爽天天搞| 欧美日本视频| 99精品欧美一区二区三区四区| 精品久久蜜臀av无| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 黄色a级毛片大全视频| 国内揄拍国产精品人妻在线 | 欧美乱码精品一区二区三区| 国产av一区二区精品久久| 给我免费播放毛片高清在线观看| 看黄色毛片网站| 99热只有精品国产| 成人亚洲精品av一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 国产爱豆传媒在线观看 | 校园春色视频在线观看| 美女午夜性视频免费| 精品欧美一区二区三区在线| 91成人精品电影| 国产精品 国内视频| 日本一本二区三区精品| 老汉色∧v一级毛片| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区| 日本 av在线| 99久久综合精品五月天人人| 曰老女人黄片| 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站 | 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 一级毛片精品| av电影中文网址| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 18美女黄网站色大片免费观看| 午夜免费鲁丝| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 欧美 亚洲 国产 日韩一| 香蕉av资源在线| 国产熟女午夜一区二区三区| 美国免费a级毛片| 日韩欧美三级三区| 久久草成人影院| 婷婷精品国产亚洲av在线| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 免费看a级黄色片| 两个人视频免费观看高清| 日韩欧美国产在线观看| 色哟哟哟哟哟哟| 大香蕉久久成人网| 婷婷亚洲欧美| 成人亚洲精品一区在线观看| 免费在线观看日本一区| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 波多野结衣av一区二区av| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 亚洲熟女毛片儿| 免费看十八禁软件| 亚洲最大成人中文| 国产精品av久久久久免费| 国产精品野战在线观看| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆 | 一本大道久久a久久精品| 亚洲人成77777在线视频| 热re99久久国产66热| 成人免费观看视频高清| 久久 成人 亚洲| 久久精品影院6| 看免费av毛片| 88av欧美| 久久青草综合色| 长腿黑丝高跟| 精品国内亚洲2022精品成人| 亚洲精品色激情综合| 91大片在线观看| 亚洲第一青青草原| 欧美日本视频| 又大又爽又粗| 亚洲精品在线观看二区| 丰满人妻熟妇乱又伦精品不卡| 长腿黑丝高跟| 女性被躁到高潮视频| 午夜精品在线福利| 国产在线观看jvid| 欧美一级a爱片免费观看看 | 老司机午夜福利在线观看视频| 男人舔女人下体高潮全视频| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 97碰自拍视频| 制服诱惑二区| 麻豆成人av在线观看| 久久久久久久精品吃奶| 搡老熟女国产l中国老女人| 久久久水蜜桃国产精品网| 久久久久久久久免费视频了| 香蕉av资源在线| 久久人妻av系列| 国产欧美日韩一区二区三| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 最近最新中文字幕大全电影3 | 欧美成人性av电影在线观看| 国产1区2区3区精品| 美女高潮到喷水免费观看| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 色老头精品视频在线观看| 男女视频在线观看网站免费 | 欧美一区二区精品小视频在线| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 97超级碰碰碰精品色视频在线观看| 波多野结衣av一区二区av| 成人三级做爰电影| 久久婷婷人人爽人人干人人爱| 正在播放国产对白刺激| 国产精品二区激情视频| 国产精品野战在线观看| 国产精品av久久久久免费| 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 亚洲最大成人中文| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 久久久久国产精品人妻aⅴ院| а√天堂www在线а√下载| av免费在线观看网站| 母亲3免费完整高清在线观看| 久久国产精品影院| 成年人黄色毛片网站| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| 69av精品久久久久久| 亚洲专区中文字幕在线| 国产av一区在线观看免费| 听说在线观看完整版免费高清| 亚洲熟女毛片儿| 欧美中文日本在线观看视频| АⅤ资源中文在线天堂| 免费无遮挡裸体视频| 99热6这里只有精品| 国产精品,欧美在线| 国产免费男女视频| 国产真实乱freesex| 草草在线视频免费看| 久久精品国产综合久久久| 大香蕉久久成人网| 国产一区在线观看成人免费| 久久国产亚洲av麻豆专区| 视频在线观看一区二区三区| 亚洲自拍偷在线| 亚洲人成网站高清观看| 99国产精品一区二区蜜桃av| 97碰自拍视频| xxx96com| 久久久久久久精品吃奶| 日韩欧美国产一区二区入口| 观看免费一级毛片| 满18在线观看网站| 日韩精品青青久久久久久| 正在播放国产对白刺激| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐gif免费好疼| 亚洲第一电影网av| 国产亚洲精品久久久久5区| 欧美一区二区精品小视频在线| 在线播放国产精品三级| 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 欧美丝袜亚洲另类 | 国内精品久久久久精免费| 欧美在线黄色| 欧美中文综合在线视频| 久久久久久久久久黄片| 可以在线观看毛片的网站| 视频区欧美日本亚洲| 一本综合久久免费| 午夜福利在线观看吧| 妹子高潮喷水视频| 国产日本99.免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 成人三级做爰电影| 久久久久久久久久黄片| 看黄色毛片网站| 欧美zozozo另类| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片| 免费看a级黄色片| 久久久久精品国产欧美久久久| 亚洲精品粉嫩美女一区| 欧美国产精品va在线观看不卡| 一边摸一边抽搐一进一小说|