姜亦瑤 王凱 施超
摘 要:以心肌纖維化為代表的心臟重構(gòu)是心房顫動(dòng)的發(fā)病機(jī)制之一,心肌成纖維細(xì)胞增殖及異常分泌細(xì)胞外基質(zhì)與心肌纖維化有關(guān)。在AngⅡ的作用下,TGF-β1/Smad、PI3K/Akt等信號(hào)通路調(diào)控CFs增殖。KDM5A在心肌纖維化中的作用已成為研究熱點(diǎn)。本文就AngⅡ參與信號(hào)通路的最新研究進(jìn)展進(jìn)行小結(jié),為理解心肌纖維化在AF進(jìn)程中的作用提供依據(jù)。
關(guān)鍵詞:心房顫動(dòng);心肌纖維化;心臟重構(gòu)
中圖分類號(hào):R542.23;R541.75 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.3969/j.issn.1006-1959.2018.12.010
文章編號(hào):1006-1959(2018)12-0028-04
Abstract:Cardiac remodeling represented by myocardial fibrosis is one of the pathogenesis of atrial fibrillation.Myocardial fibroblast proliferation and abnormal secretion of extracellular matrix are associated with myocardial fibrosis.Under the action of AngII,TGF-β1/Smad,PI3K/Akt and other signaling pathways regulate CFs proliferation.The role of KDM5A in myocardial fibrosis has become a research hotspot.This article summarizes the latest research progress of AngII involved in the signaling pathway,and provides a basis for understanding the role of myocardial fibrosis in the AF process.
Key words:Atrial fibrillation;Myocardial fibrosis;Cardiac remodeling
心房顫動(dòng)(atrial fibrillation,AF)是心臟瓣膜病、冠心病、高血壓等心血管疾病的常見并發(fā)癥[1]。由AF引發(fā)的血栓形成、腦卒中、心力衰竭嚴(yán)重影響患者生存質(zhì)量。為降低AF發(fā)病率,明確其發(fā)病機(jī)制是不可或缺的重要環(huán)節(jié)。心房重構(gòu)、自主神經(jīng)失調(diào)和離子通道異?;顒?dòng)等機(jī)制與AF發(fā)生有關(guān)。心臟成纖維細(xì)胞(cardiac fibroblasts,CFs)是心肌組織中數(shù)量最多的細(xì)胞類型,是參與心臟骨架結(jié)構(gòu)形成的重要成分。當(dāng)心臟受到病理刺激時(shí),CFs開始增殖、分化為肌成纖維細(xì)胞,進(jìn)而分泌細(xì)胞外基質(zhì)(extracellular matrix,ECM)。在心肌纖維化進(jìn)程中,ECM代謝失衡,促進(jìn)心肌組織纖維化,引起心房重構(gòu)。已有研究表明,血管緊張素Ⅱ(AngiotensinⅡ,AngⅡ)可促進(jìn)CFs肥大增生和分泌膠原蛋白,進(jìn)而參與心房重構(gòu)[2]。PI3K/Akt信號(hào)通路調(diào)控心肌纖維化進(jìn)展,與心臟重構(gòu)密切相關(guān)。組蛋白去甲基化酶KDM5A在細(xì)胞核中廣泛表達(dá)。近年來(lái),因其參與調(diào)控細(xì)胞增殖、炎癥反應(yīng)而成為研究熱點(diǎn)。KDM5A作為PI3K/Akt信號(hào)通路的下游蛋白,可因信號(hào)通路的抑制出現(xiàn)磷酸化,調(diào)控細(xì)胞增殖。那么,CFs中KDM5A是否受PI3K/Akt信號(hào)通路調(diào)控,促進(jìn)CFs分泌ECM,影響心肌纖維化,參與AF的發(fā)生發(fā)展?本文就AngⅡ在心肌纖維化進(jìn)程中的作用、PI3K/Akt信號(hào)通路以及KDM5A與心肌纖維化的相關(guān)性進(jìn)行綜述。
1 AngⅡ在心肌纖維化過(guò)程中的作用
以心肌組織纖維化為特點(diǎn)的心房重構(gòu),是引發(fā)AF的重要機(jī)制之一。心肌細(xì)胞、心臟成纖維細(xì)胞和肌纖維細(xì)胞共同參與組成心房組織,通過(guò)AngⅡ、轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor-β1,TGF-β1)等細(xì)胞因子調(diào)節(jié),維持抗纖維化和促纖維化之間的平衡。在高血壓、心臟瓣膜病、冠心病等疾病中,AngⅡ及TGF-β1這兩種細(xì)胞因子作用于心肌細(xì)胞,引起心肌細(xì)胞肥大、凋亡[3]。此外,CFs受到AngⅡ,TGF-β1刺激時(shí),可分化為肌纖維細(xì)胞,使得分泌ECM的能力得到增強(qiáng)。過(guò)度分泌的ECM得不到有效降解,將堆積在細(xì)胞周圍,造成心房組織纖維化,引起心肌細(xì)胞的電機(jī)械活動(dòng)障礙。
作為終末分化細(xì)胞,心肌細(xì)胞在心肌肥厚時(shí)主要表現(xiàn)為細(xì)胞肥大。CFs具有潛在較強(qiáng)分裂能力,受到AngⅡ刺激時(shí),合成分泌ECM、Ⅰ型和Ⅲ型膠原纖維[4]。因此,CFs在心臟間質(zhì)纖維化中具有更重要的作用。心肌間質(zhì)處于不斷分泌和降解的平衡狀態(tài),這種平衡受復(fù)雜的細(xì)胞生長(zhǎng)因子網(wǎng)絡(luò)所調(diào)控。AngⅡ打破細(xì)胞生長(zhǎng)因子網(wǎng)絡(luò)平衡,促進(jìn)膠原合成,降低膠原酶的活性,導(dǎo)致心肌纖維化[5]。
AngⅡ主要有兩種受體亞型,AT1R(AngⅡ type 1 receptor)和AT2R(AngⅡ type 2 receptor)。AngⅡ與AT1R結(jié)合后,可引起血管收縮、心臟重構(gòu)、血管重構(gòu)、細(xì)胞肥大、細(xì)胞凋亡、纖維化、缺血再灌注損傷等病理生理效果。與AT2R結(jié)合時(shí),AngⅡ能夠促進(jìn)胚胎發(fā)育、抗纖維化、細(xì)胞凋亡、血管擴(kuò)張、心肌保護(hù)、膠原合成[6]。在敲除AT2R基因的實(shí)驗(yàn)動(dòng)物中發(fā)現(xiàn)膠原沉積減少、心臟破裂等現(xiàn)象,說(shuō)明AT2R與成纖維細(xì)胞分泌合成膠原密切相關(guān)[7]。與心肌細(xì)胞相比,CFs具有更多AT1R和AT2R,并且在細(xì)胞膜、細(xì)胞漿、細(xì)胞核膜上均有分布。進(jìn)一步研究發(fā)現(xiàn),CFs細(xì)胞核內(nèi)AT1R和AT2R分別與核內(nèi)Ca2+活動(dòng)、NO釋放有關(guān),且細(xì)胞核內(nèi)AngⅡ信號(hào)能夠調(diào)節(jié)CFs增殖和膠原分泌[8]。
2 AngⅡ參與的信號(hào)通路調(diào)控心肌纖維化
AngⅡ與其受體結(jié)合后,可激活多種信號(hào)轉(zhuǎn)導(dǎo)通路,包括:TGF-β、Smad、MAPK等,調(diào)控促組織纖維化效應(yīng),包括促成纖維細(xì)胞生長(zhǎng)及增殖、合成和分泌過(guò)量ECM。在AngⅡ/TGF-β1/Smad信號(hào)途徑中,經(jīng)AngⅡ誘導(dǎo)的CFs增殖后,TGF-β上調(diào)表達(dá)。TGF-β1是TGF-β中具有活性的C端片段,它先與Ⅱ型受體結(jié)合,促使受體抑制蛋白FKBP12從Ⅰ型受體解離,Ⅰ型受體與TGF-β形成配體再和Ⅱ型受體結(jié)合形成配體-受體復(fù)合物,Ⅰ型受體被Ⅱ型受體磷酸化后,召募Ⅰ型受體激酶底物Smads家族蛋白與受體復(fù)合物結(jié)合。其中,Smad2和Smad3能被Ⅰ型受體磷酸化而從受體復(fù)合物上解離下來(lái),p-Smad2/3與Smad4結(jié)合后轉(zhuǎn)運(yùn)至細(xì)胞核內(nèi),在轉(zhuǎn)錄激活因子的調(diào)控下,調(diào)節(jié)纖維化相關(guān)基因的表達(dá)[9]。
在AngⅡ、TGF-β等刺激因素作用下,促分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)參與調(diào)節(jié)心肌細(xì)胞凋亡、肥大、炎性反應(yīng)、成纖維細(xì)胞活化和細(xì)胞外基質(zhì)代謝。MAPK包括p38、c-Jun氨基末端激酶(c-Jun N-terminal kinase,c-JNK)/應(yīng)急激活的蛋白激酶(stress-activated protein kinase,SAPK)及細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK1/2)三條通路。Li X[10]對(duì)心房組織研究發(fā)現(xiàn)ERK1/2磷酸化水平上調(diào)以及間隙連接蛋白43下調(diào)表達(dá)與AF的發(fā)生密切相關(guān)。Hu J等[11]發(fā)現(xiàn)活化素A通過(guò)p38-MAPK/ERK1/2信號(hào)通路調(diào)控CFs的增殖、分化、分泌Ⅰ型膠原,與AngⅡ協(xié)同作用,增強(qiáng)對(duì)CFs的調(diào)控。AngⅡ/AT1R/STAT3和AngⅡ/JAK/STAT3信號(hào)通路參與調(diào)控心房ECM代謝,STAT3磷酸化后,能與CFs中MMP1、MMP2啟動(dòng)子序列相結(jié)合,增強(qiáng)MMP1、MMP2表達(dá),促進(jìn)CFs分泌Ⅰ、Ⅱ型膠原蛋白[12]。與心室相比,在低氧環(huán)境下,心房中的CFs對(duì)AngⅡ、血小板衍生生長(zhǎng)因子(platelet-derived growth factor,PDGF)、成纖維生長(zhǎng)因子(fibroblast growth factor 2,F(xiàn)GF-2)、內(nèi)皮素-1等細(xì)胞因子更為敏感,提示這些細(xì)胞因子對(duì)心房纖維化具有相對(duì)的特異性,使其更易于發(fā)生結(jié)構(gòu)重構(gòu)[13]。
3 PI3K/Akt信號(hào)通路與心肌纖維化
PI3K/Akt信號(hào)通路可以通過(guò)調(diào)控基因表達(dá),在細(xì)胞的存活、分化、生長(zhǎng)、遷移和凋亡等多種生理和病理過(guò)程中起到重要作用。心肌細(xì)胞自噬增強(qiáng)與PI3K/Akt信號(hào)通路抑制參與由糖尿病引起的心肌纖維化。在退行性心臟重構(gòu)過(guò)程中,IL-1α,IL-1β,RANKL等炎癥細(xì)胞因子顯著上調(diào)表達(dá)。通過(guò)抑制PI3K可以降低Akt磷酸化,減輕炎癥因子釋放,延緩心臟重構(gòu)中心肌纖維化進(jìn)程[14]。AngⅡ受體拮抗劑替米沙坦通過(guò)抑制PI3K/Akt/eNOS信號(hào)通路延緩左心房擴(kuò)大、心肌細(xì)胞肥大、間質(zhì)纖維化和心肌細(xì)胞凋亡進(jìn)展,降低房性心律失常易感性[15]。低氧是心肌缺血再灌注的重要特征之一,堿性成纖維細(xì)胞生長(zhǎng)因子通過(guò)激活PI3K/Akt/mTOR信號(hào)通路,抑制心肌細(xì)胞過(guò)度自噬,增強(qiáng)泛素化蛋白清除,延緩心肌纖維化進(jìn)展[16]??傊?,盡管造成心肌纖維化的原因眾多,PI3K/Akt信號(hào)通路仍是調(diào)控心房重構(gòu)的重要環(huán)節(jié)。
4 KDM5A與心肌纖維化
近年來(lái),組蛋白去甲基化酶KDM5A位于細(xì)胞核內(nèi),因與視網(wǎng)膜母細(xì)胞瘤蛋白直接結(jié)合,調(diào)控細(xì)胞增殖,逐漸成為研究熱點(diǎn)。Spangle等在對(duì)乳腺腫瘤細(xì)胞進(jìn)行研究時(shí)發(fā)現(xiàn),抑制PI3K/Akt信號(hào)通路可下調(diào)KDM5A表達(dá),乳腺癌患者的預(yù)后較差[17]。隨著研究的深入,KDM5A與脂肪細(xì)胞分化、調(diào)控骨形態(tài)發(fā)生蛋白2(bone morphogenetic protein,BMP2)誘導(dǎo)骨髓間充質(zhì)干細(xì)胞成骨分化、NK細(xì)胞活化等現(xiàn)象有關(guān)[18]。雖然BMP2的異?;钴S與NK細(xì)胞活化推進(jìn)了心肌纖維化進(jìn)程[19],但KDM5A是否與心肌纖維化直接相關(guān),尚屬未知。此外,KDM5A是ZMYND8-NURD復(fù)合物形成過(guò)程中的關(guān)鍵調(diào)控子。有研究表明[20],KDM5A缺乏可造成轉(zhuǎn)錄水平的基因沉默,引起染色質(zhì)修復(fù)過(guò)程中ZMYND8-NURD復(fù)合物無(wú)法彌補(bǔ)同源重組的DNA雙鏈斷裂,加劇DNA損傷效應(yīng)。然而,抑制KDM5A是否加劇DNA損傷,促進(jìn)心肌纖維化進(jìn)程,仍需要進(jìn)一步研究。
5總結(jié)
心肌纖維化是心房重構(gòu)的主要特征,是誘發(fā)AF的病理基礎(chǔ)。AngⅡ調(diào)控的多種信號(hào)通路與CFs增殖相關(guān),特別是PI3K/Akt信號(hào)通路,KDM5A在心肌纖維化進(jìn)展中的作用,值得關(guān)注。對(duì)上述信號(hào)通路的深入研究,有助于揭示CFs過(guò)度增殖、異常分泌ECM在心臟重構(gòu)中的作用,對(duì)最終延緩AF發(fā)生發(fā)展具有積極意義。
參考文獻(xiàn):
[1]Molteni M,Polo Friz H,Primitz L,et al.The definition of valvular and non-valvular atrial fibrillation:results of a physicians'survey[J].Europace,2014,16(12):1720-1725.
[2]He X,Gao X,Peng L,et al.Atrial fibrillation induces myocardial fibrosis through angiotensin Ⅱ type 1 receptor-specific Arkadia-mediated downregulation of Smad7[J].Circ Res,2011,108(2):164-175.
[3]Platonov PG.Atrial fibrosis:an obligatory component of arrhythmia mechanisms in atrial fibrillation[J].J Geriatr Cardiol,2017,14(4):233-237.
[4]Weng X,Yu L,Liang P,et al.A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin Ⅱ-induced cardiac hypertrophy[J].J Mol Cell Cardiol,2015(82):48-58.
[5]Aránguiz-Urroz P,Soto D,Contreras A,et al.Differential participation of angiotensin Ⅱ type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin Ⅱ[J].Am J Hypertens,2009,22(5):569-576.
[6]Ichihara S,Senbonmatsu T,Price E Jr,et al.Targeted deletion of angiotensin Ⅱ type 2 receptor caused cardiac rupture after acute myocardial infarction[J].Circulation,2002,106(17):2244-2249.
[7]Tadevosyan A,Xiao J,Surinkaew S,et al.Intracellular Angiotensin-Ⅱ Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis,Cell Proliferation,and Collagen Secretion[J].J Am Heart Assoc,2017,6(4):e004965.
[8]Zhang Y,Zhao NA,Wang JK,et al.Telmisartan inhibited angiotensinⅡ-induced collagen metabolic imbalance without directly targeting TGF-β1/Smad signaling pathway in cardiac fibroblasts[J].Minerva Cardioangiol,2015,63(6):507-514.
[9]Haspula D,Clark MA.MAPKactivation patterns of AT1R and CB1R in SHR versus Wistar astrocytes:Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R[J].Cell Signal,2017(40):81-90.
[10]Li X,Rao F,Deng CY,et al.Involvement of ERK1/2in Cx43 depression induced by macrophage migration inhibitory factor in atrial myocytes[J].Clin Exp Pharmacol Physiol,2017,44(7):771-778.
[11]Hu J,Wang X,Wei SM,et al.Activin A stimulates the proliferation and differentiation of cardiac fibroblasts via the ERK1/2 andp38-MAPK pathways[J].Eur J Pharmacol,2016(789):319-327.
[12]Zheng L,Jia X,Zhang C,et al.Angiotensin Ⅱ in atrial structural remodeling:the role of Ang Ⅱ/JAK/STAT3 signaling pathway[J].Am J Transl Res,2015,7(6):1021-1031.
[13]Nattel S,Harada M.Atrial remodeling and atrial fibrillation:recent advances and translational perspectives[J].J Am Coll Cardiol,2014,63(22):2335-2345.
[14]Ock S,Lee WS,Ahn J,et al.Deletionof IGF-1 Receptors in Cardiomyocytes Attenuates Cardiac Aging in Male Mice[J].Endocrinology,2016,157(1):336-345.
[15]Wang WW,Zhang FL,Chen JH,et al.Telmisartan reduces atrial arrhythmia susceptibility through the regulation of RAS-ERK and PI3K-Akt-eNOSpathways in spontaneously hypertensive rats[J].Can J Physiol Pharmacol,2015,93(8):657-665.
[16]Wang ZG,Wang Y,Huang Y,et al.bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia reperfusion via the activation of the PI3K/Akt/mTOR pathway[J].Sci Rep,2015(5):9287.
[17]Spangle JM,Dreijerink KM,Groner AC,et al.PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer[J].Cell Rep,2016,15(12):2692-2704.
[18]Brier AB,Loft A,Madsen JGS,et al.The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation[J].Nucleic Acids Res,2017,45(4):1743-1759.
[19]Shahid M,Spagnolli E,Ernande L,et al.BMP type I receptor ALK2 is required for angiotensin Ⅱ-induced cardiac hypertrophy[J].Am J Physiol Heart Circ Physiol,2016,310(8):H984-H994.
[20]Gong F,Clouaire T,Aguirrebengoa M,et al.Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair[J].J Cell Biol,2017,216(7):1959-1974.
收稿日期:2018-4-4;修回日期:2018-4-26
編輯/王海靜