• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network

    2014-09-14 07:24:05JIMengranCHENGangYANGQingZHANGJinge
    沈陽理工大學學報 2014年5期
    關鍵詞:金發(fā)

    JI Mengran,CHEN Gang,YANG Qing,ZHANG Jinge

    ( Shenyang Ligong University,Shenyang 110159,China )

    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network

    JI Mengran,CHEN Gang,YANG Qing,ZHANG Jinge

    ( Shenyang Ligong University,Shenyang 110159,China )

    In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform (WPT) as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location.

    fault diagnosis;BP neural network;particle swarm optimization;analog circuit

    Analog circuit fault diagnosis research since the nineteen sixties,has made a lot of achievements,researchers have proposed many fault diagnosis methods,such as fault dictionary method,parameter identification method and fault verification method.Since the discrete and nonlinear,diversity,element parameter fault phenomena,it is difficult for anology circuits′ fault diagnosis.The parameters identification method of components required to provide more diagnostic information needs a particular mathematical model,and mathematical operations time-consuming[1].While the neural network has the classification ability,learning and reasoning ability,strong robustness and self-adaptive ability,it can effectively solve the traditional pattern recognition methods which are difficult to solve,so,it provides an excellent solution for fault diagnosis[2].

    The BP neural network is not only self-organizing,self-learning and adaptive ability,but also is simple principle,easy to implement,and it has been widely used in many fields.However,BP neural network has low learning efficiency,slow convergence and easy to fall into local optimum limitation,especially has great influence on the structure of the selected BP neural network learning ability and generalization ability of the network.This article combines the PSO algorithm with the BPNN,which is based on the error back-propagation.The PSO algorithm is introduced for adjusting the weights and thresholds of the BPNN[3].

    1 FEATURE EXTRACTION OF WAVELET PACKET TRANSFOR

    1.1 Wavelet Packet Transform

    Wavelet Packet Transform(WPT)is a generalization of wavelet transform,which is based on the multi-resolution analysis,providing a more precise for signal analysis method[4].At present,in analog circuit fault diagnosis,wavelet packet technique as a powerful tool for information processing,so the method based on wavelet packet decomposition has been widely applied.

    Take a three layer wavelet packet decomposition as an example,the wavelet packet decomposition tree shown in Figure 1,Sis the original signal,represents the low frequency[5],Drepresents high frequency end of the serial number indicates the number of layers of wavelet packet decomposition(i.e.the number of scales)is decomposed with the following relations:

    S=AAA3+DAA3+ADA3+DDA3+AAD3+DAD3+ADD3+DDD3

    (1)

    Figure 1 Three layer wavelet packet decomposition

    1.2 Wavelet Packet Energy Feature Extraction

    Wavelet packet decomposition of the signal is the essence of multi-band-pass filter[6].It can be decomposed in the whole frequency band signal,obtained in different frequency bands of energy,it can regard as important information of a fault diagnosis.The circuit output signal wavelet packet decomposition,extract from low to high frequency signals all features[7],and reconstruction of wavelet packet decomposition coefficients to obtain the energy of each frequency band signal.

    Here select the appropriate wavelet packet decomposition level fault feature extraction is crucial[8].If the decomposition level is too small,the resulting energy can not fully reflect the characteristics of the analog circuit fault;if the decomposition level is too high,redundant features will increase,which will affect the diagnostic accuracy and efficiency of diagnosis.Therefore,this wavelet packet layer is set to 3.Figure 2 is the schematic diagram of the wavelet packet decomposition.

    Figure 2 Wavelet packet decomposition

    2 PSO-BP MODEL FOR FAULT DIAGNOSIS

    2.1 Particle Swarm Optimization

    Particle Swarm Optimization′s[9]idea from artificial life and evolutionary computation theory,by simulating the behavior of birds for each particle habitat search optimum solution,and using these optimal solutions so that the whole swarm optimal,fitness function.

    If the search targets a D-dimensional space,there is a group formed by the m particles,the vectorxi=(xi1,xi2,…,xiD),i=1,2,…,mindicates the position of thei-th particle,with a D-dimensional vectorvi=(vi1,vi2,…,viD,) indicates that the particle velocity,vectorpi=(pi1,pi2,…,piD) indicates that the particles are so far the best position to search,vectorpg=(pg1,pg2,…,pgD) represents the entire swarm optimal location of the search,particles update iteration formula is as follows:

    vid(t+1)=ωvid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))

    (2)

    xid(t+1)=xid(t)+vid(t+1)

    (3)

    when,vid>Vmax,takevid=Vmax;

    whenvid<-Vmax,takevid=-Vmax.

    wherei=1,2,…,m,d=1,2,…,Dinertia weight coefficient expressed byω,acceleration constantsc1andc2with a non-negative constant representation,r1andr2are subject to [0,1] on the uniform distribution random number,xid(t) is ai-th particle′s current position,pidis a particleito present it to the optimal position for the search,pgdis a whole swarm able to search the optimal position,vidis ai-th particle′s current velocity,vid∈[Vmax,-Vmax],Vmaxis a maximum speed limit a nonnegative number.

    2.2 BP Neural Network

    BP neural network structure is the most typical three-tier network architecture,namely input layer,hidden layer and output layer[10].The structure shows in Figure 3.

    Figure 3 BP Neural Network Structure

    BP neural network algorithm consists of two phases:

    1)Forward propagation input information through the input layer and hidden layer and layer by layer by the process and calculating the actual output value of each unit.

    2)Back-propa-gation process.If the output layer can not obtain a desired output value,layer by layer recursively calculate the actual output and the desired output of the difference(error),the difference is adjusted according to the weights.Repeated use of these two processes,making the smallest error signal when the error reaches the desired requirements,the network learning process is over.

    2.3 PSO to Optimize BP Neural network strategy

    PSO-BP neural network model algorithm as follows:

    1)Construct BP neural network and initalize network weights and threshold:use net=newff(minmax(P),[8,1],{′tansig′,′purelin′},′traincgf′) to construct BP neural network.Random initialization swarm,each group is the connection weights and threshold initial value;

    2)Calculated for each particle(connection weights and threshold)of the fitness function;

    3) Compare the current particle fitness function value and the previous best fitness value,whichever is greater value to the current particle′s best fitness value;

    4) Select all the particles in one of the best fitness value,as a global optimal solution;

    5)For each particle,to calculate its forward speed:

    vi(t+1)=ωvi(t)+c1r1(pi-xi(t))+c2r2(pg-xi(t))

    (4)

    6)Calculates the position of the particle after forward:

    xi(t+1)=xi(t)+vi(t+1)

    (5)

    7)According to equation(4)reduces inertia weightω:

    ω=ωmax-(ωmax-ωmin)/itermaxiter

    (6)

    8) Change the acceleration factorc1,c2:

    c1=c1max(c1max-c1min)/itermaxiter

    (7)

    c2=c2max(c2max-c2min)/itermaxiter

    (8)

    9) If the algorithm to meet the convergence criteria or the maximum number of iterations,then exit the PSO algorithm,step 10,otherwise return to step 2;

    10)Use of BP neural network algorithm to continue training,if the training results are better than PSO training results,BP neural network output,otherwise the output PSO trained neural network.Among them,c1,c2are the learning factors,c1max、c2max、c1min、c2minare learning factorc1,c2of the maximum and minimum;r1、r2are random numbers on [0,1].ωis a coefficient of inertia weight,ωmax、ωminare inertia weight factors,respectively the maximum and minimum;iter、itermaxare PSO algorithm iterations and the maximum number of iterations;vi(t) is a particle velocity I;pi(t) is the optimal solution of the individual particles;pg(t) is the global optimum particle;xi(t) is the position of the particle.

    3 CASE STUDY

    In order to verify the effectiveness and feasibility of the proposed method to a center frequency of 25 kHz bandpass filter instance as a diagnostic[11],Circuit shows in Figure 4.Figure tolerance of resistors and capacitors were±5%and±10%of the components to be diagnosed isC1,C2,R2andR3.

    Experimental set fault type shows in Table I.↑ indicates that the corresponding failure mode corresponding to the tolerance interval is set to [Normal tolerance,50%],↓ indicates that the corresponding failure modes corresponding tolerance interval is set to [-50%,the normal tolerance].Figure 4 also shows the fault location.

    When experiment,the circuit is applied to an amplitude of 5 V,the time is 10us pulse voltage.The output voltage signal will be sampled after three wavelet packet decomposition,extracted from low frequency to high frequency signal characteristic of all,and the coefficients of the wavelet packet decomposition reconstructed,the energy band structure having eight feature vector,and its normalized.

    Using Multisim different fault conditions on the circuit for Monte Carlo analysis,the data 150 obtained as a sample,whichever is the 75 training samples,and the other group as a test sample 75.Some of the sample data samples shown in Table 2.

    Figure 4 25 kHz Sallerl-Key bandpass filter

    Table 1 FAULT TYPES TABLES

    To test based on PSO-BP neural network learning ability,you can set training precision of 0.001,the error curve is shown in Figure 5.

    Test results as shown in Figure 6.This paper shows that the proposed method is better than the traditional BP method.That is because the use of particle swarm algorithm improves the optimal parameters of the BP neural network efficiency,it also solves the problem of low BP learning efficiency,and it also improves the network convergence speed and classification speed.

    Table 2 DATA SAMPLES

    Figure 5 PSO optimized BP network training error graph

    Figure 6 Training test results

    4 CONCLUTION

    This paper presents an approach based on PSO-BP neural network and wavelet packet decomposition combining analog circuit fault diagnosis method. The PSO optimization algorithm and BP neural network combined with improved network learning ability and generalization ability.Simulation results show that the use of PSO-BP neural network and wavelet packet decomposition of analog circuit fault diagnosis method is effective,this method accelerates network convergence speed and classification speed,improve the accuracy of fault diagnosis and fault location accuracy.

    [1]He YG,Zhu WJ,Zhou YT,et al.Based on particle swarm analog circuit fault diagnosis[J].Electrotechnical Society,2010,25(6):163-167.

    [2]Song LW,Peng MF,Tian CL.Based on PSO-RBF neural network analog circuit diagnosis[J].Application Research of Computers,2012,29(1):72-74.

    [3]Li ZY,Wang JY,Guo C.PSO algorithm to optimize the new method of BP neural network and simulation[J].Journal of Electronics,2008,36(11):2224-2228.

    [4]Yan SY,Liu C,Zhao HB,et al.Consciousness based on wavelet packet EEG feature extraction[J].Journal of Scientific Instrument,2012,33(8):1749-1751.

    [5]Wang D,Miao DQ,Wang RZ.A new EEG based on wavelet packet decomposition feature extraction and recognition method[J].Journal of Electronics,2013,41(1):193-198.

    [6]Wang PL.Based on Wavelet Packet and Support Vector Machine Diagnosis of Analog Circuits[D].Changsha:Hunan University,2010:24-34.

    [7]Wang SY,Zhu GX,Tang YY.Application of optimal wavelet packet transform feature extraction method[J].Journal of Electronics,2003,31(1):1035-1038.

    [8]Zhang Y,Zheng LH,Li MH,et al.Principles based on spectral and wavelet packet decomposition technology forecasting apple leaf nitrogen content[J].Agricultural Engineering,2013,29(1):101-106.

    [9]Ruan HG,Tan YH,Lu MM,et al.Neural networks particle swarm optimization algorithm and its application in earthquake prediction[J].Computer and Digital Engineering,2013,41(2):155-157.

    [10]Fan ZY.BP neural network model and learning algorithm[J].Software Tribune,2011,10(7):66-68.

    [11]Aminian F,Aminian M.Fault Diagnosis of Analog Circuits Using Bayesian Neural Networks with Wavelet Transform as Preprocessor[J].Journal of Electronic testing:Theory and Application,2001,17(1):29-36.

    馬金發(fā))

    date: 2013-12-18

    This work is supported the Science and Technology Research Project of Liaoning Provincial Department of Education.

    Biography: JI Mengran(1989—),female,graduate candidate;Corresponding author:CHEN Gang(1962—),female,professor,Research direction:fault diagnosis of analog circuit.

    1003-1251(2014)05-0090-05

    TP277DocumentcodeA

    猜你喜歡
    金發(fā)
    Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields?
    誰喝光了我的湯
    College Teaching Quality Evaluation Model and Implementation
    The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System
    Research on Orbit Formation and Stability Control Based on High Orbit
    Research on Synchronization Technology of DSSS Signal Based on UQPSK
    Research of the Visualization Temperature Field of the Communication Room Based on the Reconstruction of Three-dimensional Temperature Field
    Study on Image-denoising of Liquid Column in Investment Casting Auto-pouring System
    Design of the Control Circuit of C523 Vertical Lathe on PLC
    Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
    日本一本二区三区精品| 久久精品国产亚洲av涩爱| 日日啪夜夜撸| 男女视频在线观看网站免费| 欧美又色又爽又黄视频| 欧美极品一区二区三区四区| av在线播放精品| 亚洲经典国产精华液单| 亚洲av中文字字幕乱码综合| 桃色一区二区三区在线观看| 99热全是精品| 一级黄片播放器| 精品久久久久久久末码| 九色成人免费人妻av| av黄色大香蕉| 国产成人福利小说| 成人毛片60女人毛片免费| 一级毛片aaaaaa免费看小| 老司机影院成人| 免费看美女性在线毛片视频| 精品久久久久久电影网 | 国产黄片美女视频| 国产色爽女视频免费观看| 中文字幕制服av| 美女高潮的动态| 日韩亚洲欧美综合| videossex国产| 六月丁香七月| 综合色丁香网| 亚洲国产欧美在线一区| 日韩制服骚丝袜av| 免费看a级黄色片| 国产精品国产三级专区第一集| 国产女主播在线喷水免费视频网站 | 性插视频无遮挡在线免费观看| 九九在线视频观看精品| 插阴视频在线观看视频| 丰满人妻一区二区三区视频av| 久久久久久九九精品二区国产| 天天一区二区日本电影三级| 免费av观看视频| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久电影网 | 国产伦在线观看视频一区| 国产淫片久久久久久久久| 国产黄a三级三级三级人| 亚洲精品,欧美精品| 免费观看在线日韩| 啦啦啦韩国在线观看视频| 极品教师在线视频| 国产精品女同一区二区软件| 久久久精品94久久精品| a级毛片免费高清观看在线播放| 国产成人精品婷婷| 在线免费观看的www视频| 高清日韩中文字幕在线| 精品午夜福利在线看| 亚洲内射少妇av| 亚洲精品乱久久久久久| 日韩成人av中文字幕在线观看| 毛片女人毛片| 又爽又黄无遮挡网站| 乱码一卡2卡4卡精品| 国产伦理片在线播放av一区| 亚洲激情五月婷婷啪啪| 热99在线观看视频| 97超视频在线观看视频| 精华霜和精华液先用哪个| 国产精品一区二区三区四区免费观看| 干丝袜人妻中文字幕| 99九九线精品视频在线观看视频| 欧美区成人在线视频| 亚洲三级黄色毛片| 丝袜喷水一区| 六月丁香七月| 少妇熟女欧美另类| 91av网一区二区| 黄片wwwwww| 日本猛色少妇xxxxx猛交久久| 免费大片18禁| 中文字幕熟女人妻在线| 一级毛片久久久久久久久女| 亚洲怡红院男人天堂| 国产精品久久久久久精品电影| 精品国产三级普通话版| 日本wwww免费看| 国产真实伦视频高清在线观看| 啦啦啦观看免费观看视频高清| 欧美一级a爱片免费观看看| 欧美潮喷喷水| 国产精品1区2区在线观看.| 亚洲精品,欧美精品| 亚洲18禁久久av| 久久99热这里只频精品6学生 | a级毛色黄片| 午夜免费激情av| 久久久久精品久久久久真实原创| 熟女电影av网| 99久久九九国产精品国产免费| 国产成人a区在线观看| 欧美成人午夜免费资源| 噜噜噜噜噜久久久久久91| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 国产三级中文精品| 亚洲最大成人中文| 看十八女毛片水多多多| 国产精品一区二区在线观看99 | 国产极品精品免费视频能看的| 十八禁国产超污无遮挡网站| 国产一级毛片在线| 亚洲成人久久爱视频| 深爱激情五月婷婷| 变态另类丝袜制服| 黑人高潮一二区| 国产精品人妻久久久影院| av播播在线观看一区| 免费看a级黄色片| 又粗又爽又猛毛片免费看| 日韩欧美 国产精品| 夜夜看夜夜爽夜夜摸| 永久网站在线| 永久免费av网站大全| 色综合色国产| 久久久久久久久久久丰满| 麻豆精品久久久久久蜜桃| 一个人观看的视频www高清免费观看| 日韩精品青青久久久久久| 亚洲国产精品sss在线观看| 日韩一本色道免费dvd| 99久久成人亚洲精品观看| 在线免费十八禁| 岛国在线免费视频观看| 床上黄色一级片| 天堂√8在线中文| 国产亚洲91精品色在线| 亚洲乱码一区二区免费版| 欧美三级亚洲精品| 别揉我奶头 嗯啊视频| 色尼玛亚洲综合影院| 国产伦精品一区二区三区四那| 国产精品.久久久| 不卡视频在线观看欧美| 国产伦精品一区二区三区四那| 免费人成在线观看视频色| 一本一本综合久久| 亚洲av男天堂| 久久国产乱子免费精品| 永久免费av网站大全| 亚洲第一区二区三区不卡| 国产午夜精品论理片| 国产精品人妻久久久久久| 日韩国内少妇激情av| 国产高清三级在线| 老女人水多毛片| 一级黄片播放器| 青青草视频在线视频观看| 国产三级中文精品| 国产精品麻豆人妻色哟哟久久 | 亚洲在线观看片| 一级av片app| 内地一区二区视频在线| 久99久视频精品免费| 99在线人妻在线中文字幕| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 亚洲成人av在线免费| 国产精品电影一区二区三区| 六月丁香七月| 69人妻影院| 偷拍熟女少妇极品色| 精品久久国产蜜桃| 色综合站精品国产| 亚洲精品国产成人久久av| 国产成人91sexporn| www.色视频.com| 亚洲精品成人久久久久久| 国产激情偷乱视频一区二区| 久久久精品94久久精品| 精品国产露脸久久av麻豆 | 免费观看在线日韩| 免费av不卡在线播放| 伦精品一区二区三区| 中文字幕av在线有码专区| 亚洲欧美成人精品一区二区| 可以在线观看毛片的网站| 狠狠狠狠99中文字幕| 日本免费a在线| 亚洲欧美日韩无卡精品| 久久国产乱子免费精品| 黄片无遮挡物在线观看| 亚洲一区高清亚洲精品| 久久人人爽人人片av| 日韩av在线大香蕉| 久久久国产成人免费| 亚洲av免费高清在线观看| 亚洲va在线va天堂va国产| 精品无人区乱码1区二区| 乱码一卡2卡4卡精品| 波多野结衣巨乳人妻| 免费观看在线日韩| 看非洲黑人一级黄片| 免费观看人在逋| 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 欧美人与善性xxx| 人妻夜夜爽99麻豆av| 国内少妇人妻偷人精品xxx网站| 亚洲怡红院男人天堂| 亚洲av电影在线观看一区二区三区 | 男女下面进入的视频免费午夜| 少妇熟女aⅴ在线视频| 国产三级中文精品| 最近视频中文字幕2019在线8| a级毛色黄片| 伦理电影大哥的女人| 精品久久久久久电影网 | 最新中文字幕久久久久| 国产男人的电影天堂91| 亚洲av男天堂| 日韩三级伦理在线观看| 一级毛片电影观看 | 国产精品福利在线免费观看| 亚洲精品aⅴ在线观看| 国产精品99久久久久久久久| av福利片在线观看| 日韩av不卡免费在线播放| 26uuu在线亚洲综合色| 精品久久国产蜜桃| 亚洲高清免费不卡视频| 99热全是精品| 中文在线观看免费www的网站| 日日摸夜夜添夜夜添av毛片| 国产激情偷乱视频一区二区| 国产精品一区二区在线观看99 | 国产69精品久久久久777片| 99久久人妻综合| 99视频精品全部免费 在线| 高清日韩中文字幕在线| 成人性生交大片免费视频hd| 中文资源天堂在线| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 麻豆成人午夜福利视频| 少妇人妻精品综合一区二区| 在线播放国产精品三级| 永久免费av网站大全| 蜜臀久久99精品久久宅男| 99国产精品一区二区蜜桃av| 好男人在线观看高清免费视频| 欧美另类亚洲清纯唯美| 精品少妇黑人巨大在线播放 | av播播在线观看一区| 久久亚洲精品不卡| 六月丁香七月| 女人被狂操c到高潮| 99热这里只有精品一区| 99久久精品一区二区三区| 最近最新中文字幕大全电影3| 国产成人a区在线观看| 亚洲18禁久久av| a级毛片免费高清观看在线播放| 一边亲一边摸免费视频| 有码 亚洲区| 精品久久久久久久末码| 久久精品国产亚洲网站| 国产探花在线观看一区二区| 国产黄片美女视频| 精品一区二区三区人妻视频| 久久婷婷人人爽人人干人人爱| 超碰av人人做人人爽久久| 亚洲欧美精品综合久久99| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 久久草成人影院| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 国产极品精品免费视频能看的| 国产精品人妻久久久影院| 国内精品宾馆在线| 99久久精品一区二区三区| 亚洲成人精品中文字幕电影| 亚洲av熟女| 老女人水多毛片| 日韩人妻高清精品专区| 校园人妻丝袜中文字幕| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 亚洲欧美精品专区久久| 亚洲欧美日韩卡通动漫| 韩国高清视频一区二区三区| 久久久久久九九精品二区国产| 免费观看人在逋| 久久精品国产鲁丝片午夜精品| 我的老师免费观看完整版| 美女大奶头视频| 69av精品久久久久久| 午夜精品一区二区三区免费看| 亚洲欧美精品专区久久| 国语对白做爰xxxⅹ性视频网站| 又爽又黄无遮挡网站| 夫妻性生交免费视频一级片| 亚洲国产欧美人成| 亚洲精品国产av成人精品| 免费一级毛片在线播放高清视频| 中文天堂在线官网| 国内揄拍国产精品人妻在线| 99久久精品热视频| 日韩 亚洲 欧美在线| 亚洲国产日韩欧美精品在线观看| 99久久精品一区二区三区| 国产av在哪里看| 一夜夜www| a级毛色黄片| 国产高清三级在线| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品专区久久| 欧美激情国产日韩精品一区| 中文在线观看免费www的网站| 亚洲av中文字字幕乱码综合| 夜夜看夜夜爽夜夜摸| 国产成人91sexporn| 亚州av有码| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区 | 午夜日本视频在线| 天堂√8在线中文| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频 | 美女内射精品一级片tv| 国产精品伦人一区二区| 国产欧美日韩精品一区二区| 欧美最新免费一区二区三区| 久久久午夜欧美精品| 免费电影在线观看免费观看| 美女xxoo啪啪120秒动态图| 国语对白做爰xxxⅹ性视频网站| 女的被弄到高潮叫床怎么办| 亚洲成av人片在线播放无| 插逼视频在线观看| 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 国产精品久久电影中文字幕| 国产精品久久久久久久电影| 禁无遮挡网站| 免费观看在线日韩| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 国产精华一区二区三区| 国产免费一级a男人的天堂| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 我要搜黄色片| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 免费搜索国产男女视频| 日本熟妇午夜| 欧美成人a在线观看| 国语自产精品视频在线第100页| 99久久无色码亚洲精品果冻| 国产老妇女一区| 亚洲五月天丁香| 大香蕉久久网| 亚洲国产最新在线播放| 天堂中文最新版在线下载 | 99久久精品一区二区三区| 99热全是精品| 秋霞伦理黄片| 亚洲五月天丁香| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 午夜激情欧美在线| 色网站视频免费| 中文字幕熟女人妻在线| 男女那种视频在线观看| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 在线a可以看的网站| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 1024手机看黄色片| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品 | 少妇熟女aⅴ在线视频| 国产成人福利小说| 麻豆一二三区av精品| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 精品久久国产蜜桃| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久 | 日韩中字成人| 嫩草影院新地址| 观看美女的网站| 欧美另类亚洲清纯唯美| 午夜福利在线在线| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 欧美一区二区亚洲| 欧美97在线视频| 村上凉子中文字幕在线| 国产精品熟女久久久久浪| 人妻制服诱惑在线中文字幕| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 久久人人爽人人爽人人片va| 久久久成人免费电影| 国产精品久久久久久久久免| 国产极品天堂在线| 日本欧美国产在线视频| 国产精品乱码一区二三区的特点| 色哟哟·www| 中文字幕人妻熟人妻熟丝袜美| 97人妻精品一区二区三区麻豆| 午夜爱爱视频在线播放| 久久久欧美国产精品| 长腿黑丝高跟| 中文字幕亚洲精品专区| 国产极品天堂在线| 成人av在线播放网站| 在线天堂最新版资源| 日韩av在线大香蕉| 伦精品一区二区三区| 久久久久久大精品| 91精品国产九色| 汤姆久久久久久久影院中文字幕 | 日韩大片免费观看网站 | 免费看光身美女| 中国国产av一级| 可以在线观看毛片的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产探花极品一区二区| 亚洲怡红院男人天堂| 99久国产av精品| av播播在线观看一区| 国产黄色视频一区二区在线观看 | 97热精品久久久久久| 看免费成人av毛片| 久久久久久大精品| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 2021少妇久久久久久久久久久| 一级黄色大片毛片| 欧美性感艳星| av卡一久久| 亚洲,欧美,日韩| 丰满乱子伦码专区| 天堂影院成人在线观看| 免费播放大片免费观看视频在线观看 | 久久久久性生活片| 看十八女毛片水多多多| 日日啪夜夜撸| 一级毛片我不卡| 伦精品一区二区三区| 色哟哟·www| 欧美97在线视频| АⅤ资源中文在线天堂| 直男gayav资源| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 一级av片app| 成人三级黄色视频| 免费看av在线观看网站| 亚洲自拍偷在线| 18禁动态无遮挡网站| 欧美日韩综合久久久久久| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 卡戴珊不雅视频在线播放| 高清毛片免费看| 免费人成在线观看视频色| 亚洲av福利一区| 亚洲av中文字字幕乱码综合| 九九热线精品视视频播放| 看黄色毛片网站| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 亚洲成人精品中文字幕电影| 三级国产精品片| 欧美日本亚洲视频在线播放| 好男人在线观看高清免费视频| 天堂中文最新版在线下载 | 岛国毛片在线播放| 午夜亚洲福利在线播放| av在线亚洲专区| 国产精品女同一区二区软件| www.av在线官网国产| 国产av不卡久久| 日本一本二区三区精品| 国产极品精品免费视频能看的| 欧美色视频一区免费| 精品人妻偷拍中文字幕| 国产成人aa在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲91精品色在线| 久久这里有精品视频免费| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 最近中文字幕高清免费大全6| 亚洲国产精品合色在线| 美女内射精品一级片tv| 国内精品美女久久久久久| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 国产在视频线精品| av在线蜜桃| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 欧美成人精品欧美一级黄| 日本与韩国留学比较| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| 国产精品麻豆人妻色哟哟久久 | 日本av手机在线免费观看| 国产毛片a区久久久久| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 日本黄大片高清| 丰满少妇做爰视频| 在线观看66精品国产| 成人无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 中文字幕av成人在线电影| 乱系列少妇在线播放| 色5月婷婷丁香| 长腿黑丝高跟| 亚洲在线自拍视频| 日韩欧美三级三区| 亚洲国产精品久久男人天堂| 深夜a级毛片| 国产单亲对白刺激| 国产av在哪里看| 三级国产精品片| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| ponron亚洲| 国产麻豆成人av免费视频| 在线观看av片永久免费下载| 能在线免费观看的黄片| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 黄色配什么色好看| 欧美激情在线99| 久久久久久久久久成人| 偷拍熟女少妇极品色| 欧美日本视频| 男女边吃奶边做爰视频| 一级爰片在线观看| 亚洲18禁久久av| 久久久精品大字幕| 我的女老师完整版在线观看| 内地一区二区视频在线| 免费观看a级毛片全部| 婷婷色av中文字幕| 国产 一区精品| 内地一区二区视频在线| www.色视频.com| 又爽又黄a免费视频| 国产精品,欧美在线| 黄色欧美视频在线观看| 久久久久久久久久黄片| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 日韩成人伦理影院| 欧美激情在线99| 国产熟女欧美一区二区| 国产成人aa在线观看| 中文欧美无线码| 免费黄网站久久成人精品| 免费电影在线观看免费观看| 99热精品在线国产| 91久久精品国产一区二区三区| 特级一级黄色大片| 91久久精品国产一区二区成人| av福利片在线观看| av女优亚洲男人天堂| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| 日本爱情动作片www.在线观看| av天堂中文字幕网| 久99久视频精品免费| 日本wwww免费看| 97超碰精品成人国产| 午夜精品在线福利| 久久精品国产自在天天线| 97超碰精品成人国产| 在现免费观看毛片| 日本wwww免费看| 欧美+日韩+精品| 国产精品美女特级片免费视频播放器| 亚洲av男天堂| 特级一级黄色大片| 国产黄色视频一区二区在线观看 | 久久精品国产亚洲av天美| 偷拍熟女少妇极品色| 国产精品综合久久久久久久免费| 高清毛片免费看| 视频中文字幕在线观看| 久久精品人妻少妇| 亚洲人成网站高清观看|