侯學(xué)萍 陳琳
多年來,我國一線數(shù)學(xué)教師熱衷于課時設(shè)計,很少考慮單元整體,僅僅關(guān)注孤立知識點(diǎn),單純強(qiáng)調(diào)記憶模仿,忽視知識間的內(nèi)在聯(lián)系,育人價值的滲透、核心素養(yǎng)的培養(yǎng)更多為紙上談兵。2017年,崔允漷教授在第十五屆上海國際課程論壇作了題為《試論核心素養(yǎng)的課程意義》的報告,報告中指出,指向核心素養(yǎng)的課程發(fā)展給我們帶來的一個變化——只有當(dāng)我們在設(shè)計一個單元的時候,才能看到價值觀念??梢?,以單元為整體進(jìn)行教學(xué)設(shè)計,是挖掘數(shù)學(xué)本質(zhì)、整體把握知識結(jié)構(gòu)、滲透數(shù)學(xué)價值、發(fā)展學(xué)生數(shù)學(xué)核心素養(yǎng)最有效的途徑。
單元整體設(shè)計倡導(dǎo)用一個整體的觀點(diǎn)來思考單元教學(xué),提高整體的教學(xué)效果。數(shù)學(xué)單元設(shè)計的依托是課程標(biāo)準(zhǔn),目標(biāo)是發(fā)展學(xué)生數(shù)學(xué)核心素養(yǎng)。一線教師要站在整體高度,審視數(shù)學(xué)單元教學(xué)內(nèi)容,挖掘數(shù)學(xué)本質(zhì),先對整個單元分析設(shè)計,后把單元內(nèi)容合理分配到具體課時,進(jìn)而在單元基礎(chǔ)上進(jìn)行具體課時的動態(tài)教學(xué)設(shè)計。
2018年1月頒發(fā)的2017年版高中課標(biāo)中明確指出主題(單元)教學(xué)整體設(shè)計的三個階段,如圖1所示[1]。
筆者按照2017版高中課標(biāo)中指出主題(單元)教學(xué)整體設(shè)計的三個階段,以“幾何度量”單元為例談一談小學(xué)數(shù)學(xué)單元教學(xué)的整體設(shè)計。
一、分析準(zhǔn)備
1.確定單元內(nèi)容
單元內(nèi)容是單元設(shè)計的基石。單元設(shè)計中,不管選擇怎樣的單元,最終都是促使學(xué)生核心素養(yǎng)的養(yǎng)成?!皫缀味攘俊笔强缯鹿?jié)“單元”,分布在不同的年級,小學(xué)階段包含長度、角度、面積和體積,內(nèi)容上有相同的結(jié)構(gòu)體系,課標(biāo)與教材在不同學(xué)段有相應(yīng)的要求。幾何度量源自生活中對土地的丈量、容積的測量,與生活聯(lián)系密切[2],通過數(shù)值量化物體屬性,有效地描述幾何圖形的特征,讓抽象與具體相互聯(lián)系,有助于學(xué)生形成初步的單位觀念、幾何思維和數(shù)學(xué)素養(yǎng)。
2.分析教學(xué)要素
(1)課標(biāo)分析
整體分析課標(biāo),知道學(xué)生需要學(xué)習(xí)什么、應(yīng)該學(xué)到什么。2011年版義務(wù)課標(biāo)中,分學(xué)段從知識技能角度、數(shù)學(xué)思考角度、問題解決角度、情感態(tài)度角度[3]對幾何度量單元提出要求,見表1。
不難看出,課標(biāo)對幾何度量單元的要求是層層遞進(jìn)的,從簡單的操作,到數(shù)感的培養(yǎng),再到幾何直觀的形成,最后達(dá)到思考數(shù)學(xué)、感受數(shù)學(xué)價值的認(rèn)知高度。
(2)教材分析
課程標(biāo)準(zhǔn)下的數(shù)學(xué)教材多樣化,對比分析不同版本教材,有助于教師選擇適當(dāng)?shù)膬?nèi)容及其處理方式,實(shí)現(xiàn)數(shù)學(xué)教材的再加工和再創(chuàng)造。本文通過梳理人教版和蘇教版小學(xué)數(shù)學(xué)教材,從教材內(nèi)容分布和同一知識在概念引入、情境創(chuàng)設(shè)、例題習(xí)題編排等的異同點(diǎn)兩個方向,對幾何度量單元教材進(jìn)行整體分析。
教材內(nèi)容分布:幾何度量在人教版和蘇教版小學(xué)數(shù)學(xué)課本上分布是相一致的(表2)。
同一知識在概念引入、情境創(chuàng)設(shè)、例題習(xí)題編排等的異同點(diǎn):以幾何度量單元的周長測量為例進(jìn)行不同教材版本分析:蘇教版設(shè)置“試一試”環(huán)節(jié),讓學(xué)生得出規(guī)則圖形周長是什么,鼓勵學(xué)生使用多種方法測量圖形的周長,并在小組內(nèi)交流各自測量方法,傾向于“演繹式”的呈現(xiàn);人教版給出三個同學(xué)用不同方法測量不同圖形周長的畫面,從而讓學(xué)生體會測量周長的不同方法,傾向于“歸納式”的呈現(xiàn)[4]。
整體分析單元教材,一方面教師從全局的視野安排分散在教材中的散亂知識,進(jìn)行教材內(nèi)容的重組優(yōu)化,用教材教;另一方面,學(xué)生從散亂知識中看到聯(lián)系,有利于挖掘本質(zhì)、數(shù)感悟思想。但值得一提的是,整體分析教材,進(jìn)行教材內(nèi)容的重組優(yōu)化,對一線教師是一項挑戰(zhàn),需要專注其中,團(tuán)隊合作,專家指導(dǎo),共同完成。
(3)學(xué)情分析
核心素養(yǎng)導(dǎo)向下的教學(xué),需要對學(xué)情進(jìn)行合理分析。學(xué)情分析可從已有的認(rèn)知和學(xué)習(xí)過程中會遇到的難題兩個方面展開。
已有的認(rèn)知:首先,“幾何度量”的數(shù)學(xué)課堂上,學(xué)生大腦并非空白,生活讓學(xué)生有一些基本認(rèn)知。比如小學(xué)生比較物體大小,絕大多數(shù)都是從多少個(數(shù)量)、多大片(面積)、多大塊(體積)、多長(長度)這四個方面進(jìn)行比較的[5]。其次,學(xué)生學(xué)習(xí)幾何圖形是遵循一定認(rèn)知規(guī)律的。皮亞杰指出,兒童關(guān)于長度、面積、體積的守恒有很大的差異:兒童在5歲至12歲能夠在長度和面積的測量中獲得長度和面積守恒的概念,達(dá)到的水平為兩個層面(折疊法和利用單位進(jìn)行測量),而體積守恒到12歲后才能被逐漸理解[6]。
學(xué)生學(xué)習(xí)過程中會遇到的難題:沒有建立起單位表象,對每個單位的實(shí)際意義不清楚;單位統(tǒng)一觀念得不到重視;整個單元知識學(xué)完之后,維度變化導(dǎo)致對概念混淆;度量工具使用不當(dāng);估測意識形成困難。
(4)重難點(diǎn)分析
重點(diǎn)即單元內(nèi)容的核心,建立在對本單元內(nèi)在結(jié)構(gòu)體系、課標(biāo)、教材及學(xué)情整體的分析基礎(chǔ)上。經(jīng)過上述分析,度量單位的形成是整個單元結(jié)構(gòu)體系構(gòu)建的支撐點(diǎn),也是后續(xù)度量工具的使用、不同情境下單位選擇等教學(xué)內(nèi)容的連接點(diǎn),理應(yīng)是該單元的重點(diǎn)。
難點(diǎn)主要為新知學(xué)習(xí)中不易同化和順應(yīng)的地方。幾何度量單元的難點(diǎn)與重點(diǎn)基本是一致的,在于正確完成從一維到三維空間度量單位的形成。
(5)教學(xué)方式分析
基于數(shù)學(xué)核心素養(yǎng)的單元設(shè)計,教學(xué)方式需要綜合單元結(jié)構(gòu)和學(xué)生認(rèn)知,體現(xiàn)學(xué)生的主動性,在講授的基礎(chǔ)上,將自主探究、合作交流引入課堂,穩(wěn)步達(dá)到課堂上的互動,實(shí)現(xiàn)課堂共同體的構(gòu)建。幾何度量單元的教學(xué)方式選擇在下文分階段教學(xué)中做詳細(xì)闡述。
二、單元教學(xué)的開發(fā)設(shè)計
1.編制教學(xué)目標(biāo)
單元設(shè)計的目標(biāo)分為單元目標(biāo)的確定和分課時目標(biāo)的確定。單元目標(biāo)是起點(diǎn),分課時目標(biāo)是路標(biāo)牌,只有站在整體的高度下通盤規(guī)劃,確定教學(xué)目標(biāo),單元教學(xué)才可到達(dá)預(yù)期的終點(diǎn)。通過上述對幾何度量單元的整體分析,現(xiàn)將幾何度量單元的單元教學(xué)目標(biāo)制定為:
1.聯(lián)系生活,經(jīng)歷用不同的方法度量。
2.認(rèn)識度量單位,能恰當(dāng)?shù)剡x擇單位并進(jìn)行換算,領(lǐng)會統(tǒng)一度量單位的必要,發(fā)展數(shù)感意識。
3.試探并熟記簡單圖形的度量計算公式。
4.感受單位的現(xiàn)實(shí)意義,解決基本的生活問題。
5.通過動手操作、動眼觀察、動腦思考,體驗不規(guī)則圖形面積和實(shí)物體積的測量方法,發(fā)展估算意識和幾何直觀。
6.經(jīng)歷互助探索、交流發(fā)現(xiàn)過程,發(fā)展學(xué)生團(tuán)隊意識。
2.組織單元教學(xué)流程
組織單元教學(xué)流程強(qiáng)調(diào)的是一個整體,需要從單元著手,劃分不同教學(xué)階段,進(jìn)而細(xì)化到課時,展開具體知識點(diǎn)的教學(xué)。這樣的數(shù)學(xué)學(xué)習(xí)既綜合又分化,數(shù)感、空間觀念、幾何直觀、運(yùn)算能力、推理能力等素養(yǎng)在分階段的教學(xué)中得到整體提升[7]。
幾何度量單元屬于跨章節(jié)單元,單元整體結(jié)構(gòu)為度量對象的感知、度量單位的產(chǎn)生與發(fā)展、度量工具的使用、度量方法的選擇,按結(jié)構(gòu)劃分如下四個階段教學(xué)。
(1)長度
整體規(guī)劃下,幾何度量單元以學(xué)習(xí)長度為起點(diǎn),重在體現(xiàn)單元結(jié)構(gòu)。首先,采用創(chuàng)設(shè)情境的教學(xué)方式,感受單位的形成;其次,采用講授和引導(dǎo)的教學(xué)方式向?qū)W生體現(xiàn)幾何度量單元的結(jié)構(gòu):度量對象的感知(線段)、度量單位的產(chǎn)生與發(fā)展(千米、米、厘米、毫米)、度量工具的使用(刻度尺)和度量方法的選擇(直接比較、間接比較、精確比較);最后,總結(jié)過程和思想,培養(yǎng)單位觀念,發(fā)展數(shù)感。
(2)角度
作為幾何度量單元的第二個教學(xué)階段,角度的教學(xué)設(shè)計重在學(xué)習(xí)單元結(jié)構(gòu)。教師一方面重述角的概念,另一方面引導(dǎo)學(xué)生回憶長度教學(xué)的結(jié)構(gòu),從而進(jìn)行類比學(xué)習(xí),類比的過程就是思考、創(chuàng)新。角的度量相對于長度來說較為抽象,教師首先要重述角的概念,加深學(xué)生對角的大小不會隨角兩邊的無限延長而變化的理解;其次,角度教學(xué)主要采用結(jié)構(gòu)式教學(xué)方式,引導(dǎo)學(xué)生對長度教學(xué)結(jié)構(gòu)的回憶,并以板書幫助理解,學(xué)生就可嘗試著從幾何度量單元結(jié)構(gòu)類比學(xué)習(xí)角度,掌握單元結(jié)構(gòu)。比如長度有大小,角度有沒有大?。块L度有長度單位,那角度有沒有單位?長度有度量工具,角度呢?在這樣的教學(xué)設(shè)計中,學(xué)生會不自覺地思考,而不是教師替學(xué)生思考,從而形成一個師生、生生交流合作探究的課堂,數(shù)學(xué)課堂實(shí)現(xiàn)自然轉(zhuǎn)型。
(3)面積
面積安排在幾何度量單元的第三部分,空間從一維轉(zhuǎn)為二維,在整個單元教學(xué)中旨在幫助學(xué)生學(xué)會對幾何度量單元的學(xué)習(xí)方式和教學(xué)過程進(jìn)行多層次總結(jié),有著承上啟下的作用。承上即為類比長度、角度,進(jìn)行知識遷移,掌握面積;啟下即為用運(yùn)動的觀點(diǎn)建立不同維度的空間體系。在本內(nèi)容教學(xué)中,教師站在整體的高度,創(chuàng)設(shè)情境,感知面的概念,加深學(xué)生幾何直觀素養(yǎng);采取小組討論,系統(tǒng)整理面積和長度、角度的聯(lián)系與區(qū)別,提示整理的連接點(diǎn)就是單元結(jié)構(gòu);多媒體展示,線動成面,從靜到動,建立起二維空間,使學(xué)生學(xué)會從動態(tài)的角度思考數(shù)學(xué);最后針對維度變化做出總結(jié),展示面積公式的推導(dǎo),發(fā)展學(xué)生的邏輯推理能力。
(4)體積
作為幾何度量單元的最后一個內(nèi)容,體積的教學(xué)重在讓學(xué)生用單元結(jié)構(gòu)自主探究、合作學(xué)習(xí)。長度、角度、面積的學(xué)習(xí)為體積教學(xué)奠定了基礎(chǔ),學(xué)生清晰地看到單元結(jié)構(gòu)、理解單元數(shù)學(xué)思想,完全可以通過自己研究、交流探討,完成體積的學(xué)習(xí)。教師只需在學(xué)生探究后補(bǔ)充,做出梳理,使學(xué)生的知識、思想、方法體系更為結(jié)構(gòu)化。
綜上,在整個單元設(shè)計流程中,通過整體分析,分階段教學(xué)開發(fā)設(shè)計,同一知識體系間不斷加深過渡細(xì)化,形成一種先教單元結(jié)構(gòu)(包含知識結(jié)構(gòu)和思想結(jié)構(gòu)),再用單元結(jié)構(gòu)學(xué)習(xí)的模式,固化的知識被創(chuàng)造,思想在課堂上得到碰撞,數(shù)學(xué)核心素養(yǎng)貫穿整個教學(xué)過程。
三、評價修改
評價與修改作為單元設(shè)計的最后環(huán)節(jié),起著承上啟下的重要作用。承上即為對之前環(huán)節(jié)的進(jìn)展做出評價、反思和總結(jié),啟下即為單元設(shè)計需要不斷接受課堂的檢驗,經(jīng)過團(tuán)隊研究修改,在動態(tài)循環(huán)的實(shí)踐中完善,從而打造優(yōu)質(zhì)課堂,實(shí)現(xiàn)課堂的真正轉(zhuǎn)型。
在以核心素養(yǎng)為邏輯起點(diǎn)的課程發(fā)展下,基于核心素養(yǎng)的單元設(shè)計是撬動數(shù)學(xué)課堂轉(zhuǎn)型的一個支點(diǎn)。一線數(shù)學(xué)教師要敢于迎接機(jī)遇和挑戰(zhàn),將單元設(shè)計作為一種理念和追求,開發(fā)單元設(shè)計的案例,在實(shí)際教學(xué)中探索和積累經(jīng)驗,不斷提高自我水平,實(shí)現(xiàn)課堂轉(zhuǎn)型,確保學(xué)生數(shù)學(xué)核心素養(yǎng)得到落實(shí)。
參考文獻(xiàn)
[1] 中華人民共和國教育部.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)[S].北京:人民教育出版社,2018.
[2] 王家鏵,沈文選.幾何課程研究[M].北京:科學(xué)出版社,2006.
[3] 中華人民共和國教育部.義務(wù)教育課程標(biāo)準(zhǔn)(2011年版)[S].北京:北京師范大學(xué)出版社,2012.
[4] 孔凡哲.不同版本教科書的比較及對課程實(shí)施的啟示——以小學(xué)數(shù)學(xué)“周長的認(rèn)識”內(nèi)容為例[J].教育研究與評論:小學(xué)教育教學(xué)版,2009(04).
[5] 張宏偉.“角的大小”的本質(zhì)到底是什么——“角的大小”學(xué)情調(diào)研和活動課程新設(shè)計[J].小學(xué)數(shù)學(xué)教師,2016(11).
[6] 孫建.測量單位觀念的內(nèi)涵及其教育價值[J].教育,2016(29).
[7] 王尚志.站在系統(tǒng)的高度 整體把握函數(shù)單調(diào)性教學(xué)[J].數(shù)學(xué)通報,2015,54(12).
[責(zé)任編輯:陳國慶]