• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling?

    2019-02-25 07:22:52YiNanWang王一男ShuaiXingLi李帥星YueLiu劉悅andLiWang王莉
    Chinese Physics B 2019年2期
    關(guān)鍵詞:王莉

    Yi-Nan Wang(王一男),Shuai-Xing Li(李帥星),Yue Liu(劉悅),and Li Wang(王莉)

    1 College of Science,Liaoning Shihua University,Fushun 113001,China

    2 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams(Ministry of Education),Dalian University of Technology,Dalian 116024,China

    Keywords:dual frequency,secondary electron emission,atmospheric pressure discharge

    1.Introduction

    It is difficult to control the plasma density and ion energy separately in the radio frequency(RF)capacitively coupled plasma(CCP).However,the dual frequency CCP system is able to achieve separate control of the plasma density and ion bombarding energy.[1-3]The dual frequency CCP system is extensively applied in many fields of materials.In this kind of system,one frequency is chosen to be much higher than the other.The high frequency(HF)source determines the plasma density,and the ion energy depends on low frequency(LF)source.[4,5]Considerable research has been carried out experimentally and theoretically on the dual frequency CCP system for the purpose of improving the efficiency of materials processing.[6-8]

    Recently,the dualfrequency CCP system hasreceived extensive attention at atmospheric pressure.Many groups have begun to study the characteristics of dual frequency discharge plasmas in many fields to make them attractive for several purposes.[9-12]Waskoening et al.[12]studied the plasma ionization and associated mode transitions in dual-frequency helium discharge at atmospheric pressure.Kim et al.[13]experimentally studied 13.56 MHz/2 MHz dual frequency in atmospheric pressure corona plasma.Compared with the single frequency plasmas,the gas temperature was nearly same,and there were three discharge modes,positive streamer mode of 2 MHz,negative glow mode of 2 MHz,and continuous glow mode of 13.56 MHz.Zhang et al.[14]used a numerical method to study the discharge mode transition and electron heating mechanism in argon dielectric barrier discharge(DBD)driven by dual frequency at atmospheric pressure.They found that the electron energy distribution was effectively modulated by variation of the ratio of the lower frequency component.Liu et al.[15]studied the DBD driven by 13.56 MHz/200 kHz dual frequency at atmospheric pressure.They found the RF electric field could improve stability and uniformity at the same time.Despite this research,much of the effects of discharge parameters and the physic processes remain unknown.

    The secondary electron emission(SEE)coefficient is an important parameter for material processing technology.As is known to all,the surface properties of materials,a particle’s incidence angle and energy will in fluence the SEE coefficient to some extent.Greb et al.[16]studied the impact of changing surface conditions including the SEE coefficient on plasma dynamics and the electron heating.They found that the surface condition significantly in fluences the characteristics of plasma.Schulze et al.[5]studied the secondary electrons in dual frequency capacitive radio frequency discharges.They reported two fundamentally different types of dual frequency at different secondary yields,γ.Shang et al.[17]studied the atmospheric pressure RF glow discharge between two coaxial electrodes.They presented that the gas ionization is strongly in fluenced by SEE coefficient in γ mode.Nevertheless SEE coefficient makes no difference to it in the α mode.Due to an ion’s impact on the electrode surfaces,Barkahoum et al.[18]reported that the SEE is a significant factor to describe the electrical properties in a discharge.Wei et al.[19]used a fluid model to study the in fluence of secondary electron emission coefficient on dielectric barrier pulsed discharge at atmospheric pressure.They found both the averaged current density in the cathode falling region and the averaged current density in the gap decrease with an increasing SEE coefficient.

    In the atmospheric pressure environment,the mechanism of dual frequency discharge has not been fully understood and the fundamental studies are performed rarely.The plasma characteristics depend on the discharge conditions such as electrode distance,gas pressure,driven source,and so on.To simulate different surface conditions,the secondary electron emission coefficient was varied in the model.In some previous works,simple surface conditions of the electrodes are chosen and the effect of SEE is neglected in simulations.In this work,a fluid model including SEE coefficient is used to gain further insight on their fundamental impact on the characteristics of plasma driven by dual frequency in quantitative terms.

    2.Model

    In this paper,the helium plasma is generated in the parallel-plate electrodes as shown in Fig.1,where L is the electrode gap.The left electrode is driven by dual frequency source(at x=0),and the rightelectrode isgrounded(at x=L).The fluid model is used to describe the behavior of plasma by a series of equations including continuity equation,momentum equation and energy equation.In atmospheric pressure discharge,drift-diffusion approximation is used to describe the particle flux instead ofmomentum equation.The electrode gap is much smaller than the diameter of the electrodes,thus 1D fluid model is adopted.The reactions as same as our previous work of Ref.[20]in helium gas discharge are listed in Table 1.Some assumptions of this model are taken from Ref.[20].

    Fig.1.Schematic diagram of the dual-frequency capacitively coupled plasma reactor.

    Based on these assumptions the helium discharge can be described as follows.The continuity equation for particles is

    where n,J,and S represent density,particle flow density,and particle source term,respectively.And the subscripts e,i,and?denote electron,ion,and metastable,respectively.The driftdiffusion approximation replaces of the momentum equation,thus the particle fluxes can be written as

    whereμand D are mobility and diffusion coefficient,respectively,whose values come from Refs.[21]-[23].E represents electric field.The electron energy equation is

    On the right-hand side of Eq.(3),qerepresents the electron thermal flow,the second term is the heating term,and the last term is the energy loss term.

    Here k is Boltzmann coefficient.e is elementary charge.Keis the thermal conductive coefficient.Hidenotes the electron energy loss coefficient for ionization.

    The Poisson equation satis fies

    The electric field derives from

    where the ε0is the vacuum permittivity of free space.The initial conditions are

    The boundary conditions are as follows:

    Here ksis the electron surface recombination coefficient calculated assuming an electron sticking coefficient of unity,γ is the secondary electron emission coefficient for ions.V=VHsin(2π fHt)+VLsin(2π fLt)is the external voltage applied to the left electrode,where the subscripts H and L,respectively,represent the High Frequency(HF)source and Low Frequency(LF)source.We use an implicit center different scheme to solve all of the equations mentioned above.

    3.Results and discussion

    In this simulation model,helium is chosen as working gas at constant temperature of 300 K.The basic parameters are the background gas pressure p=760 Torr(1 Torr=1.33322×102Pa)and the electrode distance L=0.2 cm.The voltage of HF source is VH=500 V and the voltage of the LF source is VL=300 V.The frequency of the HF source is fH=27.12 MHz and the frequency of the LF source is fL=2 MHz.The simulations are performed at different values of γ.The secondary electron emission coefficient is constant for a certain material,based on the experiment and simulation results,[22,24-26]we keep VHconstant and the secondary electron emission coefficients γ within the range from 0 to 0.3.Due to the higher value of VHat p=760 Torr,the effective acceleration of secondary electrons inside the sheaths leads to a divergence in simulation at the highest values of γ,which would correspond to instabilities or arc formation in an experiment.[5]Thus the highest secondary electron emission investigated is 0.3.

    The exactness and suitability of the model was verified by comparing with experimental results.Figure 2 gives the waveforms of applied voltage(solid)and plasma current(dash)in stable discharge stage during two cycles of low frequency.TLis the cycle of low frequency source.Both the applied voltage and the plasma current are predominately sinusoidal and the current leads the voltage by a phase shift of less than 90°,which are similar to the experimental results of Ref.[27].

    Fig.2.The waveforms of applied voltage(solid)and plasma current(dash),V H=600 V,V L=100 V,f H=27.12 MHz,f L=2 MHz.

    According to our previous results,[20]the main ions in the atmospheric pressure helium discharge are theions.Thus,the cycle-averaged spatial distributions ofion are shown in Fig.3(a)at different SEE coefficients in the 2000th cycle.As the secondary electron emission coefficient increasing from 0 to 0.3,the density ofion increases from 4.3×1012cm-3to 5.7×1012cm-3.The corresponding electron density is shown in Fig.3(b).The electron density resembles the density ofbecause of the electric neutrality of plasma. It can be clearly seen that the metastable atom He?density increases as SEE coefficient increasing in Fig.3(c).The products of metastables are enhanced near the plasma/sheath interface,which results in the peaks of metastable atom He?density appearing at the same positions on account of higher electron temperature(see Fig.4(a)).In the bulk plasma metastable pooling(R5 and R6)and step-wise ionization(R3)enhance the losses of metastables,from Table 1,R5=k5n?n?,R6=k6n?n?,and R3=k3nen?.

    Fig.3.The profiles of cycle-averaged(a)ion,(b)electron,(c)metastable atom He?with the SEE coefficient of 0,0.1,0.2,and 0.3 in the 2000th cycle,respectively.V H=500 V,V L=300 V,f H=27.12 MHz,f L=2 MHz.

    The cycle-averaged electron temperature and electric field spatial distributions with the SEE coefficient of 0,0.1,0.2,and 0.3 in 2000th cycles are shown in Fig.4.There is a steep gradient near the plasma/sheath interface and the peaks of electron temperature appear at the same positions.In the sheath regions,the electron temperature and electric field increase greatly with the SEE coefficient increasing.However,electron temperature and electric field are almost constant for allSEE coefficients in the bulk plasma.Itcan be explained that additional electrons from the wall are accelerated and multiplied in the sheath,which increases the number of high energy electrons and the efficiency of multiplication in the sheath.Thus,the sheath becomes smaller and closer to a hard wall because of a higher plasma density.Since the same amount of potential is dropped over a smaller distance,the sheath electric field increases.Although the electron temperature increases greatly with SEE,the thickness of the sheath region reduces very slightly.It because that the thickness of sheath is relevant to density of ions rs∝1/We can see from Fig.3(a)that the density of ions has changed slightly in the sheath.Therefore,the thickness of the sheath region reduces slightly.

    Fig.4.The profiles of cycle-averaged(a)electron temperature,(b)electric field under different SEE coefficients V H=500 V,V L=300 V,f H=27.12 MHz,f L=2 MHz.

    In low pressure RF discharge,the mechanisms of electron heating are in fluenced by SEE coefficient.[28-32]In this work,we also focus on the mechanisms of electron heating in dual frequency discharge.Based on the electron energy equation,the mechanism of electron heating PC=-eJe·E,labeled as PC,can be written as:

    Here,PHand PPrepresent the electron ohmic heating and collisionless heating.[28,31]As a result of the inelastic collisions between electrons and neutral particle the electron energy dissipation,labeled as PL,can be written as

    The mechanisms of electron heating corresponding to the 2000th cycle in the steady state discharge with different SEE coefficients are shown in Fig.5.From Fig.5(a),we can see that the collisionless heating is positive or zero in the bulk plasma,and it is negative in sheath region.With the SEE coefficient increasing from 0 to 0.3,the peaks of the collisionless heating PPincrease in sheath,nevertheless in the bulk plasma the collisionless heating PPhas not changed with all the investigated SEE coefficients.This is due to the fact that the important factor is the gradient in the electron density,a greater increase in electron density always occurs in the sheath edge region and the flat shape of electron density in bulk plasma.Figure 5(b)gives the electron ohmic heating with the SEE coefficient varied from 0 to 0.3.The electron ohmic heating mechanism is increasing as the SEE coefficient increased.This is because the electron density increases,which results in the higher conduction current and higher power absorption.Obviously,the electron ohmic heating is dramatically in fluenced by the SEE coefficient.As the SEE coefficient increases,the electron ohmic heating increases in the whole discharge gap.Figure 5 demonstrates that the secondary electron coefficient in fluence the electron ohmic heating much more than the collisionless heating.Similar results are found in radio frequency driven capacitively coupled oxygen plasma of Ref.[16],in which both the electron heating mechanisms exhibit a similar increasing trend with increasing secondary electron emission coefficient.

    Fig.5.The cycle-averaged spatial distributions of(a)P P,(b)P H with the SEE coefficient of 0,0.1,0.2,and 0.3 in the 2000th cycle.V H=500 V,V L=300 V,f H=27.12 MHz,f L=2 MHz.

    The electron heating PCcorresponding to the 2000th cycle with different electron secondary emission coefficients is shown in Fig.6.The electron heating PCis the sum of the electron ohmic heating and collisionless heating.Although the collisionless heating is negative in sheath regions,the electron heating PCincreases when the SEE coefficient increased due to the higher ohmic heating mechanism.The electron power dissipation is also a main mechanism of discharge and accordingly the electron power dissipation is shown in Fig.6(b).It is shown that the electron power dissipation increases as the SEE coefficient increased.This is due to the fact that the electron density increases as well.The electron temperature Fig.4(a)has the similar shape with the electron heating PC.Both of them have peaks in the sheath and constant in the bulk.It because the electron energy depends on electrons absorbing energy from the electric field.The electrons absorbing energy from electric field is indicated in the electron heating PC.As the SEE increases,the electron density in sheath increases,which results in the sheath of electric field increasing.Thus,both the electron heating and the electron temperature increase in the sheath as shown in Fig.4(a)and Fig.6(a).The calculation of the effects of SEE on PP,PH,PC,and PLhas a similar tendency to that in low-pressure argon discharge in Ref.[26].

    Fig.6.The cycle-averaged spatial distributions of(a)P C,(b)electron power dissipation for different SEE coefficients in the 2000th cycle.V H=500 V,V L=300 V,f H=27.12 MHz,f L=2 MHz.

    Figure 7 gives the evolution of electron source Sewith different SEE coefficients.The electron source is written as Se=k1neN+k3nen?+k5n?n?-k7nenHe+2according to Table 1.We can clearly see that the electron source Sedepends on the SEE coefficient.The electron source Seincreases as the SEE coefficient increases.The larger the SEE coefficient is,the larger the electron source Sewill be.Moreover,the peak region of electron source Semoves to the electrode when the SEE coefficient changes.As the SEE coefficient increases,the sheath thickness decreases,the bulk plasma region enlarges.Besides,the electrons mainly gain energy from sheath’s electric field.Consequently the peak of electron source moves as the SEE coefficient changes.

    Fig.7.The evolution of net electron generation with SEE coefficient(a)0,(b)0.1,(c)0.2,and(d)0.3.V H=500 V,V L=300 V,f H=27.12 MHz,f L=2 MHz.

    4.Conclusion and perspectives

    This work studied the effects of secondary electron emission coefficienton the dualfrequency helium plasma discharge at atmospheric pressure.The results show that the secondary electrons coefficient has an effect on dual frequency atmospheric pressure helium discharge.It is found that a large SEE coefficient can produce a higher density plasma as well as metastable density,sheath electric field,electron temperature and electron source term.Moreover,the SEE coefficient also in fluences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.

    Acknowledgment

    We would also extend our thanks to Dr.Li Li for her suggestion and encouragement in this work.

    猜你喜歡
    王莉
    The multiplicity and concentration of positive solutions for the Kirchhoff-Choquard equation with magnetic fields
    交流
    金秋(2021年4期)2021-05-27 06:42:46
    蒲公英的小傘
    會(huì)“偷水”的杯子
    王莉、張艷姝、張婉群油畫(huà)作品
    藝術(shù)百家:王莉
    找出解題的關(guān)鍵
    《分式方程》測(cè)試題
    陳蕃掃屋
    孔子學(xué)琴
    建设人人有责人人尽责人人享有的| 美女福利国产在线| 久久精品亚洲熟妇少妇任你| 男男h啪啪无遮挡| 欧美黄色淫秽网站| 纵有疾风起免费观看全集完整版| 视频区欧美日本亚洲| 久久久久精品人妻al黑| 国产一区二区激情短视频 | 亚洲中文字幕日韩| 久久久精品区二区三区| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品一区蜜桃| 日韩精品免费视频一区二区三区| 久久久精品区二区三区| 韩国高清视频一区二区三区| 天堂俺去俺来也www色官网| 老司机靠b影院| 青春草视频在线免费观看| 香蕉丝袜av| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 飞空精品影院首页| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 欧美成人午夜精品| 精品少妇一区二区三区视频日本电影| 国产在视频线精品| 18禁国产床啪视频网站| 久久av网站| 精品久久久久久久毛片微露脸 | 无限看片的www在线观看| 国产精品久久久久久精品电影小说| 国产精品人妻久久久影院| 午夜久久久在线观看| 国产精品免费大片| 日韩av免费高清视频| 国产视频首页在线观看| 精品免费久久久久久久清纯 | 久久久欧美国产精品| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 亚洲欧美中文字幕日韩二区| 亚洲第一青青草原| 99香蕉大伊视频| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频 | 91老司机精品| 在线亚洲精品国产二区图片欧美| 夫妻性生交免费视频一级片| 女警被强在线播放| 一本久久精品| 美女中出高潮动态图| cao死你这个sao货| 国产一区亚洲一区在线观看| 欧美人与性动交α欧美软件| 亚洲国产看品久久| 免费高清在线观看视频在线观看| 国产成人av激情在线播放| 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院| 亚洲美女黄色视频免费看| 亚洲情色 制服丝袜| 欧美成人午夜精品| 美女高潮到喷水免费观看| av福利片在线| 91精品国产国语对白视频| 亚洲精品在线美女| 午夜福利在线免费观看网站| 国产黄频视频在线观看| 99国产精品99久久久久| 自线自在国产av| 国产精品.久久久| 精品国产一区二区久久| 2021少妇久久久久久久久久久| 丝袜喷水一区| 男女免费视频国产| 国产高清国产精品国产三级| 激情视频va一区二区三区| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 免费av中文字幕在线| 一级黄色大片毛片| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 亚洲九九香蕉| 多毛熟女@视频| 97精品久久久久久久久久精品| 久久亚洲国产成人精品v| 中文欧美无线码| 黄色怎么调成土黄色| 久久精品久久久久久久性| 亚洲久久久国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 真人做人爱边吃奶动态| 精品亚洲成a人片在线观看| 欧美激情高清一区二区三区| 夫妻午夜视频| 飞空精品影院首页| 免费女性裸体啪啪无遮挡网站| 午夜激情久久久久久久| 国产精品免费视频内射| 久久久国产精品麻豆| 亚洲av男天堂| 国产视频一区二区在线看| 国产伦理片在线播放av一区| 视频区图区小说| 99九九在线精品视频| 少妇精品久久久久久久| av网站免费在线观看视频| 夫妻午夜视频| 自线自在国产av| 狠狠婷婷综合久久久久久88av| 国产男人的电影天堂91| 日韩中文字幕欧美一区二区 | 高清欧美精品videossex| 国产免费又黄又爽又色| 亚洲精品自拍成人| 国产99久久九九免费精品| 亚洲av在线观看美女高潮| 国产伦人伦偷精品视频| 国产精品三级大全| 欧美 日韩 精品 国产| 成在线人永久免费视频| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 成人免费观看视频高清| 免费av中文字幕在线| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 亚洲欧洲精品一区二区精品久久久| 一级黄片播放器| 亚洲精品美女久久久久99蜜臀 | 国产淫语在线视频| 一区在线观看完整版| 亚洲av片天天在线观看| 一级黄色大片毛片| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 久久ye,这里只有精品| 天堂俺去俺来也www色官网| 国产精品.久久久| 狂野欧美激情性xxxx| 水蜜桃什么品种好| 深夜精品福利| 国产成人欧美在线观看 | 亚洲人成电影免费在线| 9热在线视频观看99| 亚洲成av片中文字幕在线观看| 日本wwww免费看| 高清欧美精品videossex| 另类亚洲欧美激情| 精品一区二区三区四区五区乱码 | 人体艺术视频欧美日本| www.熟女人妻精品国产| 男人舔女人的私密视频| 妹子高潮喷水视频| 国产一区有黄有色的免费视频| 午夜福利乱码中文字幕| 在线天堂中文资源库| 1024视频免费在线观看| 国产精品成人在线| 国产精品人妻久久久影院| 后天国语完整版免费观看| 成人国语在线视频| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 黄色视频在线播放观看不卡| 午夜免费成人在线视频| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 一级片'在线观看视频| 亚洲欧美清纯卡通| 嫩草影视91久久| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 午夜激情久久久久久久| 欧美+亚洲+日韩+国产| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 国产成人系列免费观看| 久久性视频一级片| 9热在线视频观看99| 国产在线视频一区二区| 激情五月婷婷亚洲| 午夜福利视频在线观看免费| 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀 | 一个人免费看片子| 日本av免费视频播放| 王馨瑶露胸无遮挡在线观看| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 99久久人妻综合| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 亚洲第一青青草原| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 一级,二级,三级黄色视频| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 爱豆传媒免费全集在线观看| 999久久久国产精品视频| 欧美精品一区二区大全| netflix在线观看网站| 91麻豆精品激情在线观看国产 | 咕卡用的链子| 在线天堂中文资源库| 国产激情久久老熟女| 国产爽快片一区二区三区| 久久99一区二区三区| 国产成人av激情在线播放| 国产日韩欧美在线精品| 亚洲熟女精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 国产福利在线免费观看视频| 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 91字幕亚洲| 婷婷色麻豆天堂久久| 女人爽到高潮嗷嗷叫在线视频| a级片在线免费高清观看视频| 老司机午夜十八禁免费视频| 亚洲国产成人一精品久久久| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| 欧美变态另类bdsm刘玥| 各种免费的搞黄视频| 亚洲精品在线美女| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 啦啦啦 在线观看视频| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 又大又爽又粗| 亚洲精品一卡2卡三卡4卡5卡 | 日韩一本色道免费dvd| 99九九在线精品视频| 高清视频免费观看一区二区| 成人三级做爰电影| 久久国产精品影院| 精品视频人人做人人爽| 亚洲国产精品999| 黑丝袜美女国产一区| 大陆偷拍与自拍| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 97在线人人人人妻| 日本a在线网址| 精品欧美一区二区三区在线| 久久精品久久精品一区二区三区| 一二三四在线观看免费中文在| 久久国产精品男人的天堂亚洲| 免费看不卡的av| 免费高清在线观看视频在线观看| 成人国产av品久久久| 亚洲精品国产av蜜桃| 欧美97在线视频| 黑丝袜美女国产一区| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 国产一级毛片在线| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 久久久久精品人妻al黑| 久久99一区二区三区| 亚洲伊人久久精品综合| √禁漫天堂资源中文www| 欧美精品啪啪一区二区三区 | 一级毛片我不卡| 国产一级毛片在线| 国产一区二区三区综合在线观看| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 亚洲少妇的诱惑av| 精品免费久久久久久久清纯 | 热99国产精品久久久久久7| 日韩电影二区| 只有这里有精品99| 热re99久久国产66热| 亚洲第一av免费看| 亚洲人成电影观看| 亚洲,一卡二卡三卡| 亚洲图色成人| 国产精品 国内视频| 国产高清国产精品国产三级| 赤兔流量卡办理| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 免费看十八禁软件| 国产精品偷伦视频观看了| 亚洲午夜精品一区,二区,三区| 人体艺术视频欧美日本| 欧美乱码精品一区二区三区| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 欧美黄色片欧美黄色片| 亚洲国产精品一区三区| 久久毛片免费看一区二区三区| 国产成人欧美在线观看 | 欧美国产精品一级二级三级| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 国产黄频视频在线观看| 久久精品久久久久久久性| 麻豆av在线久日| 欧美性长视频在线观看| 精品久久久久久久毛片微露脸 | 国产精品熟女久久久久浪| 色网站视频免费| 亚洲色图综合在线观看| 国产在线免费精品| 国产成人a∨麻豆精品| 中文字幕人妻丝袜一区二区| 日本av手机在线免费观看| 国产不卡av网站在线观看| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 最黄视频免费看| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 黄色 视频免费看| 国产精品国产三级专区第一集| 日韩 亚洲 欧美在线| 欧美在线一区亚洲| 亚洲欧美中文字幕日韩二区| 一级片免费观看大全| 亚洲欧美中文字幕日韩二区| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 欧美在线一区亚洲| 久热爱精品视频在线9| 99国产精品一区二区蜜桃av | 亚洲五月婷婷丁香| 蜜桃国产av成人99| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 日韩中文字幕欧美一区二区 | 亚洲伊人色综图| 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 黄色片一级片一级黄色片| 亚洲精品国产av蜜桃| 最黄视频免费看| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区| 成年av动漫网址| 亚洲欧洲国产日韩| 男女午夜视频在线观看| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 女人精品久久久久毛片| av在线老鸭窝| 婷婷丁香在线五月| 两个人免费观看高清视频| 国产精品 欧美亚洲| 美女中出高潮动态图| 国产精品亚洲av一区麻豆| tube8黄色片| 十分钟在线观看高清视频www| 亚洲成人免费av在线播放| 免费不卡黄色视频| 少妇精品久久久久久久| 免费久久久久久久精品成人欧美视频| h视频一区二区三区| 久久久国产一区二区| av欧美777| 日韩av免费高清视频| 亚洲精品久久成人aⅴ小说| 亚洲欧洲日产国产| 亚洲第一青青草原| 国产av国产精品国产| 成人免费观看视频高清| 一本综合久久免费| 久久精品国产亚洲av高清一级| 国产老妇伦熟女老妇高清| 满18在线观看网站| 久久人人爽人人片av| 91国产中文字幕| 999精品在线视频| 最黄视频免费看| 好男人电影高清在线观看| 操出白浆在线播放| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 国产91精品成人一区二区三区 | 国产精品 欧美亚洲| 国产欧美日韩一区二区三 | 丰满少妇做爰视频| 亚洲一码二码三码区别大吗| 国产亚洲av高清不卡| 成人手机av| 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 欧美精品高潮呻吟av久久| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦 在线观看视频| 在线观看免费高清a一片| 亚洲成色77777| 99九九在线精品视频| 性色av乱码一区二区三区2| 亚洲精品日本国产第一区| 久久免费观看电影| 欧美亚洲日本最大视频资源| 菩萨蛮人人尽说江南好唐韦庄| 日本91视频免费播放| av网站在线播放免费| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| av网站免费在线观看视频| 欧美成人午夜精品| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 亚洲国产中文字幕在线视频| 深夜精品福利| 好男人视频免费观看在线| 99国产综合亚洲精品| 在线 av 中文字幕| 国产精品国产三级专区第一集| 黄色 视频免费看| 日韩制服骚丝袜av| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 亚洲,欧美,日韩| 亚洲中文日韩欧美视频| 成年美女黄网站色视频大全免费| 少妇 在线观看| 成年人黄色毛片网站| 日韩制服丝袜自拍偷拍| 成年女人毛片免费观看观看9 | 国产精品人妻久久久影院| 久热这里只有精品99| 久久午夜综合久久蜜桃| 亚洲av日韩精品久久久久久密 | 久久精品人人爽人人爽视色| www日本在线高清视频| 免费看十八禁软件| 悠悠久久av| 桃花免费在线播放| 九草在线视频观看| 好男人视频免费观看在线| 亚洲国产精品一区二区三区在线| 麻豆乱淫一区二区| 国产成人一区二区三区免费视频网站 | 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| 国产精品 国内视频| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区 | 精品久久蜜臀av无| 熟女av电影| 在线观看免费高清a一片| 亚洲欧美精品自产自拍| 丰满饥渴人妻一区二区三| 久久久精品国产亚洲av高清涩受| 日韩电影二区| 看免费av毛片| 亚洲欧美精品自产自拍| 久久精品久久久久久久性| 久久这里只有精品19| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜爱| 大陆偷拍与自拍| 九色亚洲精品在线播放| av福利片在线| 欧美97在线视频| 久久热在线av| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| av福利片在线| 青春草视频在线免费观看| 青青草视频在线视频观看| 成人亚洲欧美一区二区av| a级毛片黄视频| 后天国语完整版免费观看| 日本91视频免费播放| 欧美精品av麻豆av| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 91老司机精品| 免费女性裸体啪啪无遮挡网站| 午夜两性在线视频| 亚洲av男天堂| 热99久久久久精品小说推荐| 大片免费播放器 马上看| 老鸭窝网址在线观看| 久久久久久人人人人人| 一本色道久久久久久精品综合| 18禁国产床啪视频网站| 亚洲中文日韩欧美视频| 日韩一本色道免费dvd| 久久久久久久国产电影| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲 | 免费观看a级毛片全部| videos熟女内射| www.熟女人妻精品国产| 国产精品.久久久| a 毛片基地| 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| 高潮久久久久久久久久久不卡| 成在线人永久免费视频| 日韩一区二区三区影片| 最新在线观看一区二区三区 | 国产激情久久老熟女| 亚洲国产日韩一区二区| a级毛片黄视频| 最黄视频免费看| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 永久免费av网站大全| 久久久久久人人人人人| 欧美中文综合在线视频| 久久精品人人爽人人爽视色| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 热99久久久久精品小说推荐| 亚洲欧美一区二区三区久久| 一区二区三区精品91| 精品人妻1区二区| 欧美大码av| 久久人妻福利社区极品人妻图片 | 99久久精品国产亚洲精品| 蜜桃在线观看..| 人妻人人澡人人爽人人| 亚洲美女黄色视频免费看| av在线老鸭窝| 国产成人免费观看mmmm| 宅男免费午夜| 又黄又粗又硬又大视频| 日本色播在线视频| 一区福利在线观看| 99久久综合免费| 性色av一级| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 亚洲国产毛片av蜜桃av| av在线播放精品| 久久久久久久久久久久大奶| 久久人人97超碰香蕉20202| 伦理电影免费视频| 亚洲九九香蕉| 国产成人欧美| 国产精品欧美亚洲77777| 国产高清不卡午夜福利| 热re99久久精品国产66热6| 婷婷丁香在线五月| 女性生殖器流出的白浆| 日韩一区二区三区影片| 精品久久蜜臀av无| 亚洲中文av在线| 国产亚洲av高清不卡| 亚洲精品乱久久久久久| 十八禁网站网址无遮挡| 国产精品一区二区精品视频观看| 色婷婷av一区二区三区视频| 黄片小视频在线播放| 2021少妇久久久久久久久久久| 欧美日韩福利视频一区二区| 另类亚洲欧美激情| 我要看黄色一级片免费的| 如日韩欧美国产精品一区二区三区| 美女中出高潮动态图| 午夜日韩欧美国产| 中文欧美无线码| 成年动漫av网址| 亚洲中文日韩欧美视频| 久久精品亚洲av国产电影网| 日韩电影二区| 亚洲国产最新在线播放| 国产精品一国产av| 久久精品aⅴ一区二区三区四区| 亚洲欧美一区二区三区久久| 国产一区二区三区av在线| 一区福利在线观看| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久男人| 久久久久国产精品人妻一区二区| 久久99精品国语久久久| 每晚都被弄得嗷嗷叫到高潮| 国产97色在线日韩免费| 日本欧美视频一区| 午夜免费鲁丝| 国产精品.久久久| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 午夜视频精品福利| 少妇的丰满在线观看| 美女午夜性视频免费| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃| 手机成人av网站|