• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlocal Symmetry and Explicit Solution of the Alice-Bob Modified Korteweg-de Vries Equation?

    2018-07-09 06:46:28ZhengYiMa馬正義JinXiFei費金喜andJunChaoChen陳俊超DepartmentofMathematicsZhejiangLishuiUniversityLishui33000China
    Communications in Theoretical Physics 2018年7期
    關鍵詞:正義

    Zheng-Yi Ma(馬正義), Jin-Xi Fei(費金喜),and Jun-Chao Chen(陳俊超)Department of Mathematics,Zhejiang Lishui University,Lishui 33000,China

    2Department of Photoelectric Engineering,Zhejiang Lishui University,Lishui 323000,China

    3Department of Mathematics,Zhejiang Sci-Tech University,Hangzhou 310018,China

    1 Introduction

    The nonlocal symmetry has two functions:(i)it can magnify the classes of symmetry.(ii)it can construct the explicit analytic solutions.Of course,there exists the intimated relation with an integral model.This model exists the nonlocal symmetry,but its explicit solution cannot be constructed easily.An ideal technical route is that we need transform the nonlocal symmetry into the related Lie point symmetry,which the similarity reduction can be calculated.So,the study of the nonlocal symmetry is significant.

    Starting from the conformal invariance(Schwartz form)of an integrable model,Lou obtained infinitely many nonlocal symmetries.[1?2]Through the localization procedure of the nonlocal symmetry,which has a closed contact with the Darboux transformation(DT),Lou obtained the explicit analytic interaction solutions between the cnoidal waves and a solitary wave for some integrable nonlinear models including the well-known Korteweg-de Vries(KdV)equation.Xin devised another method to seek the nonlocal symmetries of some nonlinear evolution equations.[3?4]Its validity and advantages of the proposed method were illustrated by the applications to the Boussinesq equation,the coupled Korteweg-de Vries system,the Kadomtsev-Petviashvili equation,the Ablowitz-Kaup-Newel-Segur equation,and the potential Korteweg-de Vries equation.The conclusions showed that this method can obtain not only the nonlocal symmetries but also the general Lie point symmetries of the given equations.By means of the standard truncated Painlevé expansion,we derived the residual symmetry of several integrable models,including the(2+1)-dimensional coupled Burgers equation,(2+1)-dimensional Boiti-Leon-Pempinelli system and the Whitham-Broer-Kaup equation.[5?7]These residual symmetries were localized in the properly prolonged system with the Lie point symmetry vector.Based on the obtained symmetries,some different transformation invariances were derived.Furthermore,the reduction solutions(especially the interactive solutions)were obtained with different nonlinear excitations which closely related to some practical applications.

    In order to describe two-place physical problems,Lou proposed many possible models named Alice-Bob(AB)systems.[8]The considering objects include the KdV equation,the nonlinear Schr?dinger(NLS)equation,the modified KdV equation(MKdV),the sine-Gordon(sG)equation,the(2+1)-dimensional KP equation,the Toda lattice and the difference-difference systems such as the H1,H2,H3,Q1,Q2,Q3,and Q4.[9]To solve these related AB systems,the Ps-Td-C(parity with a shift,time reversal with a delay,charge conjugation)combination technic is mainly taken.As a result,some special types of Ps-Td-C group invariant multi-soliton solutions for these AB systems are explicitly constructed.

    In this paper,we have the following arrangements.In Sec.2,the nonlocal symmetry of the AB-mKdV equation is obtained with the help of its Lax pair and the assumption of the related symmetry.In Sec.3,by introducing one auxiliary variable and some reduction technics,the nonlocal symmetry is localized through the Lie point symmetry.Further more,with the aid of the prolonged system,the symmetry reduction is extended.In Sec.4,the reduction solution of the AB-mKdV system is obtained and two interaction solutions are depicted through the particular functions with numerical simulation.Section 5 proposes a simple conclusion.

    2 Nonlocal Symmetry of the AB-mKdV Equation

    Traditionally,the third order Ablowitz-Kaup-Newell-Segur(AKNS)system

    has a natural reduction

    if B′= σA,which is just the well known modified Korteweg-de Vries(mKdV)equation.

    For the case of B′=Bf,the above one-place coupled system(1)possesses an equivalent two-place form

    As a result,an intrinsic two-place AB-mKdV equation can be derived from the two-place form(3)

    When taking x0=0 and t0=0,Ji and Zhu have investigated its Darboux transformation of this integrable nonlocal model,and obtained its different kinds of exact solutions,including soliton,kink,antikink,complexiton,rogue-wave solutions and nonlocalized solution with singularity.[10]For the AB-mKdV equation(4),Li,Lou,and Jia have constructed the Nth Darboux transformation and given its one-soliton and two-soliton solutions through this Darboux transformation,which possess some new properties that are different from the ones of the mKdV equation.[11]

    In order to derive the nonlocal symmetry of the AB-mKdV equation(4),the needed Lax pair of this equation can be taken as the following explicit form,which is just the circumstance of σ =1 and λ =0 in Ref.[8]

    where ψ =,and the compatibility condition of these equations is

    Here,a direct way that can derive the nonlocal symmetry is devised and both the classical Lie point symmetry and the nonlocal symmetry of the given equation can be acquired by this approach.

    Firstly,the symmetries σ1and σ2of the AB-mKdV equation(4)can be expressed as a solution of their linear equations

    which means that Eq.(4)is form invariant under the infinitesimal transformations A → A+εσ1and B → B+εσ2with the infinitesimal parameter ε.

    Secondly,we suppose the symmetries σ1and σ2with the auxiliary variables ψ1and ψ2as

    Then substituting Eq.(9)into Eq.(8),making use of the equations of the AB-mKdV equation(4)and its Lax pair(3)–(6)and eliminating At,Bt,Uψ,and V ψ,we can get the determining equations for the functions ξ,τ,A1,and B1,which can be solved by virtue of Maple software

    Finally,the symmetry of Eq.(4)can be rewritten as follows

    where ci(i=1,2,3,4,5)are five arbitrary constants.Here,the symmetry of Eq.(11)consists of two parts,namely,the classical symmetry

    and the nonlocal symmetry

    3 Localization of the Nonlocal Symmetry

    Since the nonlocal symmetry cannot be used to construct the explicit solution of a partial differential equation directly,we need to transform this component to local one.In this section,we will seek for a related system which possesses a Lie point symmetry for the nonlocal symmetry.For simplicity,letting c2=c3=c4=c5=0 and c1=1,then Eq.(11)has

    At the same time,we can obtain the linear form of Eqs.(5)and(6)respectively,under the infinitesimal transformations

    That is to say,the symmetries of the Lax pair are

    To make the nonlocal symmetry into local one,we introduce an auxiliary variable p≡p(x,t),which should satisfy

    When taking the infinitesimal transformation p→ p+εσ5,we receive the symmetry from Eq.(18)

    From Eqs.(14),(16)–(19),we obtain a set of symmetry solution

    The above solution indicates that σ1= ?and σ2=have been localized in the properly prolonged system with the Lie point symmetry vector of Eq.(12),that is

    Now,we have successfully obtained the localizing result.It is nature that we should construct the explicit solution through Lie group theory with the related prolonged system(21).

    With the aid of the following initial condition

    through the Lie point symmetry vector(21),the finite transformation is

    the related functions A,B,ψ1,ψ2and p are the solutions of the prolonged system(4)–(6)and(18).

    To seek for more similarity reductions of Eq.(4),the whole prolonged system of Lie point symmetry instead of a single one should be researched.We suppose that the symmetry has the vector form

    and the version in Eq.(24)can be written as follows

    with the transformation

    Substituting the prolonged system(25)into the linear equations(14),(16)–(19)and making use of Maple,we get

    In this way,Eq.(25)can be rewritten as

    this is just the circumstance of Eq.(20)when taking the coefficients ci=0,i=2,3,...,7 and c1=1.

    4 Reduction Solution of the AB-mKdV Equation

    In this section,for the purpose of more invariant solutions of the AB-mKdV equation(4),we need to solve the following characteristic equation

    For convenience,we let c2=c3=0,c4=1 and c5=k in Eq.(29).Then,we can derive

    with?=and A1(X)represent the group invariant solutions respectively.Substituting Eq.(30)into the linear equations(14),(16)–(19),we find that they are mutual compositions and yield

    While the function P(X)satisfies the following condition

    When letting P0(X)=P′(X),P0(X)is restrained by the following elliptic equation

    Fig.1 (a)An interaction solution between a bell soliton and a kink soliton described by A of Eq.(35)with the parameter conditions(34)when taking n=0.5,(b)the structure of solution B which is a reversal structure of(a).

    To illustrate the solution A and B of Eq.(30),when taking P(X)=a0X+a1arctanh[ntanh(X)]as a direct solution of Eq.(32),the relations of the parameters are

    The corresponding solution of A,B from Eqs.(30)and(31)is

    with

    Figure 1 shows the solution A and B of Eq.(35)when taking n=0.5,the numbers a0=?0.083 333 333 32,a1=0.041 666 666 68,k=?20,and? =24 from Eq.(34).From Fig.1(a),one can find that we have a dark(gray)bell soliton and a kink soliton before the interaction.However,after the interaction,the soliton becomes a bright soliton while the kink soliton remains its shape.This kind of transition comes from the nonlocal interaction of the model for the solution A.Figure 1(b)is a reversal structure of Fig.1(a)for the solution B.

    Of course,one can derive the solutions,which is different from Eq.(35). For example,when letting P(X)=a0X+a1arctanh[msn(X,m)]as a direct solution of Eq.(32),the relations of the parameters are

    The corresponding solution of A,B from Eqs.(30)and(31)is

    with ? ≡ ?(X)= ?tanh{?[t+a0X+a1arctanh(msn(X,m))]}.

    Fig.2 (a)Profile of the solution A in Eq.(39)at the region x ∈ [?5,5],t∈ [?5,5],(b)the time t of kink-periodic section with the variable x=0,(c)the periodic section with routing display at time t=0.

    In the following discussion,we let P(X)=a1EllipticPi[sn(X,m),n,m]as a direct solution of Eq.(32).The relations of the parameters are

    Thus,the derived solution structure of A,B from Eqs.(30)and(31)is

    and EllipticPi expresses the incomplete elliptic integral of the third kind,three terms(sn,cn,and dn)are usual Jacobian elliptic functions with modulus m while a1and m are independent constants but the needed solution is well defined.

    Fig.3 (a)Profile of the solution B in Eq.(39)at the region x ∈ [?5,5],t ∈ [?5,5],(b)the time t of kink-periodic section with the variable x=0,(c)the periodic section with routing display at time t=0.

    When taking a1=?1/8,m=0.9,the numbers are n=0.405,k=?8.38 and? =6.170 899 448 from Eq.(38).The solution expressed by Eq.(39)is just the explicit interaction between a kink and the cnoidal periodic waves which has practical application in coastal engineering.[12?13]In Fig.2,the interaction graphs between a kink soliton and the cnoidal waves expressed by the solution A of Eq.(39)are plotted.(a)shows the whole profile at the region x ∈ [?5,5],t∈ [?5,5].We can see from this progress that a kink soliton propagating on the cnoidal waves background.(b)and(c)are the time t of kink-periodic section with the variable x=0 and the periodic section with routing display at time t=0,respectively.Figure 3 is just a reversal structure of Fig.2 for the solution B.This is just the nonlocal phenomenon,that is,“the shifted parity and delayed time reversal to describe two-place events”.

    It is noted that the exact solutions(35),(37),and(39)also satisfy the relation A=?B.Recalling that the condition A=?B makes the nonlocal mKdV equation reduce to the classical mKdV equation.That is to say,although such three groups of solutions are Ps-Td-C invariant ones and satisfy the nonlocal AB-mKdV system which is used to describe two-place physical events,they are solutions of the classical mKdV equation.This fact suggests that some solutions of integrable AB systems with Ps-Td-C symmetry invariance can be directly obtained from ones of traditional integrable systems.

    5 Conclusion

    In this article,on the basis of the assumption of the symmetry,we gained the nonlocal symmetry of the AB-mKdV system.One auxiliary variable described asrespectively,was introduced in the process of localization.Using this method,we obtained the explicit solution of the AB-mKdV system and increased the adaptation of this system.

    It is noteworthy that the finding of the suitable auxiliary variable has certain difficulty and it is key to obtain the similarity solution.Besides,not all the nonlocal symmetries have the closed prolongation and there is not a unified method to estimate what kinds of nonlocal symmetries can be spread to the Lie point symmetries of a related prolonged system.So,the above two questions are still opened.

    [1]S.Y.Lou,J.Phys.A:Math.Phys.30(1997)4803.

    [2]S.Y.Lou and X.B.Hu,J.Phys.A:Math.Gen.30(1997)L95.

    [3]X.P.Xin and Y.Chen,Chin.Phys.Lett.30(2013)100202.

    [4]X.P.Xin,J.C.Chen,and Y.Chen,Chin.Ann.Math.B 35(2014)841.

    [5]Z.Y.Ma,J.X.Fei,and Y.M.Chen,Appl.Math.Lett.37(2014)54.

    [6]Z.Y.Ma,J.X.Fei,and X.Y.Du,Commun.Theor.Phys.64(2015)127.

    [7]J.X.Fei,Z.Y.Ma,and W.P.Cao,Nonlinear Dyn.88(2017)395.

    [8]S.Y.Lou,arXiv:math-ph/1603.03975(2016).

    [9]V.E.Adler,A.I.Bobenko,and Y.B.Suris,Commun.Math.Phys.233(2003)513.

    [10]J.L.Ji and Z.N.Zhu,Commun.Nonlinear Sci.Numer.Simulat.42(2017)699.

    [11]C.C.Li,S.Y.Lou,and M.Jia,arXiv:mathph/1706.08178(2017).

    [12]Y.H.Wang,Appl.Math.Lett.38(2014)100.

    [13]Y.H.Wang and H.Wang,Phys.Scr.89(2014)125203.

    猜你喜歡
    正義
    用正義書寫文化自信
    華人時刊(2022年9期)2022-09-06 01:00:38
    從解釋到證成——最優(yōu)解釋方法是否可以充分證成正義理論?
    哲學評論(2021年2期)2021-08-22 01:55:10
    從出文看《毛詩正義》單疏本到十行本的演變
    天一閣文叢(2020年0期)2020-11-05 08:28:16
    紅六軍團的正義槍聲
    我的“正義”女神
    有了正義就要喊出來
    山東青年(2016年3期)2016-02-28 14:25:49
    正義必勝!和平必勝!人民必勝!
    倒逼的正義與溫情
    正義必勝!和平必勝!人民必勝!
    法律與正義
    浙江人大(2014年5期)2014-03-20 16:20:26
    深夜a级毛片| 国产亚洲一区二区精品| 国产在线男女| 国产精品久久久久久久电影| 亚洲av成人精品一二三区| 我的女老师完整版在线观看| 久久精品久久久久久噜噜老黄 | 国产精品一区二区三区四区久久| 亚洲伊人久久精品综合 | 最近的中文字幕免费完整| 1024手机看黄色片| 51国产日韩欧美| 51国产日韩欧美| 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 色综合色国产| 亚洲怡红院男人天堂| 国产高清有码在线观看视频| 91精品国产九色| 日韩成人伦理影院| 2021天堂中文幕一二区在线观| 97在线视频观看| 麻豆成人午夜福利视频| 麻豆一二三区av精品| av在线蜜桃| 国产精品国产三级国产av玫瑰| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 在线播放无遮挡| 亚洲av中文av极速乱| 有码 亚洲区| 精品欧美国产一区二区三| 中文字幕人妻熟人妻熟丝袜美| 亚洲性久久影院| 如何舔出高潮| 久久精品国产99精品国产亚洲性色| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 22中文网久久字幕| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| 免费搜索国产男女视频| 中文字幕人妻熟人妻熟丝袜美| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说 | 久久这里有精品视频免费| 国产极品精品免费视频能看的| 美女黄网站色视频| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 久久热精品热| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 国产探花极品一区二区| 久久精品久久久久久噜噜老黄 | 三级国产精品欧美在线观看| 男女国产视频网站| 国产精品伦人一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 春色校园在线视频观看| av在线老鸭窝| 边亲边吃奶的免费视频| 激情 狠狠 欧美| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说 | 成人特级av手机在线观看| 日本爱情动作片www.在线观看| 国产在视频线精品| 国产黄色视频一区二区在线观看 | 亚洲精品日韩av片在线观看| 国产精品,欧美在线| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 国产中年淑女户外野战色| 99热这里只有精品一区| 午夜视频国产福利| 国产黄片美女视频| 久久久亚洲精品成人影院| 国内揄拍国产精品人妻在线| 色吧在线观看| av女优亚洲男人天堂| 国产在线男女| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频 | 99热6这里只有精品| 欧美高清成人免费视频www| av在线观看视频网站免费| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 国产成人freesex在线| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 中文字幕av成人在线电影| 乱人视频在线观看| 高清毛片免费看| 网址你懂的国产日韩在线| 久久久久久伊人网av| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 亚洲精品久久久久久婷婷小说 | 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| av专区在线播放| 又粗又爽又猛毛片免费看| 国产精品精品国产色婷婷| 99久国产av精品| 国产黄片美女视频| 男女边吃奶边做爰视频| 国产精品蜜桃在线观看| 国产午夜福利久久久久久| АⅤ资源中文在线天堂| 久久草成人影院| 看十八女毛片水多多多| 少妇的逼好多水| 国产黄色视频一区二区在线观看 | 18禁裸乳无遮挡免费网站照片| 国产精品麻豆人妻色哟哟久久 | 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 成人亚洲欧美一区二区av| 亚州av有码| 国产美女午夜福利| 国产精品.久久久| 我的女老师完整版在线观看| 国产视频内射| 亚洲国产高清在线一区二区三| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱| 中文欧美无线码| 五月玫瑰六月丁香| 一夜夜www| 欧美3d第一页| 国产熟女欧美一区二区| 床上黄色一级片| 日韩一区二区三区影片| av天堂中文字幕网| 综合色av麻豆| 精品人妻一区二区三区麻豆| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 亚洲丝袜综合中文字幕| 欧美日韩精品成人综合77777| 国模一区二区三区四区视频| 日韩在线高清观看一区二区三区| 欧美bdsm另类| 成人性生交大片免费视频hd| 国产毛片a区久久久久| 日韩大片免费观看网站 | 国产熟女欧美一区二区| 国国产精品蜜臀av免费| 一卡2卡三卡四卡精品乱码亚洲| 成年女人看的毛片在线观看| 综合色丁香网| 精品久久久噜噜| 汤姆久久久久久久影院中文字幕 | 99在线视频只有这里精品首页| 亚洲怡红院男人天堂| 有码 亚洲区| 能在线免费看毛片的网站| 水蜜桃什么品种好| 中文字幕久久专区| 99视频精品全部免费 在线| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 人人妻人人澡人人爽人人夜夜 | 欧美一区二区精品小视频在线| 五月玫瑰六月丁香| 免费观看的影片在线观看| 观看免费一级毛片| 亚洲成色77777| 黄片wwwwww| 国产精品日韩av在线免费观看| 午夜免费激情av| 内地一区二区视频在线| 国产探花极品一区二区| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 国产麻豆成人av免费视频| 夜夜爽夜夜爽视频| 寂寞人妻少妇视频99o| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 久久久久久久国产电影| 国产免费男女视频| 欧美日韩在线观看h| 国产视频首页在线观看| 国产精品久久久久久精品电影小说 | 一区二区三区免费毛片| 精品国内亚洲2022精品成人| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 熟女电影av网| 日日干狠狠操夜夜爽| 天堂网av新在线| 亚洲欧美日韩无卡精品| 精品欧美国产一区二区三| 精品少妇黑人巨大在线播放 | 91精品一卡2卡3卡4卡| 婷婷六月久久综合丁香| 婷婷色av中文字幕| 两个人的视频大全免费| 两个人视频免费观看高清| 国产日韩欧美在线精品| 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 免费av观看视频| 免费av毛片视频| 国产中年淑女户外野战色| 一级黄色大片毛片| 日本av手机在线免费观看| 国产免费又黄又爽又色| 久久99热这里只有精品18| 三级毛片av免费| 国产精品一区二区在线观看99 | 一区二区三区高清视频在线| 日本wwww免费看| 亚洲欧美日韩卡通动漫| 91精品国产九色| 成人毛片60女人毛片免费| 久久精品久久精品一区二区三区| 18+在线观看网站| 99久久精品热视频| 国产精品蜜桃在线观看| 人人妻人人澡欧美一区二区| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 国产精品久久视频播放| 不卡视频在线观看欧美| 噜噜噜噜噜久久久久久91| 国产亚洲av片在线观看秒播厂 | 亚洲伊人久久精品综合 | 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 日本熟妇午夜| 99九九线精品视频在线观看视频| 国产精品野战在线观看| 欧美精品国产亚洲| 国产av一区在线观看免费| 日本与韩国留学比较| 日本一二三区视频观看| 国产黄片美女视频| av在线播放精品| 秋霞伦理黄片| 国产成年人精品一区二区| 午夜福利成人在线免费观看| 日日啪夜夜撸| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看 | 在线天堂最新版资源| 青青草视频在线视频观看| 天堂网av新在线| 亚洲欧美成人综合另类久久久 | 国产伦精品一区二区三区视频9| 最近的中文字幕免费完整| 国产精品久久久久久久电影| videossex国产| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| www日本黄色视频网| 最近的中文字幕免费完整| 你懂的网址亚洲精品在线观看 | 大话2 男鬼变身卡| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 国产色婷婷99| 日韩欧美三级三区| 精品久久久久久久久久久久久| 成人三级黄色视频| 麻豆精品久久久久久蜜桃| 亚洲欧美精品自产自拍| 日本一二三区视频观看| 99视频精品全部免费 在线| 日日干狠狠操夜夜爽| 国产成人午夜福利电影在线观看| 99在线人妻在线中文字幕| 99久久成人亚洲精品观看| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 国产免费福利视频在线观看| 一边摸一边抽搐一进一小说| av天堂中文字幕网| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 一级毛片电影观看 | 国产伦精品一区二区三区视频9| 欧美3d第一页| 欧美日韩在线观看h| 国产麻豆成人av免费视频| 亚洲经典国产精华液单| 久久久成人免费电影| 能在线免费看毛片的网站| 特级一级黄色大片| 18禁在线播放成人免费| 91狼人影院| 国国产精品蜜臀av免费| 午夜精品一区二区三区免费看| 精品久久久久久电影网 | 日韩大片免费观看网站 | 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 伊人久久精品亚洲午夜| 观看美女的网站| 人人妻人人看人人澡| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 免费电影在线观看免费观看| 午夜久久久久精精品| 热99在线观看视频| 色尼玛亚洲综合影院| av播播在线观看一区| 国产精品美女特级片免费视频播放器| 国产乱人视频| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99 | 国产精品嫩草影院av在线观看| av天堂中文字幕网| 一区二区三区乱码不卡18| 免费看光身美女| 国产精品精品国产色婷婷| 赤兔流量卡办理| 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 亚洲av成人精品一二三区| 99久国产av精品| 国产真实伦视频高清在线观看| 非洲黑人性xxxx精品又粗又长| 久久热精品热| 麻豆乱淫一区二区| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 男女啪啪激烈高潮av片| 秋霞在线观看毛片| 村上凉子中文字幕在线| 干丝袜人妻中文字幕| 久久99蜜桃精品久久| 秋霞在线观看毛片| 中文欧美无线码| 色视频www国产| 亚洲精品久久久久久婷婷小说 | 日本黄大片高清| 2021少妇久久久久久久久久久| 久久精品91蜜桃| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆 | 欧美xxxx性猛交bbbb| 一区二区三区高清视频在线| 三级毛片av免费| 亚洲精品亚洲一区二区| 色视频www国产| 2021天堂中文幕一二区在线观| 99热全是精品| 精品人妻视频免费看| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 久热久热在线精品观看| 国产不卡一卡二| 成人亚洲精品av一区二区| 日韩中字成人| 久久久久久久久久久丰满| 国产精品av视频在线免费观看| 国产91av在线免费观看| 久久99热这里只有精品18| 国产乱人偷精品视频| 亚洲av男天堂| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 国产激情偷乱视频一区二区| 国产精品爽爽va在线观看网站| 日韩在线高清观看一区二区三区| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| av国产久精品久网站免费入址| 国产老妇女一区| 插阴视频在线观看视频| 1000部很黄的大片| 少妇熟女欧美另类| 亚洲成人中文字幕在线播放| 直男gayav资源| 国产成人免费观看mmmm| 青春草视频在线免费观看| 国产精品三级大全| 久久亚洲国产成人精品v| 在线观看美女被高潮喷水网站| 国产伦一二天堂av在线观看| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 亚洲av免费高清在线观看| 亚洲精品aⅴ在线观看| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 亚洲综合色惰| 99热精品在线国产| 听说在线观看完整版免费高清| 尾随美女入室| 日日摸夜夜添夜夜爱| 国产高清不卡午夜福利| 国内精品宾馆在线| 精品不卡国产一区二区三区| 日本爱情动作片www.在线观看| 亚洲在线观看片| 久久亚洲精品不卡| 美女高潮的动态| 神马国产精品三级电影在线观看| 男人狂女人下面高潮的视频| 99久久精品热视频| 成人综合一区亚洲| 国产高清国产精品国产三级 | 国语对白做爰xxxⅹ性视频网站| 国产一级毛片七仙女欲春2| 亚洲国产精品成人久久小说| 亚洲真实伦在线观看| 国产单亲对白刺激| 免费av毛片视频| 黄色欧美视频在线观看| 我要看日韩黄色一级片| 久久久久国产网址| 一级毛片我不卡| 精品一区二区三区人妻视频| 少妇人妻精品综合一区二区| 亚洲精品成人久久久久久| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 久久精品综合一区二区三区| 老女人水多毛片| 国产 一区精品| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 久久6这里有精品| 精品少妇黑人巨大在线播放 | 欧美高清成人免费视频www| 观看美女的网站| 欧美最新免费一区二区三区| 久久久色成人| 亚洲乱码一区二区免费版| 欧美成人免费av一区二区三区| 亚洲av男天堂| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 亚洲第一区二区三区不卡| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| 高清在线视频一区二区三区 | 精品久久久久久久久久久久久| 亚州av有码| 日韩欧美在线乱码| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 秋霞在线观看毛片| 热99在线观看视频| 一级毛片aaaaaa免费看小| 欧美性感艳星| 在线观看66精品国产| 好男人在线观看高清免费视频| 午夜日本视频在线| 国产91av在线免费观看| 久久精品影院6| 色5月婷婷丁香| 午夜福利在线观看吧| 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| av免费在线看不卡| 亚洲精华国产精华液的使用体验| 99久久无色码亚洲精品果冻| 国产高潮美女av| 免费看日本二区| 99久久中文字幕三级久久日本| 亚洲av中文字字幕乱码综合| 亚洲aⅴ乱码一区二区在线播放| 日本免费在线观看一区| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 国产精品野战在线观看| 日韩av在线免费看完整版不卡| 晚上一个人看的免费电影| 在线免费观看的www视频| 欧美高清成人免费视频www| 久久韩国三级中文字幕| 纵有疾风起免费观看全集完整版 | 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 伊人久久精品亚洲午夜| 亚洲av免费高清在线观看| av播播在线观看一区| 乱码一卡2卡4卡精品| 国产精品日韩av在线免费观看| www.av在线官网国产| 老司机影院成人| av播播在线观看一区| 老师上课跳d突然被开到最大视频| 久久久久久大精品| av福利片在线观看| 99热6这里只有精品| 搡女人真爽免费视频火全软件| 大又大粗又爽又黄少妇毛片口| 一夜夜www| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 日本黄大片高清| 国产美女午夜福利| 22中文网久久字幕| 简卡轻食公司| 午夜福利高清视频| 老司机影院成人| 欧美精品一区二区大全| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 中文字幕精品亚洲无线码一区| 男人舔奶头视频| 国产乱来视频区| 欧美日韩在线观看h| 91精品国产九色| 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 精品国产三级普通话版| av线在线观看网站| 日日撸夜夜添| 成人美女网站在线观看视频| 国产亚洲午夜精品一区二区久久 | 99久久精品国产国产毛片| 国产av在哪里看| 观看免费一级毛片| 天美传媒精品一区二区| 身体一侧抽搐| 亚洲人成网站在线播| 精品久久久久久久久av| 亚洲av二区三区四区| 欧美色视频一区免费| 久久精品国产自在天天线| av专区在线播放| 亚洲精品影视一区二区三区av| 亚洲av中文av极速乱| 午夜久久久久精精品| 青青草视频在线视频观看| 日本黄大片高清| 午夜精品国产一区二区电影 | 久久久午夜欧美精品| 乱码一卡2卡4卡精品| 一级毛片久久久久久久久女| 免费观看在线日韩| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久av| 欧美最新免费一区二区三区| 国产精品一二三区在线看| av又黄又爽大尺度在线免费看 | 淫秽高清视频在线观看| 在线天堂最新版资源| 久久草成人影院| 麻豆国产97在线/欧美| 亚洲av二区三区四区| 国产视频内射| 亚洲av福利一区| 成年版毛片免费区| 人妻系列 视频| 五月玫瑰六月丁香| 99久久九九国产精品国产免费| 99热6这里只有精品| 日韩欧美三级三区| 九草在线视频观看| 国产中年淑女户外野战色| 97超视频在线观看视频| 国产毛片a区久久久久| 非洲黑人性xxxx精品又粗又长| 美女黄网站色视频| 国内精品一区二区在线观看| 热99re8久久精品国产| 丰满人妻一区二区三区视频av| 国产成人freesex在线| 国产黄色视频一区二区在线观看 | 日韩欧美在线乱码| 亚洲四区av| 热99在线观看视频| 色5月婷婷丁香| 国产淫片久久久久久久久| 日本wwww免费看| 麻豆成人av视频| 午夜爱爱视频在线播放| 七月丁香在线播放| 亚洲国产精品合色在线| 秋霞在线观看毛片| 国产男人的电影天堂91| 白带黄色成豆腐渣| 国产亚洲一区二区精品| 床上黄色一级片| 国产精品.久久久| 麻豆成人午夜福利视频|