• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Urca Processes Involving Proton1S0Superfluidity in Neutron Star Cooling?

    2018-05-02 01:51:40YanXu許妍ZiYu喻孜XiaoJunZhang張曉軍CunBoFan范存波
    Communications in Theoretical Physics 2018年4期
    關鍵詞:張曉軍

    Yan Xu(許妍), Zi Yu(喻孜),Xiao-Jun Zhang(張曉軍),Cun-Bo Fan(范存波),

    Guang-Zhou Liu(劉廣洲),3En-Guang Zhao(趙恩廣),4Xiu-Lin Huang(黃修林),1,? and Cheng-Zhi Liu(劉承志)1,§

    1Changchun Observatory,National Astronomical Observatories,CAS,Changchun 130117,China

    2College of Science,Nanjing Forestry University,Nanjing 210037,China

    3Center for Theoretical Physics,Jilin University,Changchun 130023,China

    4Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Neutron star(NS)constitutes one of the best astrophysical laboratories for studying dense matter physics.It arises at the end of life of a(8–20)M⊙massive stars and forms in the aftermath of the core collapse supernovae explosion.A newly born NS is very hot with temperature as high as(1011–1012)K,but rapidly cools to a temperature of less than 1010K within minutes.The cooling process of an NS is dominated by a combination of surface photon emission and interior neutrino emission.The latter is responsible for about(105–106)years until the interior temperature reaches 106K.It is generally known that photon luminosity is obviously lower than neutrino luminosity,meaning that the thermal radiation from an NS surface reflects the intensity of interior neutrino emission.[1?3]While neutrino emisision depends strongly on the composition of superdense matter in NSs.It is well known that NSs cores are dense enough to allow for emerging exotic matter with the strangeness quantum number through weak equilibrium,such as Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?hyperons,referred as npheμmatter,except for the conventional nucleons and leptons(npeμ matter).[4?16]It means that all the possible baryon neutrino emission processes would happen during the neutrino cooling stage.[17?26]Among them,the most powerful enhancement of neutrino emission is provided by the nucleon direct Urca processes,secondarily is the hyperon direct Urca processes.[27?34]Prakash et al.(1992)have already indicated that NS matter with any proton/nucleon ratio can rapidly cool by the baryon direct Urca processes if Λ hyperons are present.[35?36]Besides,the degrees of freedom of hyperons tend to soften the equation of state(EOS)calculated in the relativistic mean field(RMF)model based on SU(6)spin-flavor symmetry(quark model for the vector mesonhyperon coupling constants),then reduce the maximum mass of NS to about(1.6–1.7)M⊙.[37?44]However,Demorest et al.in 2010[45]indicated that the binary millisecond pulsar PSR J1614-2230 expanded the maximum observational mass from 1.67±0.02 M⊙to 1.97±0.04 M⊙using the Shapiro delay measurements from radio timing observations.Antoniadis et al.in 2013[46]observed another massive neutron star PSR J0348+0432,whose mass is 2.01±0.04 M⊙.It is clear that the inclusion of hyperons in such heavy NS cores is difficult to explain by SU(6)spinlf avor symmetry in RMF model.And for this reason,the SU(3)flavor symmetry is widely applied to RMF model.It changes the strength of the isoscalar,vector-meson(ω and ?)couplings to the octet states,which can sustain an NS with mass of(1.8–2.1)M⊙even if hyperons exist in NS core.[47?50]Furthermore,baryons in NS interior can become the superfluid state related to the generation of Baryon-Baryon Cooper pairs under attractive interaction.The baryon superfluidity could suppress considerably the baryon direct Urca processes and thus affect the cooling rate of NS remarkably.[5,51]As we all know,the neutrons in the crust and protons,hyperons in the core undergo Cooper pair in1S0state,while neutrons in the core can pair in3P2state.

    It is well known that the EOS of hot nuclear matter plays important roles in determining the evolution of the NS at the birth stage,namely a protoneutron star is a finite temperature system.After birth,its neutrinos are trapped due to their short mean free paths.Then,neutrinos quickly diffuse and leave behind much of their energy which causes significant heating of ambient matter.[52?53]Beyond that,the effects of magnetic fields on NS have been a subject of interest from long time ago.The EOS for magnetized matter is important for the NS structure and the cooling of magnetized stars including and not including the anomalous magnetic moments.Moreover,since neutrinos are a fundamental piece in cooling processes,its emission and transport properties in the presence of magnetic fields were studied in detail.The results also show that the possibility for the baryon direct Urca processes to be open in the presence of a magnetic field B,even if the proton fraction is too low to open the process at B=0.[54?57]In this paper,because that we will mainly consider the influence of the hyperons and the hyperon direct Urca processes on the nucleon direct Urca processes and the proton1S0superfluidity in cold neutron star matter.We will further study the influence of temperature,neutrinos and magnetic fields on the properties of the NS cooling in the future work.This paper is arranged as follows.In Sec.2,we make a brief review for RMF and NS cooling theories as well as the gap equation for the proton1S0superfluid.The numerical results are discussed in Sec.3.Finally,we summarize our conclusions in Sec.4.

    2 Theoretical Framework

    2.1 RMF Theory

    In this calculation,we adopt RMF model to describe NS matter.The constituents of NSs fall into two categories:npeμ and npheμ matter.The strong interaction between baryons is mediated by the exchange of isoscalar scalar and vector mesons σ, ω,isovector vector meson ρ.The two additional strange mesons are also included,namely isoscalar scalar σ?and vector ? mesons.[41?42,58]The total Lagrangian is given by

    Here Wμv= ?μωv? ?vωμ,Rμv= ?μρv? ?vρμ,and Pμv= ?μ?v? ?v?μdenote the field tensors of ω,ρ and ? mesons,respectively.The sum on B and l runs over the octet baryons and leptons,namely,n,p,Λ,Σ0,Σ+,Σ?,Ξ0,Ξ?,e,μ. ψBand ψlare the Dirac fields of baryons and leptons,respectively.mBand mldenote the masses of baryon and lepton,respectively.γushows the Dirac matrice.The meson fields are replaced by their expectation values at the mean field level.Now we can solve the Euler-Lagrange equations by plugging in the above Lagrangian

    The equations of motion for each baryon and meson fields can be obtained in RMF approximation

    Here JBand I3Bexpress the spin and isospin projections of baryons,respectively.The Dirac effective mass of baryon is given by

    The scalar density nSBand baryon density nBare given by

    For a fixed total baryon number density

    The hadron phase should meet the local charge neutrality and beta-equilibrium conditions.The former is given by

    In the latter the chemical potentials of particles are related to each other by,

    where qBis the electric charge of baryon(in unit of e).

    We can solve Eqs.(3)–(14)self-consistently at a fixed total baryon number density nb.The total energy density and pressure of NS matter are

    Equations(15)and(16)as inputs,we can obtain the mass-radius relation by solving the Tolman-Oppenheimer-Volko ff(TOV)equation[59?60]

    We adopt two successful RMF parameter sets to describe NS matter,GM1 and TM1,as listed in Table 1.[48]These parameters have been determined by fitting to some ground state properties of nuclear matter.As for the couplings of the isoscalar vector mesons ω and ? to baryons,we adopt SU(6)spin-flavor symmetry based on the naive quark model and general SU(3)flavor symmetry as listed in Table 2,[49]respectively.

    Table 1 The parameter sets GM1 and TM1.The relations,gσ?N=gρΛ =0,are assumed.We take mω=783 MeV,mρ=770 MeV,mN=938 MeV.For the GM1 and TM1 models,mσ=550 MeV and 511.198 MeV,respectively.[48?49]

    Table 2 The other coupling constants for hyperons.The relations,gρN=(1/2)gρΣ =gρΞ,are assumed.[48?49]

    2.2 NS Cooling Theory

    The baryon direct Urca processes consist of two successive reactions,beta decay and capture,are listed in Table 3.[35]

    Here B1and B2represent baryons.Due to the EOSs of NSs are derived by RMF model,so the neutrino energy losses must be consistent with the used relativistic EOSs.In the free relativistic gas,the energy and momentum conservations require a large effective mass differece of B1and100 MeV,which is unlikely to appear in the reactions A,D,and G.The reason is that the effective masses of hyperons with the same species but the different isospins are same(see Eq.(9)for details).Therefore,in the relativistic regime,the energy conservation should be assured by considering the potential energy difference of B1and B2.The neutrino emissivity can be given by the Fermi Golden Rule

    where pj,εjexpress the momentum and kinetic energy of particle species j(j=1,2,3,and 4 refer to B1,B2,e and),respectively.fjis the Fermi-Dirac distribution functions of baryons and electrons,

    The delta functions δ(E1? E2? ε3? ε4)and δ(p1?p2?p3?p4)describe the energy and momentum conservation,respectively. E1,2=ε1,2+U1,2denote the single-particle energies of baryons,U1,2are the selfconsistent potentials of baryons,which can be obtained in Subsec.2.1 and have the following form

    Namely,

    |Mfi|2is the squared matrix element of the baryon direct Urca processes summed over spins of initial and final particles

    where Pj=(εj,pj).GF=1.436 × 10?49erg·cm3is the weak-coupling constant.f1,g1and C are the vector,axial-vector constants and Cabibbo angle,which are given in Table 3.

    Table 3 The constants of the baryon direct Urca processes.We take sinθc=0.231± 0.003,F=0.477±0.012,D=0.756±0.011.

    The relativistic expression of the energy loss Q per unit volume and time in NS matter is found to be[61?62]

    In this expression,pF1,pF2,and pF3are the Fermi momenta of baryons and leptons. εF1and εF2are the kinetic energy of baryon at the Fermi surface.Θ=1 if the Fermi momenta pF1,pF2,pF3satisfy the triangle condition and Θ=0 otherwise.The situation of muons is similar to that of electrons.

    The cooling equation based on the approximation of isothermal interior is,

    Here Lνand Lrare the total neutrino and photon luminosities,respectively.Cvis the total thermal capacity of NS matter.They are where σ is the Stefan-Boltzmann constant, eΦ=

    2.3 1S0Superfluidity of Protons

    The key quantity in determining the onset of the proton1S0superfluid is the gap function?(p),

    where ε(p)=E(p) ? E(pFp).V(p,p′)is the protonproton potential matrix element.In this work,we use the Reid soft core(RSC)potential for the proton-proton potential,[63?66]as an example to demonstrate the influence of hyperons on the proton1S0pairing gaps.The critical temperature Tcpof the proton1S0superfluid is given by the pairing gap?(p)at zero temperature approximation,

    As a result,the neutrino emissivity and thermal capacity can be written as

    Here RBand RCB0are the superfluid reduction factors of the neutrino emissivity and thermal capacity,respectively.

    For the proton1S0superfluid,the reduction factors Rpand RCp0are

    According to the discussion of the RMF approach above,we can obtain the EOS,the mass-radius relations,the neutrino emissivities of the baryon direct Urca processes,the Fermi momenta and the single particle energies of protons,the pairing gap and the critical temperature of the proton1S0superfluid as well as the speed of NS cooling.

    3 Results and Discussion

    In this section,we give three cases in Eq.(1)for RMF theory:(i)The non-strange σ,ω,ρ mesons are included in SU(6)spin-flavor symmetry;(ii)The σ,ω,ρ mesons including strange mesons σ?and ? are considered in SU(6)spin-flavor symmetry;(iii) σ,ω,ρ,σ?and ? mesons are taken into account in SU(3)flavor symmetry.We mainly study the effects of the degrees of freedom of hyperons and the reactions B,C on the EOS,the neutrino emissivity,the neutrino luminosity,the energy gap of the proton1S0superfluid and NS cooling.Then we compare our results with PSR J1614-2230 and J0348+0432,whose measured masses are used as reference values.

    Fig.1 EOSs including hyperons in NS matter.

    Fig.2 Mass of NS as a function of the total baryon number density nb.

    Fig.3 Neutrino emissivities of the reactions A,B and C as a function of the total baryon number density nbin npheμmatter.

    Fig.4 Total neutrino emissivities of the reactions AF as a function of the total baryon number density nb.The solid and dotted lines are the neutrino emissivity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino emissivities of the reactions A-F in npheμmatter.

    Fig.5 Radial distributions of the total neutrino emissivities with different mass NSs in npeμ(solid lines)and npheμmatter(dotted lines)for the GM1 model.

    Figure 1 shows the EOSs in the three cases.Figure 2 shows the mass-radius relations of NSs by solving the TOV equation.The softest and hardest EOSs are obtained by cases(i)and(iii),respectively.Though the coupling gωNfor case(iii)is smaller than the corresponding value for case(i)as shown in Table 1,the total repulsive force is attributed not only to ω meson but also to ? meson.As seen in Figs.1 and 2,though we consider the contribution of the strange mesons σ?and ? on the EOS in case(ii),the coupling g?N=0.It means that ? meson only couples to hyperons and makes the EOS be not enough stiff.So the hardest EOS is obtained only through the ? meson in case(iii).From case(i)to(iii),the maximum mass of NS(the corresponding center density)sequently increases from 1.820(0.771),1.863(0.817)to 2.141 M⊙(0.871)for the GM1 model,1.686(0.673),1.729(0.754)to 2.038 M⊙(0.848)for the TM1 model,respectively(Fig.2).Namely,the EOS in SU(3)flavor symmetry could be consistent with the observed values of PSR J1614-2230 and J0348+0432 when hyperons appear in NS core.Figure 3 depicts the neutrino emissivities of the reactions A,B and C in npheμmatter for the three cases.As can be seen from Fig.3,the neutrino emissivity of the reaction A has a tendency to decrease with increasing of the total baryon number density nbwhich is due to that the presence of the degrees of freedom of hyperons in NS matter decreases the nucleon and lepton fractions in accordance with the charge neutrality and β equilibium conditions(Eqs.(13)and(14)).The neutrino emissivities of the reactions B and C are obviously less than that of the reaction A because of the smaller matrix elements of the reactions B and C in Eq.(23).The strongest neutrino emissivities of the reactions A and B are obtained in case(iii),while the weakest neutrino emissivities of the reactions A and B are given in case(i).For the reaction C,the neutrino emissivity in case(iii)is less than the corresponding values in cases(i)and(ii) firstly and then increases,equals or exceeds the values in cases(i)and(ii).In order to make the effects of hyperons more intuitive,the total neutrino emissivity of the reactions A-F in npheμmatter comparing with the neutrino emissivity of the reactions A in npeμmatter is depicted in Fig.4.We can see that the neutrino emissivity of the reactions A has been conspicuously suppressed because of the appearance of the degrees of freedom of hyperons.From Figs.2,3,and 4,the mass ranges of the reactions B and C in case(iii)are(1.671–2.141)M⊙and(1.888–2.141)M⊙for the GM1 model,(1.579–2.038)M⊙and(1.849–2.038)M⊙for TM1 model,respectively.Furthermore,the threshold densities of the reactions D-F are larger than the center densities for the maximum masses of NSs,it leads to that the reactions D-F would never happen within stable NSs.Given the above,we only consider the reactions A,B,and C in case(iii)for the following discussion.

    Figure 5 gives the radial distributions of the total neutrino emissivities of the reactions A,B,and C for the GM1 model in case(iii),we choose the mass of NS m=(1.98,2.00,2.10,and 2.12)M⊙.The radial distributions of the total neutrino emissivities for a fixed mass NS are nearly invariable when radius r is relatively large(sse Part I for details)with and without the degrees of freedom of hyperons.However,the reactions B and C happen in succession with the reduction of the radius(see Part II and III for details)which leads to that the radial distributions of the total neutrino emissivities with the degrees of freedom of hyperons are significantly larger than the corresponding values without the degrees of freedom of hyperons.Yet with growing mass,the appearance of hyperons obviously shrinks the scope of radius for the growth of the radial distributions of the total neutrino emissivities.The situation of the TM1 model is like the above in GM1 model.Figure 6 shows the total neutrino luminosity as a function of the NS’s mass for the GM1 and TM1 models in case(iii).As seen from Fig.6,whether hyperons are included or not,the neutrino luminosity increases firstly and then decreases with increasing of the NS’s mass.Once the NS’s mass reaches a value,one value of the neutrino luminosity corresponds to two different NSs.And the total neutrino luminosities of reactions A,B and C within the mass range(1.603–2.067)M⊙and(1.515–1.840)M⊙will be larger than the corresponding values in npeμmatter for the GM1 and TM1 models,respectively.Figure 7 shows the critical temperature of the proton1S0superfluid as a function of the total baryon number density nbfor case(iii)including and not including the degrees of freedom of hyperons,respectively.

    Fig.6 Total neutrino luminosities of the reactions A,B and C as a function of the NS’s mass m.The solid and dotted lines are the neutrino luminosity of the reaction A in npeμ and npheμ matter,respectively.The dashed line is the total neutrino luminositits of the reactions A,B and C in npheμmatter.

    Fig.7 The critical temperature Tcpof the proton1S0 superfluid as a function of the NS’s mass m in npeμ matter(solid lines)and npheμmatter(dashed lines),respectively.

    Fig.8 Observational data(error bars)on surface temperatures of 8 NSs as compared with theoretical cooling curves obtained by the proton1S0superfluid for the GM1 and TM1 models,respectively.The solid lines correspond to npeμmatter,the dashed lines correspond to npheμmatter with masses(from top to bottom)(1.7,1.95 and 2.03)M⊙for the GM1 model((1.6,1.93 and 2.0)M⊙for the TM1 model),respectively.The dotted lines represent cooling curves in the non-superfluid NS matter.

    In Fig.7,one can see that whether or not the NS core appears hyperons,the critical temperature of the proton1S0superfluid increases first,but it gradually decreases after it reaches maximum along with increasing of the total baryon number density nb.While when hyperons appear in NS core,the critical temperature of the proton1S0superfluid is first below and then above the corresponding values in npeμmatter within the density ranges of nb=(0.0–0.454)fm?3(nb=(0.0–0.418)fm?3for the TM1 model)and nb≥ 0.454 fm?3(nb≥ 0.418 fm?3for the TM1 model)for the GM1 model,respectively.This is because the total contributions of the Fermi momentum,the effective mass and the single-particle e nergy of protons result in the change of the critical temperature of the proton1S0superfluid.Furthermore,the appearance of hyperons widens the scope of the baryon number density for the proton1S0superfluid in NS matter,which can further inhibit the baryon direct Urca processes as well as affect the cooling of NSs.The theoretical cooling curves with the proton1S0superfluid assuming the isothermal stars are obtained in Fig.8 for the GM1 and TM1 models,respectively.Observational data of 8 isolated NSs whose effective surface temperatures have been measured or constrained is listed as compared with the theoretical cooling curves.[67?75]As you can see from Fig.8,the cooling curve of an NS with the moderate mass can be a great way to explain the observational data,while the cooling curves of massive NSs are difficult to explain the existing observational data due to the low surface temperature.The continued decline in the cooling curves along with the growth of the NS’s mass means that a massive NS will go through the fast cooling process whether the degrees of freedom of hyperons appear.In addition,from Fig.6 we can see that the neutrino luminosities of(1.70,1.95,2.03)M⊙NSs for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are greater than the corresponding values in npeμmatter,respectively.While from Fig.7,we can also see that the critical temperatures Tcpof(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)in npheμmatter are lower than the corresponding values in npeμmatter.It results in the fact that the suppression of the neutrino emissivities for the reactions A and B is delayed in npheμmatter,so the cooling speeds of(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model)with the degrees of freedom of hyperons(dashed lines)are quicker than the corresponding values without the degrees of freedom of hyperons(solid lines).The proton1S0superfluid does not affect the reaction C in(1.70,1.95,2.03)M⊙NS for the GM1 model((1.60,1.93,2.00)M⊙NSs for the TM1 model),which is due to that the threshold density of the reaction C in the above NSs is higher than the baryon number density of the appearance of the proton1S0superfluid in the above NSs.Therefore,although the neutrino emissivities of the reactions A and B are suppressed with the presence of the proton1S0superfluid,the total contributions of reactions A,B and C can still speed up a massive NS cooling.Our model may be a simplification because it adopts the lowest level of approximation in the gap equation as well as neglecting the possible influence of inhomogeneity in NS crust and hyperon superfluidity in NS core on the reactions A,B and C,however,it can still clearly describe the effects of the proton1S0superfluid on the reactions A,B and C in NS matter.We will analyze more complicated models in future studies.

    4 Conclusion

    We have studied the effects of the degrees of freedom of hyperons,the reactions B and C on the reaction A in NS matter using the two popular RMF parameter sets,GM1 and TM1,respectively.Firstly,we used the SU(3)flavor symmetry to obtain the stiffEOS which led to the degrees of freedom of hyperons appearing in PSR J1614-2230 and J0348+0432.Secondly,the total neutrino luminosities of the reactions A,B and C were calculated in npeμand npheμmatter,respectively.We found that the presence of the reactions B and C made the total neutrino luminosities higher than the corresponding values without the reactions B and C within the mass range(1.603–2.067)M⊙for the GM1 model and(1.515–1.840)M⊙for the TM1 model,respectively.The cooling rate with hyperons was faster than the corresponding value without hyperons for a fixed NS.It illustrated that though the appearance of hyperons has obviously suppressed the neutrino emissivity of the reaction A,which had the highest neutrino emissivity in npeμmatter,the contribution of the reactions B and C could still lead to the rapid cooling for the massive NSs.In particular,because the threshold densities of the reaction C in PSR J1614-2230 and J0348+0432 were significantly higher than the baryon number density for the proton1S0superfluid,thus the reaction C was not suppressed by the proton1S0superfluid which will further speed up the two pulsars cooling.These features maybe can help to prove the presence of hyperons in the cores of PSR J1614-2230 and J0348+0432.

    [1]D.G.Yakovlev and C.J.Pethick,Ann.Rev.Astron.Astrophys.42(2004)169.

    [2]D.G.Yakovlev,et al.,AIP Conf.Series.983(2008)379.

    [3]J.J.Liu,Q.H.Peng,and D.M.Liu,Chin.Phys.C 41(2017)095101.

    [4]C.R.Ji and D.P.Min,Phys.Rev.D 57(1998)5963.

    [5]D.G.Yakovlev,K.P.Leven fish,and Y.A.Shibanov,Phys.Uspek.42(1999)737.

    [6]E.G.Zhao and F.Wang,Chin.Sci.Bull.56(2011)3797.

    [7]Z.F.Gao,et al.,Astrophys.Space Sci.334(2011)281.

    [8]H.Sotani,T.Maruyama,and T.Tatsumi,Nucl.Phys.A 906(2013)37.

    [9]C.Schaab,S.Balberg,and J.Schaffner-Bielich,Astrophys.J.504(1998)L99.

    [10]Y.N.Wang and H.Shen,Phys.Rev.C 81(2010)025801.

    [11]Y.Xu,et al.,Research in Astron.Astrophys.15(2015)725.

    [12]C.J.Xia,G.X.Peng,E.G.Zhao,and S.G.Zhou,Phys.Rev.D 93(2016)085025.

    [13]Z.F.Gao,H.Shan,W.Wang,and N.Wang,Astron.Nachr.338(2017)1066.

    [14]Y.Xu,et al.,Mon.Not.R.Astron.Soc.474(2018)3576.

    [15]C.J.Xia and S.G.Zhou,Nucl.Phys.B 916(2017)669.

    [16]C.Zhu,Z.F.Gao,X.D.Li,et al.,Mod.Phys.Lett.A 31(2016)1650070.

    [17]S.Tsuruta,Phd.Thesis,Columbia University(1964).

    [18]E.Flowers,M.Ruderman,and P.Sutherland,Astrophys.J.205(1976)541.

    [19]O.V.Maxwell,Astrophys.J.231(1979)201.

    [20]E.H.Gudmundsson,C.J.Pethick,and R.I.Epstein,Astrophys.J.272(1983)286.

    [21]D.Page and J.H.Applegate,Astrophys.J.394(1992)17.

    [22]A.D.Kaminker,P.Haensel,and D.G.Yakovlev,Astron.Astrophys.373(2001)L17.

    [23]D.G.Yakovlev,et al.,Nucl.Phys.A 752(2005)90.

    [24]C.Kouvaris,Phys.Rev.D 77(2008)023006.

    [25]D.Blaschke,H.Grigorian,D.N.Voskresensky,and F.Weber,Phys.Rev.C 85(2012)022802.

    [26]X.L.Mu,H.Y.Jia,X.Zhou,and H.Wang,Astrophys.J.846(2017)140.

    [27]J.M.Lattimer,C.J.Pethick,M.Prakash,and P.Haensel,Phys.Rev.Lett.66(1991)2701.

    [28]P.Haensel and O.Y.Gnedin,Astron.Astrophys.290(1994)458.

    [29]M.E.Gusakov,Astron.Astrophys.389(2002)702.

    [30]Y.Xu,et al.,Chin.Phys.Lett.28(2011)079701.

    [31]Y.Xu,et al.,Commun.Theor.Phys.56(2011)521.

    [32]X.Zhou,M.Kang,and N.Wang,Chin.Phys.C 37(2013)085101.

    [33]Y.Xu,et al.,Chin.Sci.Bull.59(2014)273.

    [34]X.Zhou,H.Jia,B.Hong,et al.,Int.J.Mod.Phys.D 26(2017)1750077.

    [35]M.Prakash,et al.,Astrophys.J.390(1992)77.

    [36]J.M.Lattimer,K.A.van Riper,M.Prakash,and M.Prakash,Astrophys.J.425(1994)802.

    [37]J.Boguta and A.R.Bodmer,Nucl.Phys.A 292(1977)413.

    [38]J.Boguta,Phys.Lett.B 106(1981)250.

    [39]J.Boguta and H.Stocker,Phys.Lett.B 120(1983)289.

    [40]W.Pannert,P.Ring,and J.Boguta,Phys.Rev.Lett.59(1987)2420.

    [41]J.Schaffner and I.N.Mishustin,Phys.Rev.C 53(1996)1416.

    [42]F.Yang and H.Shen,Phys.Rev.C 77(2008)025801.

    [43]Y.Xu,et al.,Chin.Phys.Lett.30(2013)129501.

    [44]Z.F.Gao,N.Wang,H.Shan,et al.,Astrophys.J.849(2017)19.

    [45]P.B.Demorest,et al.,Nature(London)467(2010)1081.

    [46]J.Antoniadis,et al.,Science 340(2013)448.

    [47]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Phys.Rev.C 85(2012)065802.

    [48]T.Miyatsu,M.K.Cheoun,and K.Saito,Phys.Rev.C 88(2013)015802.

    [49]S.Weissenborn,D.Chatterjee,and J.Schaffner-Bielich,Nucl.Phys.A 914(2013)421.

    [50]L.L.Lopes and D.P.Menezes,Phys.Rev.C 89(2014)025805.

    [51]T.Takatsuka and R.Tamagaki,Nucl.Phys.A 738(2004)387.

    [52]J.J.Liu and D.M.Liu,arXiv:nucl-th/1711.01955.

    [53]J.J.Liu,Q.H.Peng,L.H.Hao,et al.,Research in Astron.Astrophys.17(2017)107.

    [54]Z.F.Gao,D.L.Song,Y.L.Liu,et al.,Accepted for Astron.Nachr.338(2017)1060.

    [55]Z.F.Gao,X.D.Li,N.Wang,et al.,Mon.Not.R.Astron.Soc.456(2016)55.

    [56]G.J.Mao,A.Iwamoto,and Z.X.Li,Chin.J.Astron.Astrophys.3(2003)359.

    [57]J.J.Liu and D.M.Liu,Chin.Phys.C 41(2017)125102.

    [58]Y.Xu,et al.,Chin.Phys.Lett.29(2012)059701.

    [59]J.R.Oppenheimer and G.M.Volko ff,Phys.Rev.55(1939)374.

    [60]R.C.Tolman,Phys.Rev.55(1939)364.

    [61]L.B.Leinson and A.P′erez,Phys.Lett.B 518(2001)15.

    [62]L.B.Leinson,Nucl.Phys.A 707(2002)543.

    [63]D.W.L.Sprung and P.K.Banerjee,Nucl.Phys.A 168(1971)273.

    [64]L.Amundsen and E.O/stgaard,Nucl.Phys.A 437(1985)487.

    [65]S.Nishizaki,T.Takatsuka,N.Yahagi,and J.Hiura,Prog.Theor.Phys.86(1991)853.

    [66]J.Wambach,T.L.Ainsworth,and D.Pines,Nucl.Phys.A 555(1993)128.

    [67]P.Slane,et al.,Astrophys.J.616(2004)403.

    [68]V.E.Zavlin,Astrophys.J.665(2007)L143.

    [69]J.P.Halpern,et al.,Astrophys.J.612(2004)398.

    [70]G.G.Pavlov,et al.,Astrophys.J.552(2001)129.

    [71]K.E.McGowan,et al.,Astrophys.J.600(2004)343.

    [72]V.E.Zavlin and G.G.Pavlov,Mem.Soc.Astron.Ital.75(2004)458.

    [73]A.Possenti,S.Mereghetti,and M.Colpi,Astron.Astrophys.313(1996)565.

    [74]O.Y.Kargaltsev,et al.,Astrophys.J.625(2005)307.

    [75]W.C.G.Ho,et al.,Astrophys.J.375(2007)821.

    猜你喜歡
    張曉軍
    小麥品系CH7034中耐鹽QTL定位
    作物學報(2022年10期)2022-07-21 03:14:30
    小長詩
    滇池(2022年4期)2022-03-24 01:43:42
    愛的直線
    小讀者(2021年8期)2021-11-24 05:59:50
    愛的直線
    啤酒里的“秘密”
    檢察風云(2021年21期)2021-01-13 08:23:49
    Neuroanatomy and morphological diversity of brain cells from adult crayfish Cherax quadricarinatus*
    愛的直線
    愛的直線
    故事會(2014年21期)2014-05-14 15:24:23
    最近最新中文字幕大全免费视频 | 亚洲精品一二三| 9色porny在线观看| 美女主播在线视频| 免费观看在线日韩| videos熟女内射| 亚洲av免费高清在线观看| 黑人猛操日本美女一级片| 人体艺术视频欧美日本| 国产高清三级在线| 国产精品成人在线| 午夜免费观看性视频| 久久精品夜色国产| 最近中文字幕高清免费大全6| av免费在线看不卡| 婷婷色麻豆天堂久久| 欧美变态另类bdsm刘玥| 国产精品国产三级国产专区5o| 王馨瑶露胸无遮挡在线观看| 欧美精品国产亚洲| 桃花免费在线播放| 婷婷色综合大香蕉| 国产成人精品在线电影| 一区二区日韩欧美中文字幕 | 成年动漫av网址| 亚洲少妇的诱惑av| 国产老妇伦熟女老妇高清| 久久99热这里只频精品6学生| 欧美少妇被猛烈插入视频| 国产一区亚洲一区在线观看| 国产精品偷伦视频观看了| 国产欧美亚洲国产| 午夜福利,免费看| 又黄又爽又刺激的免费视频.| 午夜福利视频在线观看免费| 最后的刺客免费高清国语| 黄片播放在线免费| 美女国产视频在线观看| 亚洲美女黄色视频免费看| 久久免费观看电影| 插逼视频在线观看| 国产在线免费精品| 18+在线观看网站| 久久狼人影院| h视频一区二区三区| av在线app专区| 韩国av在线不卡| 久久人人爽人人片av| 97精品久久久久久久久久精品| 日韩免费高清中文字幕av| 亚洲高清免费不卡视频| 美女内射精品一级片tv| 视频中文字幕在线观看| 搡老乐熟女国产| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区三区| 视频中文字幕在线观看| 欧美另类一区| 午夜激情久久久久久久| 午夜激情久久久久久久| 欧美少妇被猛烈插入视频| 精品久久蜜臀av无| 国产国语露脸激情在线看| 最新中文字幕久久久久| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久久大奶| 男女下面插进去视频免费观看 | 有码 亚洲区| 久久这里只有精品19| 91aial.com中文字幕在线观看| 免费人妻精品一区二区三区视频| 在线天堂最新版资源| 国产一区二区三区综合在线观看 | 色婷婷av一区二区三区视频| 国产成人aa在线观看| 久久精品久久精品一区二区三区| 少妇的逼好多水| 69精品国产乱码久久久| 中文欧美无线码| 国产精品一国产av| 一区在线观看完整版| 在线观看免费日韩欧美大片| 免费人妻精品一区二区三区视频| 婷婷色麻豆天堂久久| 街头女战士在线观看网站| 91午夜精品亚洲一区二区三区| 日韩人妻精品一区2区三区| 国产免费一级a男人的天堂| 亚洲成人av在线免费| 黑丝袜美女国产一区| 欧美日韩综合久久久久久| 亚洲成色77777| 免费大片黄手机在线观看| kizo精华| 国产精品国产av在线观看| 97在线人人人人妻| 午夜精品国产一区二区电影| 丰满饥渴人妻一区二区三| 99热6这里只有精品| 侵犯人妻中文字幕一二三四区| 国产激情久久老熟女| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品专区欧美| www.色视频.com| 蜜臀久久99精品久久宅男| 色94色欧美一区二区| 亚洲av在线观看美女高潮| 男女午夜视频在线观看 | 亚洲国产精品一区二区三区在线| 国产免费一级a男人的天堂| 高清黄色对白视频在线免费看| 最近最新中文字幕大全免费视频 | 大陆偷拍与自拍| 亚洲国产精品999| 亚洲国产日韩一区二区| 热99久久久久精品小说推荐| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 国产免费又黄又爽又色| 熟妇人妻不卡中文字幕| 国产无遮挡羞羞视频在线观看| 男人爽女人下面视频在线观看| 亚洲av免费高清在线观看| 夜夜骑夜夜射夜夜干| 美国免费a级毛片| 91精品伊人久久大香线蕉| 国产亚洲欧美精品永久| 自拍欧美九色日韩亚洲蝌蚪91| 日本vs欧美在线观看视频| 大片电影免费在线观看免费| 五月玫瑰六月丁香| 日韩中文字幕视频在线看片| 伦理电影免费视频| 91在线精品国自产拍蜜月| 91精品伊人久久大香线蕉| 精品卡一卡二卡四卡免费| 在现免费观看毛片| 欧美3d第一页| 99热这里只有是精品在线观看| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 久久久久精品人妻al黑| 波野结衣二区三区在线| 日本免费在线观看一区| 国产黄色免费在线视频| 五月伊人婷婷丁香| 亚洲欧洲国产日韩| 日韩中文字幕视频在线看片| 亚洲内射少妇av| 久久午夜综合久久蜜桃| 亚洲高清免费不卡视频| 国产老妇伦熟女老妇高清| 免费看av在线观看网站| 在线观看人妻少妇| 亚洲成av片中文字幕在线观看 | 丝瓜视频免费看黄片| 成年动漫av网址| 久久久久国产网址| 日韩人妻精品一区2区三区| 欧美bdsm另类| 有码 亚洲区| 亚洲色图综合在线观看| a级毛片黄视频| 妹子高潮喷水视频| 久久久a久久爽久久v久久| 人妻一区二区av| 最近最新中文字幕大全免费视频 | 99久久中文字幕三级久久日本| 国产精品女同一区二区软件| 我要看黄色一级片免费的| 黄色 视频免费看| 国产精品人妻久久久久久| 黑丝袜美女国产一区| 亚洲美女黄色视频免费看| 一级a做视频免费观看| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 午夜影院在线不卡| 性高湖久久久久久久久免费观看| 免费观看在线日韩| 国产极品粉嫩免费观看在线| 多毛熟女@视频| av卡一久久| 久久99热6这里只有精品| 精品亚洲乱码少妇综合久久| kizo精华| 制服丝袜香蕉在线| 亚洲av.av天堂| 亚洲精品av麻豆狂野| 久久人人爽人人片av| 日韩视频在线欧美| 亚洲成色77777| 国产精品无大码| 有码 亚洲区| 久久国内精品自在自线图片| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 久久久久久久久久人人人人人人| 国产 一区精品| 一边亲一边摸免费视频| 丝袜美足系列| 亚洲成人一二三区av| 国产一级毛片在线| 亚洲国产精品成人久久小说| 老熟女久久久| 日韩在线高清观看一区二区三区| 国产熟女欧美一区二区| 中文字幕人妻熟女乱码| 亚洲精品国产色婷婷电影| 曰老女人黄片| 黑人巨大精品欧美一区二区蜜桃 | 国产成人免费观看mmmm| 天美传媒精品一区二区| 亚洲人与动物交配视频| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 精品国产乱码久久久久久小说| 欧美少妇被猛烈插入视频| 国产片特级美女逼逼视频| 久久精品国产亚洲av天美| 人妻一区二区av| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久噜噜老黄| 一级a做视频免费观看| 午夜91福利影院| 久久久久久人人人人人| 蜜桃在线观看..| 交换朋友夫妻互换小说| 成人国语在线视频| 国产1区2区3区精品| 欧美成人午夜精品| 成年动漫av网址| 国产av码专区亚洲av| 国产极品粉嫩免费观看在线| 91在线精品国自产拍蜜月| 另类精品久久| 国产不卡av网站在线观看| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美精品济南到 | 亚洲婷婷狠狠爱综合网| 久久久久久久大尺度免费视频| kizo精华| 一级,二级,三级黄色视频| 日韩av免费高清视频| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| www.av在线官网国产| 大香蕉久久成人网| 日本猛色少妇xxxxx猛交久久| 午夜老司机福利剧场| 亚洲av在线观看美女高潮| 欧美日本中文国产一区发布| 黄片无遮挡物在线观看| 一级a做视频免费观看| 在线 av 中文字幕| 新久久久久国产一级毛片| av有码第一页| av视频免费观看在线观看| 亚洲欧美精品自产自拍| 亚洲色图 男人天堂 中文字幕 | 性色avwww在线观看| 久久久国产一区二区| 亚洲精品久久午夜乱码| 高清欧美精品videossex| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 久久久亚洲精品成人影院| 高清av免费在线| 五月天丁香电影| 亚洲伊人色综图| 捣出白浆h1v1| av在线观看视频网站免费| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩卡通动漫| 国产乱来视频区| 亚洲精品久久成人aⅴ小说| www.av在线官网国产| 视频在线观看一区二区三区| av免费在线看不卡| 午夜老司机福利剧场| 婷婷成人精品国产| 蜜桃在线观看..| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 亚洲成人手机| 丝瓜视频免费看黄片| 国产欧美亚洲国产| 日本与韩国留学比较| 成人影院久久| 在线免费观看不下载黄p国产| 久久这里有精品视频免费| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 久久精品国产综合久久久 | 国产一区二区三区av在线| 免费av中文字幕在线| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人精品一二三区| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 成年人免费黄色播放视频| 亚洲国产av影院在线观看| 丝袜美足系列| 三上悠亚av全集在线观看| 在线天堂中文资源库| 精品一区二区三区四区五区乱码 | 婷婷色麻豆天堂久久| 大片电影免费在线观看免费| 在现免费观看毛片| 在线观看免费视频网站a站| 男的添女的下面高潮视频| 97在线视频观看| 国产 精品1| 美女中出高潮动态图| 色94色欧美一区二区| 成人国产av品久久久| 乱码一卡2卡4卡精品| 亚洲一码二码三码区别大吗| 美女xxoo啪啪120秒动态图| 韩国精品一区二区三区 | 国内精品宾馆在线| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 免费日韩欧美在线观看| 午夜福利,免费看| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 在线观看国产h片| 自线自在国产av| 男女免费视频国产| 天美传媒精品一区二区| 久久亚洲国产成人精品v| www.熟女人妻精品国产 | 日韩成人av中文字幕在线观看| 蜜桃在线观看..| 久久久精品94久久精品| 免费看不卡的av| 久久久精品94久久精品| 精品一品国产午夜福利视频| 亚洲综合色网址| 又黄又爽又刺激的免费视频.| 国产成人免费观看mmmm| 欧美精品高潮呻吟av久久| 色吧在线观看| 国产日韩欧美在线精品| 亚洲内射少妇av| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 老女人水多毛片| 99热网站在线观看| 亚洲图色成人| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 国产成人91sexporn| 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 国产亚洲一区二区精品| 天天操日日干夜夜撸| www日本在线高清视频| 成年美女黄网站色视频大全免费| 男人爽女人下面视频在线观看| 寂寞人妻少妇视频99o| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人 | 久久婷婷青草| 国产亚洲最大av| 国产不卡av网站在线观看| 久久ye,这里只有精品| 亚洲精华国产精华液的使用体验| 国产综合精华液| 亚洲成av片中文字幕在线观看 | 美国免费a级毛片| 九九在线视频观看精品| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说| 99热全是精品| 亚洲天堂av无毛| 欧美成人精品欧美一级黄| 欧美日韩视频精品一区| 精品99又大又爽又粗少妇毛片| 免费播放大片免费观看视频在线观看| 十八禁高潮呻吟视频| av免费在线看不卡| 男人添女人高潮全过程视频| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 国产日韩一区二区三区精品不卡| 国产一区二区三区综合在线观看 | 久久99一区二区三区| 免费日韩欧美在线观看| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 久久99蜜桃精品久久| 激情视频va一区二区三区| 国产 一区精品| 中文字幕亚洲精品专区| 久久久久久伊人网av| 一个人免费看片子| 色哟哟·www| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡| 国产欧美亚洲国产| 一级毛片我不卡| 成年美女黄网站色视频大全免费| 国产成人aa在线观看| freevideosex欧美| 晚上一个人看的免费电影| 99香蕉大伊视频| 精品99又大又爽又粗少妇毛片| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 久久人人爽人人爽人人片va| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 波野结衣二区三区在线| 女性被躁到高潮视频| 国产精品 国内视频| 黄网站色视频无遮挡免费观看| 成人黄色视频免费在线看| 久久久久久人妻| 亚洲av男天堂| 欧美97在线视频| 丰满乱子伦码专区| 亚洲精品美女久久av网站| 丝袜美足系列| 国产成人精品无人区| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 乱码一卡2卡4卡精品| 一级片'在线观看视频| 赤兔流量卡办理| 综合色丁香网| 90打野战视频偷拍视频| 五月天丁香电影| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美| 一本—道久久a久久精品蜜桃钙片| 男女无遮挡免费网站观看| 狂野欧美激情性xxxx在线观看| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 在线天堂最新版资源| 国产精品久久久久久精品电影小说| 这个男人来自地球电影免费观看 | 少妇熟女欧美另类| 99热国产这里只有精品6| 国产亚洲精品第一综合不卡 | 日本黄色日本黄色录像| 午夜福利影视在线免费观看| 伊人亚洲综合成人网| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 午夜免费观看性视频| 黄片播放在线免费| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| 桃花免费在线播放| 成年女人在线观看亚洲视频| 国产亚洲最大av| 在线天堂中文资源库| 性色avwww在线观看| 久久久久久久久久久久大奶| 国产精品久久久久久久久免| 亚洲一级一片aⅴ在线观看| 午夜视频国产福利| 久久精品久久精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 秋霞在线观看毛片| 最新中文字幕久久久久| 午夜影院在线不卡| 中国国产av一级| 国产白丝娇喘喷水9色精品| 久久国内精品自在自线图片| 欧美日韩成人在线一区二区| av线在线观看网站| 少妇的逼好多水| 亚洲成av片中文字幕在线观看 | 久久精品夜色国产| 观看av在线不卡| 精品亚洲成a人片在线观看| 色5月婷婷丁香| 国产免费一区二区三区四区乱码| 边亲边吃奶的免费视频| 亚洲精品中文字幕在线视频| 精品一区二区三区四区五区乱码 | 一本—道久久a久久精品蜜桃钙片| 80岁老熟妇乱子伦牲交| 久久97久久精品| 天堂中文最新版在线下载| 99热全是精品| 亚洲伊人久久精品综合| 久久精品aⅴ一区二区三区四区 | 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 亚洲伊人色综图| 男女边吃奶边做爰视频| www.av在线官网国产| 国产精品熟女久久久久浪| 久久99蜜桃精品久久| 十八禁高潮呻吟视频| 免费av中文字幕在线| 黄色一级大片看看| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 在线观看人妻少妇| 成人18禁高潮啪啪吃奶动态图| 老司机影院毛片| 国产 精品1| 国产欧美日韩综合在线一区二区| 免费人成在线观看视频色| 精品少妇久久久久久888优播| av.在线天堂| 久久精品久久久久久久性| 七月丁香在线播放| 亚洲欧美成人精品一区二区| 丰满少妇做爰视频| 最新的欧美精品一区二区| 国产在线一区二区三区精| 男女高潮啪啪啪动态图| 伦理电影大哥的女人| 在线 av 中文字幕| 观看av在线不卡| 国产色婷婷99| 久久99热这里只频精品6学生| 亚洲第一区二区三区不卡| 欧美3d第一页| xxx大片免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 2021少妇久久久久久久久久久| 免费人妻精品一区二区三区视频| 午夜福利视频在线观看免费| 久久人人爽av亚洲精品天堂| 欧美xxⅹ黑人| 国产精品蜜桃在线观看| 少妇的逼好多水| 五月开心婷婷网| 日韩 亚洲 欧美在线| 亚洲美女视频黄频| 国产精品人妻久久久久久| 日韩欧美精品免费久久| 日本与韩国留学比较| tube8黄色片| 黄色怎么调成土黄色| 满18在线观看网站| 18禁动态无遮挡网站| 国产激情久久老熟女| 国产白丝娇喘喷水9色精品| 最近的中文字幕免费完整| www.色视频.com| a级片在线免费高清观看视频| 99九九在线精品视频| 免费人妻精品一区二区三区视频| 国产一区有黄有色的免费视频| xxxhd国产人妻xxx| 高清黄色对白视频在线免费看| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 老司机影院毛片| 三级国产精品片| 亚洲精品乱久久久久久| 国产探花极品一区二区| a 毛片基地| 极品人妻少妇av视频| 尾随美女入室| 老司机影院成人| 最新中文字幕久久久久| 国产又色又爽无遮挡免| 最近手机中文字幕大全| 日本av免费视频播放| 日韩电影二区| 王馨瑶露胸无遮挡在线观看| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 啦啦啦视频在线资源免费观看| 日韩av在线免费看完整版不卡| 亚洲国产精品国产精品| 天堂8中文在线网| 亚洲av日韩在线播放| 成年av动漫网址| 搡老乐熟女国产| 国产成人精品久久久久久| 在线亚洲精品国产二区图片欧美| av一本久久久久| 免费女性裸体啪啪无遮挡网站| 久久久久久人人人人人| av一本久久久久| 肉色欧美久久久久久久蜜桃| 久久久久久人人人人人| 国产片内射在线| 免费女性裸体啪啪无遮挡网站| 三上悠亚av全集在线观看| 久久ye,这里只有精品| 欧美xxⅹ黑人| 高清毛片免费看| 国产高清国产精品国产三级| 午夜福利在线观看免费完整高清在| 中文字幕亚洲精品专区| 成人影院久久| 亚洲av日韩在线播放| 老熟女久久久| 欧美日韩视频高清一区二区三区二| 交换朋友夫妻互换小说| 涩涩av久久男人的天堂| av在线播放精品| 2022亚洲国产成人精品| 亚洲第一av免费看| 一二三四中文在线观看免费高清| 亚洲一区二区三区欧美精品| 国产精品久久久av美女十八| 一二三四中文在线观看免费高清|