• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields?

    2019-02-25 07:22:46ShangShi石尚FaChengJin金發(fā)成andBingBingWang王兵兵
    Chinese Physics B 2019年2期
    關(guān)鍵詞:金發(fā)

    Shang Shi(石尚),Fa-Cheng Jin(金發(fā)成),and Bing-Bing Wang(王兵兵)

    1 Laboratory of Optical Physics,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Faculty of Science,Xi’an Aeronautical University,Xi’an 710077,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:above-threshold ionization,IR+XUV laser fields,molecular structure

    1.Introduction

    In the past decade,two important processes of nonlinear dynamics in intense laser field-high-order harmonic generation(HHG),in which the ionized electrons recombine with the parent ion[1,2]and high-order above-threshold ionization(HATI),in which the ionized electrons elastically collide with the parent ion[3-5]-have been widely used in the study of the molecular structure because the molecular structure is of great significance in the fields of physics,biology and chemistry.For homonuclear diatomic molecules,the results of the theories[6-9]and experiments[10,11]of HATI process indicate that the HATI spectrum carries the important information of molecules,such as internuclear separation,the symmetry of the highest occupied molecular orbital as well as the alignment of molecular axis.However,the interference structure in the HATI spectra of heteronuclear diatomic and polyatomic molecules[12-14]are more complicated than that of homonuclear diatoms.One needs to consider the in fluence of the charge distribution of molecular ions on the interference fringes.[12]Recently,the studies on the HHG process of molecules also demonstrate theoretically[14-18]and experimentally[19]that the HHG spectra can be used to expose the structure and dynamics of molecules.

    Unlike the two-step processes of HHG and HATI,the direct ATI is a one-step process where the electrons reach the detector directly after the ionization.[20,21]Therefore,the ionization spectra of the direct ATI can directly reflect the initial information of the molecular properties.The results obtained by He et al.[22]who used extreme ultraviolet(XUV)pulses to study the direct ATI of H+2demonstrate that the initial probability distribution of molecules can be imaged from the angular distribution of the directly ionized electron.However,most studies do not apply the direct ATI process to explore the molecular structure because the structural information of a molecule is mainly embodied in the high-energy region of the ionization spectra where only the re-colliding electron may dominate[8-11]by applying a commonly used infrared(IR)laser field.

    To gain the angle-resolved spectra of direct ATI that can fully exhibit the structural information of molecules,we consider a combined infrared and XUV laser fields to investigate the direct ATI process of a diatomic molecule.The idea of applying IR+XUV laser fields to the study of ultrafast nonlinear dynamics has already existed,see Refs.[23]-[26].In our results,the destructive interference fringes related to the molecular structure are clearly displayed in the angle-resolved spectra of the direct ATI.By comparing the direct ATI spectra of hydrogen molecule in two-color laser field with that in a monochromatic laser field,we found the different roles of infrared and XUV laser fields in the ionization of an electron.The study on oxygen molecules further manifests the universality of the method which utilizes the angle-resolved spectra of the direct ATI in IR+XUV two-color laser fields to infer the molecular structure.

    2.Theoretical method

    By using the frequency-domain theory,we deal with the direct ATI process of a diatomic molecule in two-color linearly polarized laser fields with laser frequencies ω1for lowfrequency field and ω2for high-frequency field.The Hamiltonian of the molecule-radiation system is(atomic units are used throughout unless otherwise stated)

    where

    is the free-electron and free-photon energy operator and Naj=is the photon number operator with aj()the annihilation(creation)operator of the laser photon mode.U(r)is the two-center binding potential of a diatomic molecule.V is the electron-photon interaction which is expressed as

    The initial state of the system is|ψi〉=|Φi(r),l1,l2〉=Φi(r)?|l1〉?|l2〉,which is the eigenstate of the Hamiltonian H0+U(r)with energy

    Here,Φi(r)is the ground-state wave function of the molecule with binding energy EB,and|lj〉is the Fock state of the laser mode with photon number lj.Meanwhile,the final state|ψf〉=|ψpfn1n2〉is the quantized- field Volkov state in twocolor laser fields[27]

    which is the eigenstate of the Hamiltonian H0+V with eigenvalue

    where upjis the ponderomotive energy in unit of one photon energy of the laser field.In Eq.(4),q1and q2represent the number of photons absorbed by the electron from IR and XUV laser fields,respectively.pfis the final momentum of the ionized electron. φ1and φ2are the initial phases of each laser field and are taken as zero for simplicity in this paper.The term Jq1q2(ζf)is the generalized Bessel function,which is expressed as

    where the arguments of the generalized Bessel function are as follows:

    Here,we define θf(wàn)as the angle of the momentum direction of the final electron with respect to the polarization direction of the laser fields.

    The transition matrix element of the direct ATI process from the initial state|ψi〉to the final state|ψf〉is written as[5]

    By inserting the expressions of the initial state and final state into Eq.(7),the transition matrix element becomes

    whereΦi(pf)is the Fouriertransform ofthe ground-state wave function ofthe diatomic molecule.Forhydrogen molecule,the ground-state wave function was obtained by a linear combination of two atomic wave functions with Gaussian forms,hence we have

    Here,R0is the nuclear spacing of the molecule,θ is the angle between the momentum direction of the ionized electron and the molecular axis,and cosθ is expressed as cosθ =sinθf(wàn)cosφfsinθmcosφm+sinθf(wàn)sinφfsinθmsinφm+cosθf(wàn)cosθm,where φmand φfare the azimuthal angles of the molecular axis and the final momentum of the electron,respectively.θmis the angle between the polarization vectors of the laser field and the molecular axis.We take φm= φf=0 in the calculation ofthe electron energy spectra,thuscosθ can be reduced to cos(θf(wàn)-θm).For an oxygen molecule,the initial wave function was calculated by the GAMESS software.[12]Thus the Fourier transform of the ground-state wave function of O2is expressed as

    3.Results and discussion

    We first compare the angle-resolved spectra of the direct ATI for atomic hydrogen and molecular hydrogen in linearly polarized IR+XUV laser fields with both intensities of 3.6×1013W/cm2,as shown in Fig.1(a)for the hydrogen atom and Figs.1(b)-1(c)for the hydrogen molecule.The photon energy of XUV laser is ω2=15ω1,where ω1=1.55 eV is the photon energy of IR laser.The hydrogen molecular axis is along the directions of the laser polarization.The ionization potential foratomic hydrogen and molecular hydrogen are 13.6 eV and 13.12 eV,respectively.It can be seen that some destructive interference fringes(DIF)in the molecular spectra do not exist in the atomic spectrum.By analyzing the transition formula of the direct ATI process(see Eq.(8)),we found that the condition for the emergence of these DIF can be expressed as cos(pfcosθR0/2)=0.Thus,we obtain the Ef-θf(wàn)curve which can predict the position of the DIF in the angleresolved ionization spectra,as seen in Figs.1(b)and 1(c).The corresponding expression of the photoelectron energy Efis

    where R0is the internuclear separation,n=0,±1,±2,....The black dashed lines in Figs.1(b)-1(c)correspond to n=0,and the red dash-dotted line in Fig.1(c)corresponds to n=1.It can be seen from Eq.(11)that the energy of the photoelectron in the DIF can get minimum value,i.e.,Efmin=π2/2R20,when n=0 with the electron emitted along the molecular axis,i.e.,θf(wàn)= θm.Therefore,the DIF will appear in the spectra as long as the range of the direct ATI spectra exceed the value of Efmin.Additionally,because Efminis inversely proportional to R20,the value of Efminfor R0=6 a.u.(The unit a.u.is short for atomic unit)decreases to one ninth of that for R0=2 a.u.,hence this is the reason why the number of the DIF in Fig.1(c)is more than that in Fig.1(b).

    Fig.1.The angle-resolved spectra of the direct ATI for a hydrogen atom(a)and for a hydrogen molecule with the internuclear distance R0=2.0 a.u.(b)and R0=6.0 a.u(c).The photon energy of XUV laser is ω2=15ω1,where ω1=1.55 eV represents the photon energy of IR laser.Both the photon energies of IR and XUV laser remain constant for the case of H2 in this paper.The laser intensities are I2=I1=3.6×1013 W/cm2,where I2 is the intensity of XUV laser field and I1 the intensity of IR laser field.The molecular axis of H2 is along the polarization directions of two laser fields,which are fixed at z axis.In logarithmic scale.

    Fig.2.The angle-resolved spectra ofthe directATIofH2 with differentorientation anglesθm=0°(a),45°(b),60°(c),and 90°(d).The internuclear separation is 2 a.u.and remains unchanged in the following results of the hydrogen molecule.The intensities and the photon energy of each laser field are the same as in Fig.1.In logarithmic scale.

    The angle-resolved spectra of the direct ATI of H2with different orientation angles of the hydrogen molecular axis with respect to the polarization vectors of the laser fields is shown in Fig.2.Parameters are the same as given in Fig.1(b).It shows that the distribution of the angle-resolved spectra and the DIF significantly depend on the angle between the molecular axis and the polarization direction of the laser.Compared to Ref.[8],where the predictive curve can overlap well with the DIF in angle-resolved HATI spectra only when the molecular axis is perpendicular to the laser polarization,we may find that the interference stripes related to the molecular structure in the spectra presented by Fig.2 can be perfectly reproduced by Eq.(11)at any orientation angle θm.This indicates that the angle-resolved spectra of the direct ATI may provide more details about the information of the molecular structure.

    Fig.3.The angular distribution for the direct ATI of H2 absorbing a certain number of XUV photons,which is denoted by q2.The parameters are consistent with Fig.1(b).The solid and dashed lines predict the cutoff and the beginning position of the ATI spectra for different q2.In logarithmic scale.

    To explain the plateau-like distribution of the angleresolved spectra of the direct ATI,we analyze the transition matrix element of the direct ATI process under the conditions of Fig.1(b),as shown in Fig.3.Here,q2represents the absorption number of XUV photons.Compared with q2=1,the whole spectrum moves to higher energy region when q2=2.By applying the energy conservation rule during the ionization process derived from the saddle-point approximation(see Appendix A),we predict the classical position of the beginning(dashed line)and the cutoff(solid line)of the ATI spectra with different values of q2,which match well with the numerical calculation results.Figure 3 demonstrates that the XUV laser field plays a crucial role in making the high-energy plateau on the direct ATI spectra,in marked contrast to the situation that the high-energy plateau is absent in the direct ATI spectra for IR laser case.[8,11]We can also see that the DIF conspicuously appear in the angle-resolved spectra when q2=2.This is because the minimal energy for the emergence of DIF is about 33.6 eV according to Eq.(11),and hence the electron needs to absorb at least two XUV photons to obtain such a high energy.

    Fig.4.The angle-resolved direct ATI spectra of H2 in an IR laser filed with the intensity of 3.6×1015 W/cm2 at four orientation angles of the molecular axis.In logarithmic scale.

    We now consider the direct ATI of the molecular hydrogen in a monochromatic laser field. Since the term cos(pfcosθR0/2)in the direct ATI transition formula originates from the coherent superposition of the ionization paths of the electron in the hydrogen molecule,the DIF in the spectra is actually unconcerned with whether or not the laser fields are two-color.Therefore,for monochromatic IR laser field,the DIF appear in the angular spectra of the direct ATI as the laser intensity is increased strong enough.Figure 4 presents the direct ATI spectra of monochromatic IR laser field with its intensity increased to I1=3.6×1015W/cm2.Compared to Fig.2 and Fig.3,it is found that the XUV laser field can raise the ionization probability in the ATI process.On the other hand,for the XUV laser field with ω2=23.25 eV and I2=3.6×1013W/cm2,the distribution of the ionization spectra totally differs from that of two-color laser fields and monochromatic IR laser field.Namely,the distribution of the electron energy is no longer continuous,and there are many minimums in the spectra,as shown in Fig.5.However,by comparing with the angle-resolved probability spectra of a hydrogen atom which absorbs the same number of XUV photons as the hydrogen molecule,we can identify the minimums resulting from the destructive interference of the electron wave packets emitted from the hydrogen molecule,where these minimums are pointed out by arrows in Fig.5.The corresponding ejection angle θf(wàn)can be used in the transformation of Eq.(11)to determine the nuclei distance of the diatomic molecule,i.e.,

    Additionally,comparing Fig.5 with Fig.1,one may find that the IR laser field can broaden the kinetic energy distribution of the ionized electron and thus a continuous angle-resolved ionization spectrum may be obtained in IR+XUV two-color laser fields.

    We further calculate the momentum spectra for the direct ATI process of H2in an XUV laser field with an intensity of 3.6×1014W/cm2,which are plotted in Fig.6.Here,the azimuthal angle of the final momentum of the electron φfis variable,thus the momentum spectra exhibit a continuous distribution.We can find that there are two complete destructive interference fringes(CDIF)in the momentum spectra for each alignment angle of the molecular axis.For alignment angle θm=0°,the CDIF are perpendicular to pzaxis(see Figs.6(a)and 6(c)),while for θm=90°,the CDIF are parallel to pzaxis(see Figs.6(b)and 6(d)).Because the destructive condition cos(pfcosθR0/2)=cos((R0/2)(pxsinθm+pzcosθm))=0 determines the position of the CDIF at pz=(2n+1)π/R0when θm=0°,where n=0,±1,±2,...,and at px=(2n+1)π/R0when θm=90°,where n=0,±1,±2,....Hence,the molecular internuclear distance can be obtained by R0=2π/Δpj(j=x,z)once the momentum difference Δpzor Δpxis calculated from two adjacent CDIF in the momentum spectra.

    Fig.5.The angle-resolved probability spectra for the direct ATI of a hydrogen molecule(dashed line in each panel)and a hydrogen atom(solid line in each panel)in an XUV laser filed with the intensity of 3.6×1013 W/cm2.E fm denotes the energy of the electron which is ionized from the molecular hydrogen and E fa denotes the energy of the electron which is ionized from the atomic hydrogen.For the three columns from left to right,the electron absorbs one,two and three XUV photons,respectively.The molecular orientation angle θm is 0° for the top panels and 90° for the bottom panels.In logarithmic scale.

    Fig.6.The ATI momentum spectra of a hydrogen molecule in an XUV laser field with an intensity of 3.6×1014 W/cm2.The upper panels are for the internuclear distance R0=2.0 a.u.and the lower panels are for R0=4.0 a.u.The molecular axis is parallel(the left)or perpendicular(the right)to the polarization directions of the two laser fields.In logarithmic scale.

    To illustrate the applicability of the angle-resolved spectra of the direct ATI in IR+XUV laser fields to the exploration of the molecular structure,we calculated the angular distribution of the direct ATI for O2in IR+XUV laser fields with ω2=50ω1and ω1=1.55 eV for the same intensities as in Fig.1,as displayed in Fig.7.The internuclear distance of O2is 2.282 a.u.and the ionization potential is 12.07 eV.The wavefunction of O2in momentum representation is formulated by Eq.(10).By taking sin(pfcosθR0/2)=0,we have pfcosθR0/2=nπ,n=0,±1,±2,....When n=0,the equation cosθ=0 yields a destructive stripe in the spectra at electronic emission angle θf(wàn)= θm+π/2,while when n=±1,±2,...,the predictive curve about the DIF can be expressed by the equation

    The red dash-dotted lines coinciding with the butter fly wingshaped interference fringes are acquired from the minimum of|Jq1q2(ζf)|2,indicating that the butter fly wing-shaped interference fringes are attributed to the interaction between the laser fields and the ionized electron,irrelevant to the geometrical structure of molecules.

    Fig.7.The angle-resolved direct ATI spectra of an oxygen molecule with an internuclear separation of 2.282 a.u.The photon energy of the XUV laser ω2=50ω1,where ω1=1.55 eV.The laser intensities are I2=I1=3.6×1013 W/cm2.In logarithmic scale.

    4.Conclusion

    By applying the frequency-domain theory based on the nonperturbative quantum electrodynamics,we have studied the direct ATI of diatomic molecules in linearly polarized IR+XUV laser fields.The destructive interference fringes resulting from the coherent emission of the ionized electron are perfectly reproduced at any orientation angle by a simple predictive formula,which also predicts the minimal energy value for the emergence of the DIF in the spectra.The comparison between the direct ATI spectra of a monochromatic laser field and two-color IR+XUV laser fields shows that the XUV laser field can not only raise the energy of the ionized electron,but also increase the ionization probability of the photoelectron in the high-energy region,while the IR laser field can broaden the kinetic energy distribution of the ionized electron,which clearly displays the DIF in the direct ATI spectra.The study on the direct ATI of the oxygen molecule further demonstrates that the angle-resolved spectra of the direct ATI in IR+XUV laser fields may be extensively used in the investigation of molecular structures.

    Appendix A

    Under the calculated conditions,the width of each energy plateau is determined by the generalized Bessel function J-q1(ζ1,ζ3),which can be expressed in the form

    where f(t)= ζ1sin(ω1t)+ ζ3sin(2ω1t)+q1ω1t and T=2π/ω1.Meanwhile,the classical action of an electron is

    where Ac1(t)=/ω1cos(ω1t)is the vector potential of the XUV laser field.[26]Comparing Eq.(A1)with Eq.(A2),J-q1(ζ1,ζ3)can be rewritten as

    In the saddle-point approximation,the saddle-point t0satis fies f′(t0)=0,which leading to the energy conservation relation in the ionization process

    This equation can predict the beginning and cutoff position of the ATI spectrum for each q2.When θf(wàn)< π/2,the maximum energy value is

    under the condition of cosω1t0=1,and the minimum energy value is

    under the condition of cosω1t0=-1.When θf(wàn)> π/2,the maximum energy value is

    where cosω1t0=-1,and the minimum energy value is

    where cosω1t0=1.

    Acknowledgment

    We thank all the members of SFAMP club for their helpful discussions.

    猜你喜歡
    金發(fā)
    誰(shuí)喝光了我的湯
    College Teaching Quality Evaluation Model and Implementation
    The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System
    Research on Orbit Formation and Stability Control Based on High Orbit
    Research on Synchronization Technology of DSSS Signal Based on UQPSK
    Study on Image-denoising of Liquid Column in Investment Casting Auto-pouring System
    Research of the Visualization Temperature Field of the Communication Room Based on the Reconstruction of Three-dimensional Temperature Field
    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network
    Design of the Control Circuit of C523 Vertical Lathe on PLC
    Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
    久久久久国产网址| 91久久精品国产一区二区三区| 免费观看人在逋| 高清毛片免费观看视频网站| 老师上课跳d突然被开到最大视频| 国产精品99久久久久久久久| 日日啪夜夜撸| 少妇的逼好多水| 精品久久久久久久末码| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 欧美激情在线99| 午夜福利视频1000在线观看| 三级经典国产精品| 国产成人freesex在线| 日本-黄色视频高清免费观看| 蜜臀久久99精品久久宅男| 村上凉子中文字幕在线| 亚洲国产日韩欧美精品在线观看| 十八禁国产超污无遮挡网站| 九九爱精品视频在线观看| 国产亚洲av片在线观看秒播厂 | 22中文网久久字幕| 久久亚洲精品不卡| 国产精品爽爽va在线观看网站| 亚洲欧美日韩卡通动漫| 老司机影院成人| 国产精品久久久久久久久免| 成年av动漫网址| 欧美潮喷喷水| 成人亚洲欧美一区二区av| 日韩欧美 国产精品| 午夜a级毛片| 亚洲自偷自拍三级| 一个人观看的视频www高清免费观看| 久久久国产成人免费| 国产亚洲欧美98| 日本一本二区三区精品| 久久久久久久久中文| 欧美高清成人免费视频www| 中文亚洲av片在线观看爽| 国产三级在线视频| av又黄又爽大尺度在线免费看 | 精华霜和精华液先用哪个| 男女做爰动态图高潮gif福利片| 国产精品,欧美在线| 国产精品一区二区三区四区久久| 青青草视频在线视频观看| 成人无遮挡网站| 精品欧美国产一区二区三| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 国产又黄又爽又无遮挡在线| 99热精品在线国产| av专区在线播放| 大又大粗又爽又黄少妇毛片口| a级一级毛片免费在线观看| 久久久久久久久久成人| 99久久久亚洲精品蜜臀av| 草草在线视频免费看| 成年女人永久免费观看视频| 日韩欧美精品免费久久| 成人av在线播放网站| 婷婷色av中文字幕| 精品久久久久久久久久免费视频| 午夜免费男女啪啪视频观看| www.av在线官网国产| 婷婷亚洲欧美| 边亲边吃奶的免费视频| 欧美日韩精品成人综合77777| 成年女人永久免费观看视频| 欧美日韩乱码在线| 能在线免费看毛片的网站| 成人性生交大片免费视频hd| 韩国av在线不卡| 免费黄网站久久成人精品| 国产精品麻豆人妻色哟哟久久 | 亚州av有码| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 美女脱内裤让男人舔精品视频 | 免费av观看视频| 伦精品一区二区三区| 成人高潮视频无遮挡免费网站| 黄色一级大片看看| 在线a可以看的网站| 免费观看在线日韩| 久久精品人妻少妇| 免费看a级黄色片| 久久精品国产自在天天线| 99热只有精品国产| 18禁在线播放成人免费| 性色avwww在线观看| 最近2019中文字幕mv第一页| 嘟嘟电影网在线观看| 青春草视频在线免费观看| 国产精品一区二区三区四区免费观看| av在线蜜桃| 国产成人91sexporn| 免费看美女性在线毛片视频| 亚洲欧美清纯卡通| 亚洲精品456在线播放app| 免费人成在线观看视频色| 亚洲,欧美,日韩| 欧美+亚洲+日韩+国产| 久久中文看片网| 欧美激情在线99| 国产中年淑女户外野战色| 亚洲成av人片在线播放无| 村上凉子中文字幕在线| 夜夜爽天天搞| 可以在线观看毛片的网站| av在线观看视频网站免费| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 看免费成人av毛片| 美女国产视频在线观看| 午夜精品在线福利| 日韩成人伦理影院| 久久精品久久久久久噜噜老黄 | 欧洲精品卡2卡3卡4卡5卡区| 边亲边吃奶的免费视频| av在线播放精品| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| a级毛片a级免费在线| 欧美丝袜亚洲另类| 国产黄片美女视频| 精品久久国产蜜桃| 欧美高清性xxxxhd video| 美女脱内裤让男人舔精品视频 | 国产乱人偷精品视频| 久久精品91蜜桃| 亚洲国产欧美人成| 亚洲精品456在线播放app| 国产精品一区二区在线观看99 | 欧美一区二区精品小视频在线| 亚洲最大成人av| 久久草成人影院| 亚洲成人av在线免费| 久久精品影院6| 人妻系列 视频| 国产毛片a区久久久久| 久久久久久伊人网av| 老司机影院成人| 久久久久免费精品人妻一区二区| www.色视频.com| 男人和女人高潮做爰伦理| 国产在线男女| 日韩制服骚丝袜av| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 久久久久久久久久久免费av| 亚洲国产欧美人成| 别揉我奶头 嗯啊视频| 亚洲中文字幕一区二区三区有码在线看| 成年av动漫网址| 国产成人精品久久久久久| 久久久久久大精品| 尤物成人国产欧美一区二区三区| 日本免费一区二区三区高清不卡| 亚洲国产精品成人综合色| 国产成人a区在线观看| 亚洲精品日韩在线中文字幕 | 三级国产精品欧美在线观看| 久久久久久久久大av| 中文精品一卡2卡3卡4更新| av在线蜜桃| www.色视频.com| 成人午夜高清在线视频| 青春草国产在线视频 | 伦精品一区二区三区| 欧美又色又爽又黄视频| 国国产精品蜜臀av免费| 在线观看午夜福利视频| 午夜福利成人在线免费观看| 日韩,欧美,国产一区二区三区 | 人人妻人人澡人人爽人人夜夜 | 亚洲欧美清纯卡通| av黄色大香蕉| 黄色配什么色好看| 亚洲国产精品sss在线观看| 深爱激情五月婷婷| 国产视频内射| 在线播放无遮挡| 国产极品天堂在线| 国产精品爽爽va在线观看网站| 亚洲成人久久爱视频| 国产高清三级在线| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 国产一区二区在线观看日韩| 午夜激情欧美在线| 国产午夜福利久久久久久| 99九九线精品视频在线观看视频| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 能在线免费观看的黄片| 欧美一区二区精品小视频在线| 日本av手机在线免费观看| 观看免费一级毛片| 国产不卡一卡二| 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区 | 乱系列少妇在线播放| www.av在线官网国产| 国产成人福利小说| 国产高清三级在线| 久久这里只有精品中国| 久久精品久久久久久久性| 亚洲国产高清在线一区二区三| 乱人视频在线观看| 国产精品野战在线观看| 我的女老师完整版在线观看| 免费看av在线观看网站| 国产爱豆传媒在线观看| 国内精品宾馆在线| av天堂中文字幕网| 91在线精品国自产拍蜜月| 精品久久久噜噜| 欧美日韩精品成人综合77777| 在线免费十八禁| 国产精品.久久久| 亚洲无线在线观看| 亚洲三级黄色毛片| 国产精品久久久久久精品电影| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 久久6这里有精品| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 麻豆乱淫一区二区| 大型黄色视频在线免费观看| 精品欧美国产一区二区三| 九草在线视频观看| 在线观看美女被高潮喷水网站| 啦啦啦观看免费观看视频高清| 国产精品无大码| 国产淫片久久久久久久久| 国产精品.久久久| or卡值多少钱| 看片在线看免费视频| 日日撸夜夜添| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 美女cb高潮喷水在线观看| 免费看光身美女| 97在线视频观看| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 一进一出抽搐动态| 岛国毛片在线播放| 国产不卡一卡二| 国产精品一区二区三区四区久久| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区| 国产精品一区二区在线观看99 | 亚洲四区av| 国产精品野战在线观看| 国产午夜精品久久久久久一区二区三区| 26uuu在线亚洲综合色| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| a级毛片a级免费在线| 极品教师在线视频| 波野结衣二区三区在线| 精品午夜福利在线看| 热99re8久久精品国产| 免费看光身美女| 床上黄色一级片| 99久久成人亚洲精品观看| 亚洲欧美精品专区久久| 热99re8久久精品国产| 看免费成人av毛片| 国产精品无大码| 天堂中文最新版在线下载 | 熟女人妻精品中文字幕| 啦啦啦韩国在线观看视频| 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 熟女电影av网| 在线免费观看的www视频| 男插女下体视频免费在线播放| 日韩视频在线欧美| 少妇高潮的动态图| 国产不卡一卡二| 简卡轻食公司| 国产 一区 欧美 日韩| 国产午夜福利久久久久久| 亚洲无线在线观看| 非洲黑人性xxxx精品又粗又长| 国产伦一二天堂av在线观看| 美女国产视频在线观看| 麻豆国产av国片精品| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | 十八禁国产超污无遮挡网站| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av香蕉五月| 嫩草影院新地址| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 精品久久久久久成人av| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 国产精品三级大全| 人妻久久中文字幕网| 欧美日韩一区二区视频在线观看视频在线 | 12—13女人毛片做爰片一| 亚洲欧美清纯卡通| 精品熟女少妇av免费看| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 床上黄色一级片| 亚洲三级黄色毛片| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 国产男人的电影天堂91| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 波多野结衣巨乳人妻| 国产一区二区激情短视频| 久久久精品大字幕| 精品久久久久久久久av| 亚洲电影在线观看av| videossex国产| 国产白丝娇喘喷水9色精品| 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 免费看光身美女| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 九九在线视频观看精品| 在线观看午夜福利视频| 天堂中文最新版在线下载 | 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 两个人的视频大全免费| 午夜激情福利司机影院| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| www日本黄色视频网| 晚上一个人看的免费电影| eeuss影院久久| 51国产日韩欧美| 欧美日韩综合久久久久久| 久久久久久国产a免费观看| 中出人妻视频一区二区| 大香蕉久久网| 精品久久国产蜜桃| 高清在线视频一区二区三区 | 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站| 99热精品在线国产| 日韩制服骚丝袜av| 国产亚洲欧美98| 精品一区二区三区人妻视频| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 美女国产视频在线观看| 久久久国产成人精品二区| 悠悠久久av| 六月丁香七月| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 日韩欧美国产在线观看| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 亚洲性久久影院| 伊人久久精品亚洲午夜| 国产 一区精品| 日本欧美国产在线视频| 欧美区成人在线视频| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 麻豆乱淫一区二区| 在线观看一区二区三区| 精品久久久久久久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 国产av不卡久久| 大又大粗又爽又黄少妇毛片口| 97在线视频观看| 国产伦理片在线播放av一区 | 亚洲成av人片在线播放无| 亚洲av一区综合| 欧美不卡视频在线免费观看| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 国产精品一二三区在线看| av免费观看日本| 日本在线视频免费播放| 亚洲18禁久久av| 赤兔流量卡办理| 综合色丁香网| av福利片在线观看| 国产精品久久久久久精品电影小说 | 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| 高清日韩中文字幕在线| 麻豆一二三区av精品| 一级毛片久久久久久久久女| 免费无遮挡裸体视频| 亚洲va在线va天堂va国产| 国内精品美女久久久久久| 中文字幕精品亚洲无线码一区| 亚洲国产精品sss在线观看| 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 久久热精品热| 久久精品国产99精品国产亚洲性色| 久久这里只有精品中国| 午夜精品一区二区三区免费看| 亚洲无线在线观看| 黄色一级大片看看| 午夜精品在线福利| 久久99蜜桃精品久久| 精品99又大又爽又粗少妇毛片| 国产精品国产三级国产av玫瑰| 天堂av国产一区二区熟女人妻| 日本免费a在线| av天堂中文字幕网| 国产美女午夜福利| 亚洲精品日韩av片在线观看| 日韩欧美国产在线观看| 丰满乱子伦码专区| 国产精品.久久久| 午夜精品在线福利| 亚洲自拍偷在线| 高清在线视频一区二区三区 | 亚洲欧美日韩卡通动漫| 亚洲欧美精品自产自拍| 欧美色欧美亚洲另类二区| 日韩中字成人| 男女那种视频在线观看| 一级二级三级毛片免费看| 国产精品.久久久| 在现免费观看毛片| 国产真实伦视频高清在线观看| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 久久鲁丝午夜福利片| 性色avwww在线观看| 亚洲精品自拍成人| 高清毛片免费看| 国产av不卡久久| 搞女人的毛片| 日本一二三区视频观看| 亚洲精品久久久久久婷婷小说 | 青春草视频在线免费观看| 超碰av人人做人人爽久久| 小说图片视频综合网站| 一级黄片播放器| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 欧美在线一区亚洲| av在线蜜桃| 国产精品伦人一区二区| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 男女视频在线观看网站免费| 边亲边吃奶的免费视频| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 亚洲性久久影院| 最后的刺客免费高清国语| 日韩av不卡免费在线播放| 亚洲人成网站在线播| 国产高清视频在线观看网站| 久久精品国产亚洲av涩爱 | 国产午夜精品久久久久久一区二区三区| 亚洲成人久久爱视频| 亚洲成人精品中文字幕电影| 日韩,欧美,国产一区二区三区 | 黄色欧美视频在线观看| 日本av手机在线免费观看| 成年女人看的毛片在线观看| 日本黄色片子视频| 美女黄网站色视频| 伦精品一区二区三区| 亚洲精品国产av成人精品| 2021天堂中文幕一二区在线观| 中文字幕人妻熟人妻熟丝袜美| 中文字幕熟女人妻在线| 欧美日韩综合久久久久久| 最近的中文字幕免费完整| 亚洲美女视频黄频| 在线国产一区二区在线| 好男人视频免费观看在线| 亚洲精品日韩在线中文字幕 | a级毛片免费高清观看在线播放| 黄色一级大片看看| 可以在线观看的亚洲视频| eeuss影院久久| 国产精品电影一区二区三区| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 亚洲国产精品国产精品| 国产精品爽爽va在线观看网站| 一级黄色大片毛片| 免费在线观看成人毛片| 在线免费观看的www视频| 欧美人与善性xxx| 在现免费观看毛片| 国产不卡一卡二| a级一级毛片免费在线观看| 亚洲高清免费不卡视频| 亚洲真实伦在线观看| 国产色爽女视频免费观看| 一个人免费在线观看电影| 亚洲欧美精品自产自拍| 亚洲av电影不卡..在线观看| 男女边吃奶边做爰视频| av福利片在线观看| 色视频www国产| 亚洲精品色激情综合| 成人高潮视频无遮挡免费网站| 男女视频在线观看网站免费| 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 99热全是精品| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 欧美潮喷喷水| 久久久久久久午夜电影| av在线亚洲专区| а√天堂www在线а√下载| 亚洲经典国产精华液单| 18禁裸乳无遮挡免费网站照片| 你懂的网址亚洲精品在线观看 | av卡一久久| 寂寞人妻少妇视频99o| 少妇人妻精品综合一区二区 | 国产黄片视频在线免费观看| av天堂中文字幕网| 欧美色视频一区免费| 日本五十路高清| 欧美另类亚洲清纯唯美| 国产私拍福利视频在线观看| 欧美最黄视频在线播放免费| 久久精品综合一区二区三区| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 欧美一区二区精品小视频在线| 久久精品国产亚洲网站| 久久精品夜夜夜夜夜久久蜜豆| 真实男女啪啪啪动态图| 亚洲精品国产成人久久av| 成人高潮视频无遮挡免费网站| 亚洲精品国产av成人精品| 日韩精品青青久久久久久| 91精品国产九色| 久久久久久伊人网av| 成人午夜精彩视频在线观看| 欧美日韩乱码在线| 变态另类成人亚洲欧美熟女| 日韩制服骚丝袜av| 国产单亲对白刺激| 免费av毛片视频| 中文字幕久久专区| 美女xxoo啪啪120秒动态图| 99久久九九国产精品国产免费| videossex国产| 欧美日韩综合久久久久久| 简卡轻食公司| 不卡视频在线观看欧美| 国产精品免费一区二区三区在线| 国产色婷婷99| or卡值多少钱| 网址你懂的国产日韩在线|