近年來(lái),隨著腫瘤免疫學(xué)的發(fā)展,人們逐漸認(rèn)識(shí)到腫瘤生長(zhǎng)過(guò)程中會(huì)產(chǎn)生免疫抑制環(huán)境,促進(jìn)腫瘤細(xì)胞逃逸。2002年Schreiber等[1]首次提出腫瘤免疫編輯理論,將其分為免疫清除、免疫平衡、免疫逃逸三個(gè)階段。免疫逃逸對(duì)于腫瘤細(xì)胞的存活至關(guān)重要。腫瘤細(xì)胞可通過(guò)募集抑制性免疫細(xì)胞及分子,改變腫瘤微環(huán)境,進(jìn)而逃避機(jī)體的免疫識(shí)別與攻擊。食管癌是我國(guó)最常見的惡性腫瘤之一,目前標(biāo)準(zhǔn)療法仍然局限于手術(shù)或內(nèi)鏡切除及放化療,且總體預(yù)后較差。充分認(rèn)識(shí)食管癌免疫逃逸的機(jī)制是探索高效免疫療法的關(guān)鍵。本文圍繞腫瘤免疫逃逸相關(guān)因子作用機(jī)制及在食管癌中的研究進(jìn)展做一綜述。
髓源性抑制性細(xì)胞(myeloid-derived suppressor cell,MDSC)是一群骨髓來(lái)源的異質(zhì)性細(xì)胞,是樹突狀細(xì)胞、巨噬細(xì)胞和(或)粒細(xì)胞的前體。正常情況下,能迅速地分化為成熟的樹突狀細(xì)胞、粒細(xì)胞、巨噬細(xì)胞,并進(jìn)入相應(yīng)的器官、組織,發(fā)揮正常免疫功能。在病理?xiàng)l件下,MDSC成熟受阻,停留在各個(gè)分化階段,成為具有免疫抑制功能的MDSC。MDSC主要通過(guò)細(xì)胞表面受體結(jié)合或釋放短效類可溶性介質(zhì),下調(diào)機(jī)體免疫應(yīng)答效應(yīng),在自身免疫性疾病及腫瘤形成中發(fā)揮重要作用[2]。慢性感染、炎癥或腫瘤會(huì)導(dǎo)致MDSC的聚集。大量細(xì)胞因子參與MDSC的激活及擴(kuò)增,包括IL-1β、IL-6和PGE2等促炎癥分子以及VEGF等腫瘤分泌因子。MDSC主要通過(guò)以下4種機(jī)制抑制抗腫瘤免疫:直接抑制T細(xì)胞活化,抑制NK細(xì)胞的細(xì)胞毒性,消耗精氨酸和半胱氨酸,誘導(dǎo)調(diào)節(jié)性T細(xì)胞形成。通過(guò)對(duì)動(dòng)物模型的研究,MDSC的促腫瘤作用得到證實(shí)[3]。
Stairs等[4]研究表明,在食管鱗狀細(xì)胞癌p120-連環(huán)素缺陷型小鼠模型中,MDSC大量增殖,并且可以激活成纖維細(xì)胞誘導(dǎo)結(jié)締組織形成。研究表明,食管癌患者中MDSC水平升高,并且與疾病的分期、預(yù)后和耐藥性成正相關(guān)[5-6]。但由于MDSC具有異質(zhì)性,在臨床應(yīng)用中受到限制。為了更好地鑒定出食管癌中驅(qū)動(dòng)MDSC介導(dǎo)的免疫抑制反應(yīng)的因子,Karakasheva等[7]發(fā)現(xiàn),免疫抑制能力較強(qiáng)的MDSC高表達(dá)CD38。人體內(nèi)試驗(yàn)證實(shí),晚期食管癌患者的外周血中CD38陽(yáng)性MDSC數(shù)量增多;在食管癌小鼠模型體內(nèi)研究中,使用CD38單抗daratumumab(目前FDA批準(zhǔn)用于治療多發(fā)性骨髓瘤)可以使腫瘤細(xì)胞生長(zhǎng)減慢[7]。所以,對(duì)MDSC生物學(xué)的進(jìn)一步研究,可能為食管癌治療發(fā)展指明一定方向。
CD4+T細(xì)胞是效應(yīng)性T細(xì)胞的重要組成成分,在免疫調(diào)節(jié)過(guò)程中發(fā)揮重要作用。根據(jù)所產(chǎn)生的細(xì)胞因子和效應(yīng)細(xì)胞的生物功能特征,將CD4+T細(xì)胞分為Th1、Th2、Treg和Th17輔助性T細(xì)胞。輔助性T細(xì)胞17(T helper 17 cell,Th17)的分化與增殖可通過(guò)一系列細(xì)胞因子TGF-β、IL-6、IL-23、IL-1β、IL-21形成的效應(yīng)因子網(wǎng)絡(luò)進(jìn)行調(diào)控[8]。Th17細(xì)胞以分泌IL-17為主要特征,并通過(guò)IL-17上調(diào)其他相關(guān)因子來(lái)調(diào)控腫瘤微環(huán)境,從而介導(dǎo)炎癥、自身免疫和腫瘤等多種疾病的發(fā)生。在腫瘤微環(huán)境中,Th17細(xì)胞能正向調(diào)節(jié)Th1和NK細(xì)胞的功能,介導(dǎo)抗腫瘤免疫反應(yīng)。研究表明,Th17細(xì)胞可以通過(guò)CCR6/CCL20途徑調(diào)節(jié)樹突狀細(xì)胞募集,從而發(fā)揮抗腫瘤免疫效應(yīng)[9]。然而有學(xué)者指出,當(dāng)Th17細(xì)胞與細(xì)胞因子TGF-β和IL-6一起培養(yǎng)時(shí),Th17細(xì)胞表達(dá)核苷酸酶CD39和CD73,進(jìn)而釋放腺苷,抑制CD8+T細(xì)胞功能[10]。同時(shí),Th17細(xì)胞具有轉(zhuǎn)化為Treg的能力,進(jìn)而發(fā)揮免疫抑制作用[11]。此外,通過(guò)分泌細(xì)胞因子,如IL-17、IL-22,Th17細(xì)胞活化STAT3通路誘導(dǎo)血管生成并促進(jìn)腫瘤生長(zhǎng)。
研究發(fā)現(xiàn),食管癌患者外周血和腫瘤組織中Th17細(xì)胞比例增高,Th17細(xì)胞浸潤(rùn)程度與腫瘤分期相關(guān)[12-13]。蔣國(guó)軍等[14]研究表明Th17細(xì)胞在食管鱗癌患者外周血中的數(shù)量明顯增多,其特異性分泌的IL-17在食管鱗癌組織中的表達(dá)高于癌旁組織,Th17細(xì)胞可能與食管鱗癌的發(fā)病有關(guān)。Th17細(xì)胞通過(guò)抗腫瘤免疫來(lái)抑制腫瘤生長(zhǎng),還是通過(guò)促腫瘤細(xì)胞生長(zhǎng)增殖、抗凋亡能力及血管生成來(lái)促進(jìn)腫瘤生長(zhǎng),目前尚不清楚。因此,明確需要更深入地了解Th17細(xì)胞在食管癌中的作用,以確定其作為治療靶標(biāo)的潛力。
調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)是一類控制體內(nèi)自身免疫反應(yīng)性的異質(zhì)性的群體。目前已經(jīng)發(fā)現(xiàn)了多種Treg亞群,包括天然產(chǎn)生的自然調(diào)節(jié)性T細(xì)胞(nTreg),誘導(dǎo)產(chǎn)生的適應(yīng)性調(diào)節(jié)性T細(xì)胞(iTreg)以及抗原特異性CD4+Treg。腫瘤局部Treg可通過(guò)多種途徑抑制免疫效應(yīng)細(xì)胞的功能,如T細(xì)胞、NK細(xì)胞和樹突狀細(xì)胞。其主要機(jī)制包括以下4個(gè)方面:分泌抑制性細(xì)胞因子抑制效應(yīng)細(xì)胞的功能,如IL-10、TGF-β;釋放顆粒酶和穿孔素殺傷效應(yīng)細(xì)胞;通過(guò)干擾細(xì)胞代謝影響效應(yīng)細(xì)胞的功能;調(diào)控樹突狀細(xì)胞影響Treg的分化和增殖。
研究發(fā)現(xiàn),相對(duì)于健康人,食管癌患者的外周血和食管黏膜組織中Treg表達(dá)增加[15-16]。Treg浸潤(rùn)程度對(duì)食管癌患者預(yù)后有一定預(yù)測(cè)作用,Treg數(shù)量越多,腫瘤入侵越深,越易發(fā)生轉(zhuǎn)移,與患者疾病嚴(yán)重程度和化療后生存率降低呈正相關(guān)[17-20]。此外,有關(guān)食管癌患者接受新輔助放化療的報(bào)道顯示,殘留腫瘤(治療后)中的Treg細(xì)胞浸潤(rùn)密度與病理應(yīng)答相關(guān),低密度Treg細(xì)胞浸潤(rùn)更易觸發(fā)組織學(xué)應(yīng)答,此外,Treg細(xì)胞浸潤(rùn)密度與患者生存期呈負(fù)相關(guān)[21]??梢奣reg在食管癌的發(fā)生發(fā)展中發(fā)揮著重要作用,大量研究開始著重于干擾Treg分化、募集,試圖降低其抑制功能,但如同MDSC一樣,Treg也具有異質(zhì)性,其作用機(jī)制較復(fù)雜,為臨床應(yīng)用帶來(lái)了挑戰(zhàn)。
巨噬細(xì)胞是機(jī)體固有免疫反應(yīng)的重要組成成分,與上文提到的MDSC與Treg一樣,也是一類異質(zhì)性的細(xì)胞群體。組織和炎癥中浸潤(rùn)的巨噬細(xì)胞來(lái)源于骨髓單核細(xì)胞前體。這些前體細(xì)胞從血管滲透到人體內(nèi)各個(gè)組織,并在不同組織微環(huán)境中分化為不同亞型。一般將這些前體細(xì)胞分為兩種表型:M1型經(jīng)典活化巨噬細(xì)胞和M2型替代活化巨噬細(xì)胞[22]。M1型巨噬細(xì)胞高表達(dá)主要組織相容性復(fù)合物(major histocompatibility complex,MHC)Ⅰ類和Ⅱ類分子,負(fù)責(zé)腫瘤特異性抗原呈遞,參與抗腫瘤反應(yīng)。相反,M2型巨噬細(xì)胞主要發(fā)揮促腫瘤的效應(yīng)。M2型巨噬細(xì)胞分泌 CC 趨化因子配體 17[chemokine(C-C motif)li?gand 17,CCL17]、CCL22、CCL24等,低表達(dá)IL-12、高表達(dá)IL-10。在荷瘤機(jī)體中,浸潤(rùn)在腫瘤中的巨噬細(xì)胞通常稱為腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage,TAM),TAM更接近M2型巨噬細(xì)胞的功能表型[23]。TAM促腫瘤效應(yīng)主要通過(guò)3方面實(shí)現(xiàn):TAM分泌多種因子(堿性成纖維細(xì)胞生長(zhǎng)因子、胸苷磷酸化酶、尿激酶型纖溶酶原激活劑等)調(diào)控腫瘤血管生成,為腫瘤生長(zhǎng)提供營(yíng)養(yǎng);TAM通過(guò)降解細(xì)胞外基質(zhì)促進(jìn)腫瘤細(xì)胞的侵襲和遷移;巨噬細(xì)胞通過(guò)分泌一些免疫抑制因子如轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor β,TGF-β)和IL-10等直接或間接地抑制T細(xì)胞功能并介導(dǎo)細(xì)胞毒性T細(xì)胞的凋亡。
Miyashita等[24]發(fā)現(xiàn),在反流性食管炎大鼠模型中,M1型巨噬細(xì)胞募集到炎癥部位,激活上皮細(xì)胞和基質(zhì)細(xì)胞中的STAT3途徑,促進(jìn)M2型巨噬細(xì)胞極化,誘導(dǎo)癌細(xì)胞的生成。此外,在食管腺癌患者的組織中,腫瘤細(xì)胞上調(diào)Th2細(xì)胞相關(guān)因子,如IL-4和IL-13,促進(jìn)M2型巨噬細(xì)胞浸潤(rùn),這與MDSC介導(dǎo)的免疫抑制相關(guān)[25]。在食管鱗癌患者中,腫瘤來(lái)源的巨噬細(xì)胞趨化蛋白-1(MCP-1)的分泌增加,導(dǎo)致TAM浸潤(rùn)并產(chǎn)生血管生成酶[26]。解瑞玲等[27]研究發(fā)現(xiàn)TAM在食管癌組織中具有較高的浸潤(rùn)密度,將癌間質(zhì)和癌巢分別比較發(fā)現(xiàn)癌間質(zhì)TAM浸潤(rùn)密度明顯高于癌巢。此外,癌間質(zhì)和癌巢TAM浸潤(rùn)密度與生存時(shí)間呈負(fù)相關(guān)。Shigeoka等[28]研究發(fā)現(xiàn),TAM浸潤(rùn)也與食管鱗癌化療反應(yīng)耐受及總體預(yù)后不良有關(guān)。
T細(xì)胞的活化需要抑制性協(xié)同刺激因子雙信號(hào)途徑,第一信號(hào)途徑為抗原遞呈細(xì)胞上的主要組織相容性復(fù)合體與T細(xì)胞上的TCR結(jié)合,第二信號(hào)為抗原遞呈細(xì)胞上的共刺激分子B7與T細(xì)胞上的CD28分子結(jié)合。在這兩種信號(hào)共同作用下,T細(xì)胞活化、增殖,具備殺傷腫瘤細(xì)胞的能力。在調(diào)控第二信號(hào)通路眾多分子中,存在激活性協(xié)同刺激因子受體及抑制性協(xié)同刺激因子受體,后者在負(fù)性調(diào)控T細(xì)胞應(yīng)答方面發(fā)揮重要作用[29-30]。程序性死亡受體1(pro?grammed death 1,PD-1)和細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原 4(cytotoxic T-lymphocyte-associated antigen 4,CTLA-4)是目前研究較熱的負(fù)性共刺激信號(hào)分子。PD-1屬于CD28免疫球蛋白超家族的Ⅰ型跨膜糖蛋白,主要表達(dá)于T細(xì)胞、B細(xì)胞、單核細(xì)胞和骨髓細(xì)胞。PD-1具有2個(gè)配體,分別是PD-L1和PD-L2。PD-L1在B細(xì)胞、T細(xì)胞、巨噬細(xì)胞和樹突細(xì)胞上表達(dá),而PD-L2的表達(dá)則較局限,只在巨噬細(xì)胞、樹突狀細(xì)胞和一些B細(xì)胞亞類的膜表面表達(dá),且往往呈低表達(dá)狀態(tài)。故PD-L1成為PD-1阻斷T細(xì)胞活化及介導(dǎo)腫瘤免疫抑制的主要配體。CTLA-4與CD28同源,都是免疫球蛋白超家族成員,表達(dá)于活化的T細(xì)胞表面,配體主要表達(dá)于淋巴結(jié)和脾臟抗原呈遞細(xì)胞表面的 B7-1(CD80)或B7-2(CD86)。目前針對(duì)PD-1、CTLA-4靶點(diǎn)研發(fā)的單抗類藥物,如nivolum?ab、pembrolizumab、pidiluzumab、ipilimumab已經(jīng)在黑色素瘤、腎癌及非小細(xì)胞肺癌患者臨床治療中得以應(yīng)用,患者的生存期得以延長(zhǎng)。
目前有關(guān)抑制性協(xié)同刺激因子受體在食管癌中的報(bào)道開始涌現(xiàn)。在食管鱗癌中的研究中,多數(shù)結(jié)果顯示,PD-1及其配體的表達(dá)水平與較差的預(yù)后相關(guān)[31-33],然而其他研究表明,組織中高表達(dá)PD-L1的患者,其生存期較長(zhǎng)[34-35]。在食管腺癌的研究中,PD-L1的表達(dá)水平與較差的預(yù)后相關(guān)[36],PD-L2的表達(dá)與患者分期、腫瘤大小與分化程度相關(guān),與生存期無(wú)關(guān)[37]。在食管癌中針對(duì)CTLA-4的研究較少,Zhang等[38]通過(guò)檢測(cè)食管鱗狀細(xì)胞癌手術(shù)標(biāo)本中腫瘤細(xì)胞及浸潤(rùn)性淋巴細(xì)胞中CTLA-4的表達(dá),發(fā)現(xiàn)87%腫瘤細(xì)胞表達(dá)CTLA-4,在浸潤(rùn)性淋巴細(xì)胞中,58%樣本為CTLA-4陽(yáng)性,且雙陽(yáng)性表達(dá)者與較差的總生存期相關(guān)。雖然目前免疫檢查點(diǎn)阻斷劑(im?mune checkpoint inhibitor)的治療在食管癌中尚未廣泛開展,但其療效初見端倪。Kudo等[39]研究表明,17%食管鱗癌患者在nivolumab治療過(guò)程中產(chǎn)生應(yīng)答,顯示出抗腫瘤活性。Doi等[40]研究發(fā)現(xiàn),對(duì)于標(biāo)準(zhǔn)治療失敗的食管癌患者中,pembrolizumab安全性可控,療效顯著。免疫檢查點(diǎn)阻斷劑在食管癌中臨床試驗(yàn)正在逐步開展(表1),相信隨著研究的不斷深入,免疫靶向藥物也會(huì)在食管癌中得以應(yīng)用,為食管癌的治療提供新的方法。
表1 抗CTLA-4、PD-1、PD-L1抗體在食管癌中開展的臨床試驗(yàn)
本文討論了抑制性免疫細(xì)胞及共刺激因子在腫瘤免疫逃逸中的機(jī)制及在食管癌中的研究進(jìn)展。腫瘤微環(huán)境中抑制性免疫細(xì)胞及共刺激因子可能導(dǎo)致腫瘤免疫逃逸,促進(jìn)腫瘤的形成、增殖、浸潤(rùn)和轉(zhuǎn)移,但其作用機(jī)制尚不清楚。抑制性免疫細(xì)胞從初始發(fā)育到具有免疫調(diào)節(jié)功能的各個(gè)階段錯(cuò)綜復(fù)雜,盡管這些細(xì)胞具有相對(duì)的遺傳穩(wěn)定性,但其本質(zhì)上具有異質(zhì)性,如何鑒別出這些細(xì)胞群體中的促瘤驅(qū)動(dòng)因子,給研究者帶來(lái)了極大的挑戰(zhàn)。免疫逃逸相關(guān)因子在食管癌的發(fā)生發(fā)展起到了一定作用,相信隨著對(duì)食管癌免疫逃逸機(jī)制的探索,有望發(fā)現(xiàn)高效的免疫靶向藥物,使食管癌患者受益。
[1] Schreiber RD,Old LJ,Smyth MJ,et al.Cancer Immunoediting:Integrating Immunity's Roles in Cancer Suppression and Promotion[J].Science,2011,331(6024):1565-1570.
[2] Waldron TJ,Quatromoni JG,Karakasheva TA,et al.Myeloid derived suppressor cells:targets for therapy[J].Oncoimmunology,2013,2(4):e24117.
[3] Quail DF,Joyce JA.Microenvironmental regulation of tumor progression and metastasis[J].Nat Med,2013,19(11):1423-1437.
[4] Stairs DB,Bayne LJ,Rhoades B,et al.Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene[J].Cancer Cell,2011,19(4):470-483.
[5] Chen M,Kuan F,Yen T,et al.IL-6-stimulated CD11b+CD14+HLA-DR-myeloid-derived suppressor cells,are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J].Oncotarget,2014,5(18):8716-8728.
[6] Gabitass RF,Annels NE,Stocken DD,et al.Elevated myeloid-derived suppressor cells in pancreatic,esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13[J].Cancer Immunol Immunother,2011,60(10):1419-1430.
[7] Karakasheva TA,Waldron TJ,Eruslanov E,et al.CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer[J].Cancer Res,2015,75(19):4074-4085.
[8] Su X,Ye J,Hsueh EC,et al.Tumor microenvironments direct the recruitment and expansion of human th17 cells[J].J Immunol,2010,184(3):1630-1641.
[9] Kryczek I,Wei S,Szeliga W,et al.Endogenous IL-17 contributes to reduced tumor growth and metastasis[J].Blood,2009,114(2):357-359.
[10]Chalmin F,Mignot G,Bruchard M,et al.Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression[J].Immunity,2012,36(3):362-373.
[11]Gomezrodriguez J,Wohlfert EA,Handon R,et al.Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells[J].J Exp Med,2014,211(3):529-543.
[12]Chen D,Hu Q,Mao C,et al.Increased IL-17-producing CD4+T cells in patients with esophageal cancer.[J].Cell Immunol,2012,272(2):166-174.
[13]Jiao Z,Gao J,Hua S,et al.Correlation between circulating myeloidderived suppressor cells and Th17 cells in esophageal cancer.[J].World J Gastroenterol,2012,18(38):5454-5461.
[14]蔣國(guó)軍,談?dòng)里w,周健,等.Th17細(xì)胞及IL-17蛋白在食管鱗癌患者外周血、腫瘤組織中的表達(dá)及意義[J].山東醫(yī)藥,2012,52(10):64-66.
[15]Ihihara F,Kono K,Takahashi A,et al.Increased Populations of Regulatory T Cells in Peripheral Blood and Tumor-Infiltrating Lymphocytes in Patients with Gastric and Esophageal Cancers[J].Clin Cancer Res,2003,9(12):4404-4408.
[16]Kono K,Kawaida H,Takahashi A,et al.CD4+CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers[J].Cancer Immunol Immunother,2006,55(9):1064-1071.
[17]Nabeki B,Ishigami S,Uchikado Y,et al.Interleukin-32 expression and Treg infiltration in esophageal squamous cell carcinoma[J].Anticancer Res,2015,35(5):2941-2947.
[18]Xia M,Zhao M,Wu K,et al.Investigations on the clinical significance of FOXP3 protein expression in cervical oesophageal cancer and the number of FOXP3+tumour-infiltrating lymphocytes[J].J Int Med Res,2013,41(4):1002-1008.
[19]Osaki T,Saito H,Fukumoto Y,et al.Inverse correlation between NKG2D expression on CD8+T cells and the frequency of CD4+CD25+regulatory T cells in patients with esophageal cancer[J].Dis Esophagus,2009,22(1):49-54.
[20]Xu T,Duan Q,Wang G,et al.CD4+CD25high Regulatory T Cell Numbers and FOXP3 mRNA Expression in Patients with Advanced Esophageal Cancer Before and After Chemotherapy[J].Cell Biochem Biophys,2011,61(2):389-392.
[21]Vacchelli E,Semeraro M,Enot D,et al.Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy[J].Oncotarget,2015,6(25):20840-20850.
[22]楊繼樂(lè),張莉,王莉.單核-巨噬細(xì)胞的分化和功能研究進(jìn)展[J].細(xì)胞與分子免疫學(xué)雜志,2014,30(11):1213-1216.
[23]Hao N,Lu M,Fan Y,et al.Macrophages in Tumor Microenvironments and the Progression of Tumors[J].Clin Dev Immunol,2012:948098-948098.
[24]Miyashita T,Tajima H,Shah FA,et al.Impact of inflammation-metaplasia-adenocarcinoma sequence and inflammatory microenvironment in esophageal carcinogenesis using surgical rat models[J].Ann Surg Oncol,2014,21(6):2012-2019.
[25]Gao J,Wu Y,Su Z,et al.Infiltration of Alternatively Activated Macrophages in Cancer Tissue Is Associated with MDSC and Th2 Polarization in Patients with Esophageal Cancer[J].PLoS One,2014,9(8):e104453.
[26]Koide N,Nishio A,Sato T,et al.Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus[J].Am J Gastroenterol,2004,99(9):1667-1674.
[27]解瑞玲,董伯升,龐慧,等.腫瘤相關(guān)巨噬細(xì)胞在食管癌組織浸潤(rùn)及其對(duì)預(yù)后的影響[J].中國(guó)腫瘤臨床,2011,38(2):83-86.
[28]Shigeoka M,Urakawa N,Nakamura T,et al.Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamouscell carcinoma[J].Cancer Sci,2013,104(8):1112-1119.
[29]Sharma P,Wagner KW,Wolchok JD,et al.Novel cancer immunotherapy agents with survival benefit:recent successes and next steps.[J].Nat Rev Cancer,2011,11(11):805-812.
[30]Torphy R J,Schulick R D,Zhu Y.Newly Emerging Immune Checkpoints:Promises for Future Cancer Therapy[J].Int J Mol Sci,2017,18(12):2642.
[31]Ito S,Okano S,Morita M,et al.Expression of PD-L1 and HLA Class I in Esophageal Squamous Cell Carcinoma:Prognostic Factors for Patient Outcome[J].Ann Surg Oncol,2016,23(4):508-515.
[32]Tanaka K,Miyata H,Sugimura K,et al.Negative influence of programmed death-1-ligands on the survival of esophageal cancer patients treated with chemotherapy[J].Cancer Sci,2016,107(6):726-733.
[33]Lim SH,Hong M,Ahn S,et al.Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer[J].Eur J Cancer,2016,52:1-9.
[34]Chen K,Cheng G,Zhang F,et al.Prognostic significance of programmed death-1 and programmed death-ligand 1 expression in patients with esophageal squamous cell carcinoma[J].Oncotarget,2016,7(21):30772-30780.
[35]Hatogai K,Kitano S,Fujii S,et al.Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma.[J].Oncotarget,2016,7(30):47252-47264.
[36]Loos M,Langer R,Schuster T,et al.Clinical Significance of the Costimulatory Molecule B7-H1 in Barrett Carcinoma[J].Ann Thor Surg,2011,91(4):1025-1031.
[37]Derks S,Nason KS,Liao X,et al.Epithelial PD-L2 expression marks Barrett's esophagus and esophageal adenocarcinoma[J].Cancer immunol Res,2015,3(10):1123-1129.
[38]Zhang XF,Pan K,Weng DS,et al.Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma:Implications for prognosis[J].Oncotarget,2016,7(18):26670-26679.
[39]Kudo T,Hamamoto Y,Kato K,et al.Nivolumab treatment for oesophageal squamous-cell carcinoma:an open-label,multicentre,phase 2 trial[J].Lancet Oncol,2017,18(5):631-639.
[40]Doi T,Piha-Paul SA,Jalal SI,et al.Safety and Antitumor Activity of the Anti-Programmed Death-1 Antibody Pembrolizumab in Patients With Advanced Esophageal Carcinoma[J].J Clin Oncol,2018,36(1):61-67.