• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering

    2014-09-14 07:15:19HUANGHaixinKONGChang
    關(guān)鍵詞:金發(fā)

    HUANG Haixin,KONG Chang

    (1.Shenyang Ligong University,Shenyang 110159,China;2.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110159,China)

    Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering

    HUANG Haixin1,2,KONG Chang1

    (1.Shenyang Ligong University,Shenyang 110159,China;2.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110159,China)

    Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.

    fuzzyC-means clustering;adaptive feature weighted;entropy;wind power prediction

    As the world energy crisis increasingly sharp contradictions,frequent extreme climate conditions,new energy and renewable energy research,development and utilization has become the focus of people deal with the situation.Wind power as one of the world's most important renewable clean energy sources that has been vigorously in our country.By the end of 2012,China′s wind power installed capacity of 75324.2 MW,rose 20.8%from a year than in 2011[1].And compared with other renewable energy,wind power is random,intermittent and controllability.All that resulted the volatility of wind power exists.With the increasing proportion of wind power grid,the instability of wind power not only brought great security hidden danger to power system,and greatly increases the reserve capacity and running cost of the system.So quickly and accurately predict wind power can reduce the economic costs colleagues to improve the stability and reliability of power generation,provide the basis for power generation plan for the grid arrangement and fault diagnosis.Existing mostly used in wind power forecasting method for days,when the interval of a small amount of data sample training and forecasting,this will most likely not enough comprehensive analysis of all the trends of wind power.In this paper,using a large number of historical data of a wind farm in Inner Mongolia to repeated data mining,to dig out as much as possible from wind power and the relationship between the related factors,to provide more accurate wind farm power prediction model is established.

    The wind farm power prediction methods mainly include:kalman filtering method,the continuous method,time series method,spatial correlation method and artificial neural network,fuzzy clustering method[2].Kalman filtering method need to estimate the statistics of a large number of prediction errors in advance,the application more difficult.Time series method is the most used method,suitable for short-term prediction for several hours at a time.Continuous method need to take some time before sliding the historical average wind speed as the next time forecast,forecast time range is small,not apply for 24 h forecasts.Spatial correlation method based on correlation between adjacent point wind speed,weather forecast,need to deal with a large number of historical data.Artificial neural network is suitable for short-term wind speed forecasting of 1 d,but is highly affected by the input parameters and the sample selection[3].Traditional fuzzy clustering method using characteristic values of the weight of 1 Euclidean distance to evaluate the degree of similarity,while in the actual wind farm power prediction value the importance of each feature is different[4-7].Aiming at this problem,this paper presents an adaptive characteristics of entropy algorithm to optimize the weight of characteristic value,and analyze the different characteristics influence the degree of wind power,find out the most suitable for the clustering center.Calculate the future weather data to the center of the membership degree,the matrix power point will be multiplied by the membership degree and predictive value for power.Experiments prove that this method can effectively dig out from the data regularity between wind power and its related factors,improve the accuracy of wind power prediction.

    1 THE FCM ALGORITHM

    To set sample sets,X={x1,…,xN},the clustering center,V={v1,…vC},the samples of membership degree of cluster centerxj(j=1,…,N),then optimization model of clustering are as follows:

    (1)

    0≤uij≤1

    Among them:m>1 is a fuzzy clustering results which can control the degree of constants;anddij=‖xj-vi‖ denotes the samplejwith the firsticluster center Euclidean distance.Using the Lagrange multiplier algorithm model iterative formula:

    (2)

    1≤j≤C

    (3)

    2 WIND POWER PREDICTION METHOD BASED ON FUZZY CLUSTERING OF FEATURE EXTRACTION

    Quickly and accurately to predict the output power of the wind farm makes great difference to power system stability,security and power scheduling.Analysis the output characteristics of wind turbine and the factors affecting wind power output.We choosev3、wind direction Angle and wind farm output power p as adaptive characteristics of the characteristic value of the entropy weight fuzzy clustering algorithm.Selectv3of the wind speed and wind direction angle of the next moment w as a characteristic of the wind farm power prediction algorithm.

    3 ADAPTIVE FEATURE OF ENTROPY ALGORITHM

    In the FCM algorithm,the degree of similarity between two points was evaluate by the Euclidean distance,and used the feature weight as constant 1.However,in practical problems,the importance of each attribute characteristics is not the same,based on this analysis will inevitably be distorted.Here have several methods to solve the problem:

    3.1 Data standardization

    (4)

    Namely to compress data processing,make its numerical range of [0,1].Standardized processing to eliminate the numerical difference between the features,but still could not distinguish the importance of attributes.

    3.2 Expert scoring,feature weighting method

    This method is too subjective,for the increasingly complex manufacturing systems,subjective judgment is difficult,error is not easy to control.

    3.3 The information entropy value added to the objective function[8]

    (5)

    The goal is not only allows optimization of the similarity between the same maximum,but also makes the total membership based on information entropy minimum.When the membership to take either 0 or 1,the definition of information entropy reaches a minimum,that is,its essence is a combination of hard clustering and fuzzy clustering.

    3.4 Information entropy weighting algorithms

    Characteristic properties of entropy value is:

    (6)

    The greater the entropy values and the more disorder of the features.So we need to reduce their weights,like below:

    (7)

    The algorithm before clustering need to determine the feature weights.

    In fact,before carrying clustering,orderly feature properties importance is not equal to the clustering.After clustering,the more orderly feature properties the better could we distinguish the sample which without clustering.So it is of greater importance clustering.Therefore,this paper put forward an adaptive feature of entropy algorithm,clustering and the features of entropy used in the clustering algorithm to select feature weights.So the weight is not fixed,they changed after clustering iteration optimization.

    The standardized sample data,xjk∈[0,1],the value range of the characteristic value is divided intolequal portions,

    (8)

    From the perspective of feature attributes,after clustering sample data in thelinterval falls in clustering centeriwith the specified probability:

    (9)

    Entropy of feature attributek:

    (10)

    According to the idea of entropy to build feature weights:

    (11)

    (12)

    4 PREDICTED MODEL BASED ON FUZZY CLUSTERING ALGORITHM

    Take the algorithm of adaptive feature weight entropy fuzzy clustering to train the sample data,then the optimal clustering center and feature weights are obtained.The clustering center of the forecast datavi′ equal the optimal clustering center which being removed its column of being forecast.And so does the feature weight.New membershipuij′ was built with equal(13).So the predictive models based on the fuzzy clustering ideas were:

    (13)

    k=the column of power

    5 FORECASTING MODEL SELECTION OF EVALUATION INDEXES

    According to the national energy administration management of the current wind farm wind power real-time prediction[9],we have selected the root mean square error as the predictive model for evaluation.

    Root mean square error:

    (14)

    In the formula:nis the number of units target wind farm;PMiis the actual power value at timei;PPiis the predicted power value at timei;Cap for the boot Capacity.

    6 STEPS OF WIND FARM POWER PREDICTION BASED ON ADAPTIVE FEATURE WEIGHT ENTROPY FUZZY CLUSTERING ALGORITHM

    Step1:Set the number of clustersC,parameterm,loop iterations and accuracy;

    Step2:Standardized the sample data and initial weightwk=1/K(k=1,…,K);

    Step3:Initial membershipuij;

    Step4:According to equation(2)and(3),calculate and update the cluster centers and membership;

    Step5:If‖Unew-Uold‖<εis met then the loop terminates;

    Step6:According to equation(8)~(12),calculate and update the feature weightWij,jump to step 4 until arrive the loop iterations;

    Step7:Calculating the predicted data cluster centervij′,feature weightwk′ and membershipuij′,then according to equation(13)to calculate the predicted power.

    7 THE EXPERIMENTAL RESULTS AND ANALYSIS

    A large number measured data of a wind farms in Inner Mongolia to do experiment.Predict the next days wind power output.The total installed capacity of wind farm is 38MW.Before carrying adaptive feature entropy clustering analysis,first preprocess the data,excluding maintenance outage or machine caused by abnormal data.Select 2010,2011,2012 February historical data as the training data,data collection interval is 15 minutes.Choose the wind speed and wind direction in mid-February 2013 to predict the wind farm power.Here used two methods:They are Weighted Fuzzy C-Means Clustering and Adaptive Feature Entropy Fuzzy Clustering algorithm[10].In figure 1 and 3 the datas those were circled are coursed by the faulted equipments.The black stars are the centers.With many times experiments,after all,we set up the classification category number for 5,the number of iterations is 3,the intervallis 80,blurring constantmis 2,and the cut-off conditionεequals 10-5.Here in after referred to as WFCC and AFEFC.By the weighted fuzzyC-average clustering method to get the characteristics of the weight is:[0.1132 0.3321 0.5547],and the clustering center is:

    According to the fifth part,we calculated the weight and the center of the forecast data respectively are as follows:

    And the root mean square error obtained by the formula(14)was 6.92%.The simulation speed is 4.132652 seconds.Clustering results shown in Figure 1.And wind power prediction shown in Figure 2.With the adaptive characteristics of entropy fuzzy clustering method,we obtained the entropy and weights as follows table 1 for each attribute after every clustering.The bigger the entropy,the smaller the weight.So we get the optimal weights of the attributes were:

    [0.3519 0.1873 0.4609];and the clustering center is:

    As the same methods above obtained the weights and the center of the forecast data were:

    With the same formula(14) obtained the root mean square error:5.79%.The simulation speed is 3.988436 seconds.Clustering results shown in Figure 3;Wind power prediction shown in Figure 4.

    Figure 1 The clustering result of WFCC

    Figure 2 Farm wind power prediction results WFCC

    Figure 3 The clustering result of AFEFC

    Figure 4 Wind farm power prediction results of AFEFC

    Table 1 Entropy value and weight list

    Proposed an adaptive feature weights FCM algorithm and applied to short-term wind power prediction.In the basic FCM algorithm based on adaptive feature weight added Entropy recursive algorithm,the algorithm for clustering results from the feature attributes described in the context and create a feature entropy increase clustering effect.Experimental results show that the algorithm can identify the equipment due to maintenance or other causes of abnormal data,and can be more accurate for predicting the power of the wind farm.

    9 CONCLUSION

    Feature weight algorithm has great impact on the classification results.However,traditional fuzzy clustering considers each feature attributes are equally important,while in the actual wind farm power prediction value the importance of each feature is different.Proposed and inside classes.The experimental results illustrate that the algorithm caneffection among and inside classes.The experimental results illustrate that the algorithm can effectively distinguish the features attributes on the importance of wind power.In addition to this,it can identify the abnormal points and in the wind power prediction higher accuracy can be obtained.

    [1]Chinese wind energy association.The statistics of China′s wind power installed capacity in 2012 [EB/OL].http://www.Cwea.Org.Cn/download/display_info.asp?id=44,2012-03-23.

    [2]LIN Hai-tao,JIANG Chuan-wen,REN Bo-qiang,et al.Short Term Combined Prediction of W ind Speed Based on Fuzzy C lustering[J].East China Electric Power,2010,(38):295-299.

    [3]M C Alexiadis,P S Dokopoulos,H S Sahsamanoglou.Wind Speed and Power Forecasting based on Spatial Correlation Models[J].IEEE Transactions on Energy Conversion,1999,(14):836-842.

    [4]Shan Zeng.Research on Fuzzy clustering algorithm[D].WU Han:Huazhong University of Science and Technology,2012.

    [5]GL Valentini,W Lassonde,SU Khan.An overview of energy efficiency techniques in cluster computing systems[J].Cluster Computi,Sep 2011,pp.3-15,doi:10.1007/s10586-011-0171-x.

    [6]LIU Yu.Study on wind power prediction of large-scale wind farm based on real data analysis[J].Heilongjiang Electric Power,2011,(33):11-15.

    [7]WANG Jian-cheng,YANG Ping,YANG Xi.Research on wind power prediction modeling based on numerical weather prediction[J].Renewable Energy Resources,2013,(31):34-38.

    [8]XB Zhi,JL Fan,F Zhao.Fuzzy Linear Discriminant Analysis guided maximum entropy fuzzy clustering algorithm[J].Pattern Recognition,2013,(46):1604-1615.

    [9]YANG Mao,XIONG Hao,YAN Gan-gui,et al.Real-time prediction of wind power based on data mining and fuzzy clustering[J].Power System Protection and Control,2013,(41):1-6.

    [10]Bonian Li.Weighted Fuzzy C-Means Clustering[J].Fuzzy Systems and Mathematics,2007,(21):106-110.

    馬金發(fā))

    date: 2013-12-09

    This work was supported by the Natural Science Foundation of China under contact(61233007)

    Biography: HUANG Haixin(1972—),female,associate professor,Research direction:systems engineering,smart grids and fuzzy game.

    1003-1251(2014)04-0075-06

    TP206.1DocumentcodeA

    猜你喜歡
    金發(fā)
    Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields?
    誰(shuí)喝光了我的湯
    College Teaching Quality Evaluation Model and Implementation
    The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System
    Research on Orbit Formation and Stability Control Based on High Orbit
    Research on Synchronization Technology of DSSS Signal Based on UQPSK
    Research of the Visualization Temperature Field of the Communication Room Based on the Reconstruction of Three-dimensional Temperature Field
    Study on Image-denoising of Liquid Column in Investment Casting Auto-pouring System
    Design of the Control Circuit of C523 Vertical Lathe on PLC
    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network
    成人漫画全彩无遮挡| 欧美精品一区二区免费开放| 一级毛片黄色毛片免费观看视频| 在线精品无人区一区二区三| 午夜视频国产福利| 尾随美女入室| 一级爰片在线观看| 国产高清三级在线| 免费黄网站久久成人精品| 亚洲综合精品二区| 日本爱情动作片www.在线观看| 一级片'在线观看视频| 啦啦啦在线观看免费高清www| 婷婷色麻豆天堂久久| 精品福利永久在线观看| 久久女婷五月综合色啪小说| av视频免费观看在线观看| 免费黄频网站在线观看国产| 亚洲图色成人| 女的被弄到高潮叫床怎么办| 亚洲精品中文字幕在线视频| 97精品久久久久久久久久精品| 水蜜桃什么品种好| 侵犯人妻中文字幕一二三四区| 国内精品宾馆在线| 国内精品宾馆在线| a 毛片基地| 99热6这里只有精品| 国产精品一二三区在线看| 亚洲人与动物交配视频| 美女国产高潮福利片在线看| 亚洲国产最新在线播放| 王馨瑶露胸无遮挡在线观看| 99久久精品国产国产毛片| 大片免费播放器 马上看| 精品少妇内射三级| av卡一久久| 午夜老司机福利剧场| 国产成人a∨麻豆精品| 丰满少妇做爰视频| videossex国产| 日日摸夜夜添夜夜爱| 亚洲 欧美一区二区三区| 中文字幕av电影在线播放| 9191精品国产免费久久| 男男h啪啪无遮挡| 视频中文字幕在线观看| 黑人欧美特级aaaaaa片| 免费av中文字幕在线| 九色成人免费人妻av| 黑人高潮一二区| 一区二区av电影网| 五月玫瑰六月丁香| 精品久久蜜臀av无| 亚洲av.av天堂| 国产成人免费观看mmmm| 日韩大片免费观看网站| 国产男人的电影天堂91| 精品午夜福利在线看| 成人国产av品久久久| 国产精品久久久久久久电影| 夫妻性生交免费视频一级片| 精品少妇黑人巨大在线播放| 久久鲁丝午夜福利片| 久久久久久久久久成人| 男女无遮挡免费网站观看| 日韩电影二区| 色5月婷婷丁香| 亚洲精品美女久久久久99蜜臀 | 亚洲国产日韩一区二区| 久久鲁丝午夜福利片| 久久久久久久久久久免费av| 国产成人精品在线电影| 免费观看在线日韩| 日韩av不卡免费在线播放| 亚洲精品日韩在线中文字幕| 婷婷色麻豆天堂久久| 欧美精品一区二区免费开放| 国产熟女午夜一区二区三区| 一区在线观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 免费播放大片免费观看视频在线观看| 亚洲精品色激情综合| 男女高潮啪啪啪动态图| 看免费av毛片| av电影中文网址| 久久精品国产a三级三级三级| 人人澡人人妻人| 久久人人爽人人爽人人片va| 黑人高潮一二区| 国产视频首页在线观看| 亚洲av电影在线观看一区二区三区| 欧美精品av麻豆av| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 国产成人av激情在线播放| 搡老乐熟女国产| 久久久精品94久久精品| 亚洲 欧美一区二区三区| 99九九在线精品视频| 国语对白做爰xxxⅹ性视频网站| 美女内射精品一级片tv| 丝袜脚勾引网站| 免费日韩欧美在线观看| 日本欧美国产在线视频| 五月天丁香电影| 国产精品嫩草影院av在线观看| 男人爽女人下面视频在线观看| 国产 精品1| 少妇人妻精品综合一区二区| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品第一综合不卡 | 一区在线观看完整版| 一区二区av电影网| 美女国产视频在线观看| 午夜激情久久久久久久| 丝袜美足系列| 熟女人妻精品中文字幕| 丰满饥渴人妻一区二区三| 99热6这里只有精品| 国产乱人偷精品视频| 精品国产一区二区三区四区第35| 成年动漫av网址| 国产不卡av网站在线观看| 成年美女黄网站色视频大全免费| 欧美精品人与动牲交sv欧美| 亚洲精品乱码久久久久久按摩| 超色免费av| 免费在线观看黄色视频的| 日本vs欧美在线观看视频| 一边亲一边摸免费视频| 国产片内射在线| 日韩成人av中文字幕在线观看| 91在线精品国自产拍蜜月| 国产成人a∨麻豆精品| 亚洲精品第二区| 亚洲精品国产av蜜桃| tube8黄色片| 国产伦理片在线播放av一区| 国产免费现黄频在线看| 18在线观看网站| 日韩不卡一区二区三区视频在线| 精品国产一区二区久久| 成人国产av品久久久| 欧美bdsm另类| 国产一区二区在线观看av| 国产亚洲欧美精品永久| 有码 亚洲区| 国产高清国产精品国产三级| 国产免费视频播放在线视频| 99久久综合免费| 国产免费一区二区三区四区乱码| av不卡在线播放| 欧美人与性动交α欧美软件 | 伦理电影大哥的女人| 久久久久久久久久人人人人人人| 欧美xxⅹ黑人| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 国产男人的电影天堂91| 国产视频首页在线观看| xxxhd国产人妻xxx| 99九九在线精品视频| 人妻少妇偷人精品九色| 日韩制服丝袜自拍偷拍| 国产亚洲av片在线观看秒播厂| 一区二区日韩欧美中文字幕 | 国产永久视频网站| 亚洲激情五月婷婷啪啪| 成人国产av品久久久| 午夜av观看不卡| 少妇高潮的动态图| 午夜福利在线观看免费完整高清在| 欧美精品一区二区大全| 欧美精品一区二区免费开放| 日韩不卡一区二区三区视频在线| 在线观看三级黄色| 久久久久人妻精品一区果冻| 日日摸夜夜添夜夜爱| 韩国av在线不卡| av在线老鸭窝| av视频免费观看在线观看| 欧美丝袜亚洲另类| 97在线人人人人妻| 国产精品国产av在线观看| 精品酒店卫生间| 在线看a的网站| 只有这里有精品99| 免费在线观看黄色视频的| 一本色道久久久久久精品综合| 97在线视频观看| 久久青草综合色| 最近手机中文字幕大全| 男人舔女人的私密视频| 亚洲国产毛片av蜜桃av| 成人亚洲欧美一区二区av| 欧美bdsm另类| 国产综合精华液| 18禁在线无遮挡免费观看视频| 国产精品久久久久成人av| 美女视频免费永久观看网站| 天天影视国产精品| 熟女av电影| 国产精品 国内视频| 日韩中文字幕视频在线看片| 精品第一国产精品| 国产 精品1| 99久久人妻综合| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 中文乱码字字幕精品一区二区三区| 国产av一区二区精品久久| 欧美亚洲 丝袜 人妻 在线| av天堂久久9| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 中文字幕亚洲精品专区| 在线天堂中文资源库| 这个男人来自地球电影免费观看 | 国产午夜精品一二区理论片| 高清黄色对白视频在线免费看| 国产精品人妻久久久影院| 又黄又粗又硬又大视频| 免费黄频网站在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 99热网站在线观看| 丝袜美足系列| 女人被躁到高潮嗷嗷叫费观| 亚洲成av片中文字幕在线观看 | 久久久久久久久久人人人人人人| 美女国产视频在线观看| av电影中文网址| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 精品少妇内射三级| 亚洲精品国产av蜜桃| 亚洲国产日韩一区二区| 国产精品一国产av| 久久综合国产亚洲精品| 国产成人欧美| 久久av网站| 欧美日韩成人在线一区二区| www.熟女人妻精品国产 | 色94色欧美一区二区| 男人操女人黄网站| 久久热在线av| 丝袜在线中文字幕| 高清视频免费观看一区二区| 母亲3免费完整高清在线观看 | 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 亚洲少妇的诱惑av| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 女性生殖器流出的白浆| 国产麻豆69| 国产精品久久久久成人av| 搡老乐熟女国产| 欧美xxxx性猛交bbbb| 精品一品国产午夜福利视频| a级毛片在线看网站| 免费大片18禁| 在线亚洲精品国产二区图片欧美| www.av在线官网国产| 一区二区av电影网| 大陆偷拍与自拍| 伊人亚洲综合成人网| 大片电影免费在线观看免费| 9热在线视频观看99| 一级爰片在线观看| 插逼视频在线观看| 桃花免费在线播放| 亚洲欧美清纯卡通| 99久久人妻综合| 久久国产精品大桥未久av| 美女国产视频在线观看| 丰满少妇做爰视频| 免费黄频网站在线观看国产| 国产成人精品无人区| 精品久久蜜臀av无| 国产精品嫩草影院av在线观看| 新久久久久国产一级毛片| www.av在线官网国产| 午夜av观看不卡| 9色porny在线观看| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| a级毛片在线看网站| 国产亚洲欧美精品永久| 老司机影院成人| 精品视频人人做人人爽| 成人毛片60女人毛片免费| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 日韩一区二区视频免费看| 视频在线观看一区二区三区| av又黄又爽大尺度在线免费看| 又黄又粗又硬又大视频| 你懂的网址亚洲精品在线观看| 草草在线视频免费看| 日韩欧美精品免费久久| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 少妇的逼好多水| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 久久免费观看电影| 精品久久蜜臀av无| 在线 av 中文字幕| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 欧美国产精品一级二级三级| 韩国av在线不卡| 久久久久国产网址| 日韩中字成人| 毛片一级片免费看久久久久| 亚洲图色成人| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 久久免费观看电影| 激情五月婷婷亚洲| 99热这里只有是精品在线观看| 黄色配什么色好看| 黑人高潮一二区| 九色亚洲精品在线播放| 免费看不卡的av| 国产 一区精品| 美女内射精品一级片tv| 国产日韩欧美在线精品| 大话2 男鬼变身卡| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 一级毛片黄色毛片免费观看视频| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 18+在线观看网站| 丝袜人妻中文字幕| 毛片一级片免费看久久久久| 男女午夜视频在线观看 | 91久久精品国产一区二区三区| 韩国高清视频一区二区三区| 黄色一级大片看看| 日韩大片免费观看网站| 久久久久精品性色| 久久毛片免费看一区二区三区| 午夜av观看不卡| 国产精品久久久久久av不卡| 精品国产一区二区三区四区第35| 亚洲激情五月婷婷啪啪| 免费观看性生交大片5| 三上悠亚av全集在线观看| 日本黄大片高清| 午夜免费鲁丝| av在线app专区| 男女下面插进去视频免费观看 | 久久久国产精品麻豆| 高清av免费在线| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 亚洲四区av| 国产一区二区激情短视频 | 亚洲人成网站在线观看播放| 香蕉国产在线看| 嫩草影院入口| 精品一区二区三卡| 亚洲精品自拍成人| 看免费av毛片| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 中国国产av一级| 久久精品国产亚洲av天美| 男女下面插进去视频免费观看 | 80岁老熟妇乱子伦牲交| 香蕉国产在线看| 9191精品国产免费久久| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 如何舔出高潮| 欧美xxⅹ黑人| 观看美女的网站| 精品亚洲成a人片在线观看| 日产精品乱码卡一卡2卡三| 一本久久精品| 深夜精品福利| 少妇的逼好多水| 如何舔出高潮| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 一个人免费看片子| 欧美bdsm另类| www日本在线高清视频| 国产毛片在线视频| 日本wwww免费看| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 桃花免费在线播放| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 最近最新中文字幕免费大全7| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 国产精品.久久久| √禁漫天堂资源中文www| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 久久 成人 亚洲| 精品视频人人做人人爽| 69精品国产乱码久久久| 热99国产精品久久久久久7| 深夜精品福利| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| 大陆偷拍与自拍| 两个人看的免费小视频| 国产色爽女视频免费观看| 日本色播在线视频| 人妻少妇偷人精品九色| 看免费成人av毛片| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三区在线| 亚洲激情五月婷婷啪啪| 丝袜美足系列| 午夜免费观看性视频| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| 久久99一区二区三区| 国产成人91sexporn| 亚洲精品av麻豆狂野| 久久99热6这里只有精品| 人妻 亚洲 视频| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 国产成人a∨麻豆精品| 国产精品久久久久久久久免| 久久婷婷青草| 纵有疾风起免费观看全集完整版| xxx大片免费视频| 久久精品夜色国产| 在线精品无人区一区二区三| 精品一区二区三区四区五区乱码 | 考比视频在线观看| 精品国产一区二区久久| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 美女内射精品一级片tv| av视频免费观看在线观看| 少妇人妻 视频| 日韩 亚洲 欧美在线| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 熟妇人妻不卡中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 国产亚洲精品第一综合不卡 | 九色亚洲精品在线播放| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 十八禁网站网址无遮挡| 国产综合精华液| 国产毛片在线视频| 狂野欧美激情性xxxx在线观看| 日韩电影二区| av又黄又爽大尺度在线免费看| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 国产 一区精品| 久热久热在线精品观看| 美女主播在线视频| 蜜桃国产av成人99| 国产精品成人在线| 日韩一区二区三区影片| 2022亚洲国产成人精品| 水蜜桃什么品种好| 精品福利永久在线观看| a级毛片黄视频| 日本黄大片高清| av不卡在线播放| 全区人妻精品视频| 最近手机中文字幕大全| 欧美最新免费一区二区三区| 美女福利国产在线| www.av在线官网国产| 亚洲欧美日韩卡通动漫| 99国产精品免费福利视频| 久久久久人妻精品一区果冻| 久久这里有精品视频免费| 一边亲一边摸免费视频| tube8黄色片| 少妇的丰满在线观看| 伊人久久国产一区二区| 国产国语露脸激情在线看| 国产精品久久久久久久久免| 制服诱惑二区| 久久精品久久久久久久性| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 男女边摸边吃奶| 97精品久久久久久久久久精品| 22中文网久久字幕| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 91国产中文字幕| 亚洲精品成人av观看孕妇| 永久网站在线| 老司机亚洲免费影院| 欧美+日韩+精品| 亚洲伊人久久精品综合| 国产乱来视频区| 欧美精品一区二区大全| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 人人澡人人妻人| 午夜视频国产福利| 亚洲欧洲国产日韩| 香蕉精品网在线| 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 在线看a的网站| 99久久精品国产国产毛片| 香蕉丝袜av| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 91精品国产国语对白视频| 久久久国产精品麻豆| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| av天堂久久9| 蜜桃在线观看..| 激情五月婷婷亚洲| 少妇被粗大的猛进出69影院 | 一级毛片我不卡| 久久久国产精品麻豆| 久久青草综合色| 国产伦理片在线播放av一区| 国产亚洲午夜精品一区二区久久| videos熟女内射| 最近最新中文字幕免费大全7| 熟妇人妻不卡中文字幕| av免费观看日本| 飞空精品影院首页| 成人黄色视频免费在线看| 亚洲成人一二三区av| 黄片无遮挡物在线观看| 欧美丝袜亚洲另类| 两性夫妻黄色片 | 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 国产高清三级在线| av免费在线看不卡| 国产亚洲精品第一综合不卡 | 亚洲av在线观看美女高潮| 69精品国产乱码久久久| 黄网站色视频无遮挡免费观看| 男女啪啪激烈高潮av片| 亚洲欧美日韩另类电影网站| 欧美亚洲 丝袜 人妻 在线| 人人妻人人爽人人添夜夜欢视频| 国国产精品蜜臀av免费| 一区二区日韩欧美中文字幕 | 美国免费a级毛片| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 黑丝袜美女国产一区| 人妻人人澡人人爽人人| 午夜福利在线观看免费完整高清在| 午夜福利影视在线免费观看| 色网站视频免费| 丝袜美足系列| 免费av不卡在线播放| 咕卡用的链子| 免费观看av网站的网址| 五月天丁香电影| 国产福利在线免费观看视频| 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 最近的中文字幕免费完整| 如日韩欧美国产精品一区二区三区| 女的被弄到高潮叫床怎么办| 搡女人真爽免费视频火全软件| 又黄又爽又刺激的免费视频.| 国产精品免费大片| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 国产免费现黄频在线看| av卡一久久| 熟女电影av网| 免费日韩欧美在线观看| 美女大奶头黄色视频| 亚洲欧美一区二区三区国产| 免费人妻精品一区二区三区视频| 欧美丝袜亚洲另类|