• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling Thermal Conduction by Graded Materials?

    2018-05-02 01:51:41QinJi季欽andJiPingHuang黃吉平
    Communications in Theoretical Physics 2018年4期

    Qin Ji(季欽)and Ji-Ping Huang(黃吉平)

    Department of Physics,State Key Laboratory of Surface Physics,and Key Laboratory of Micro and Nano Photonic Structures(MOE),Fudan University,Shanghai 200433,China

    Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    1 Introduction

    Thermal conductivity is the fundamental physical parameter that describes the ability of a material to conduct heat.How to design the distribution of thermal conductivities is particularly important for obtaining new kinds of thermal metamaterials[1?15](the concept of metamaterial has been widely adopted as a material structurally designed to have a new property or function other than naturally occurring materials or chemical compounds),like thermal cloaks,[1?2,5,7,9,16?17]thermal concentrators,[5,8]thermal transparency,[6]macroscopic thermal diodes,[10]and energy-free thermostat.[11]

    However,according to the transformation theory of thermal conduction(which is based on the fact that the thermal conduction equation ful fills form invariance under coordinate transformations),[1]all the thermal cloaks[1?2,5,7,9]and thermal concentrators[5,8]are essentially graded materials whose thermal conductivities vary along the radius.Moreover,their effective thermal conductivities equal to those of the host medium outside the cloak or concentrator.As a result,the existence of cloaks or concentrators does not affect the distribution of temperature or heat flux in the host medium,thus yielding a kind of thermal invisibility.This encourages us to ask a more general problem:what is the effective thermal conductivity of graded materials with arbitrary gradation pro files?This has not been touched in the literature due to the lack of suitable methods.In this work,we manage to solve this problem,in order to control or manipulate heat transfer with a different degree of freedom.

    2 Analytic Theory Based on a First-Principles Approach

    We consider a graded circular material with radius r0subjected to a uniform density of heat flux J0along the x-axis,the temperature distribution of the system satisfies the thermal conduction equation depending on time t,?·J+ρc(?T/?t)=Q.Here,J,T and Q represent the density of heat flux,temperature,and heat energy generated per unit volume per unit time,respectively.ρ denotes the mass density of the object and c is the specific heat capacity.Using the Fourier law,J= ?κ(r)?T(where κ(r)is the thermal conductivity of the material,which is a function of the position r along the radius,r≤r0),for static cases without internal heat sources,the above thermal conduction equation reduces into

    According to Eq.(1)in polar coordinates(r,θ),the temperature T satis fies

    If we write T=R(r)Θ(θ)to achieve the separation of variables,we obtain

    Without loss of generality,we set both r0and the thermal conductivity outside the material to be unit.If the thermal conductivity of the material has specific gradation pro files,the exact solution can be obtained by using the first-principles approach.For example,we give two examples in the following.

    2.1 Exact Solution for Thermal Conductivity Distributed in a Power-Law Pro file

    Assume that the thermal conductivity of the material increases outwards in a power-law form.In this case,κ(r)=arb(here a and b are two coefficients,b≥ 0;0≤r≤1),then Eq.(3)becomes

    Since this equation is homogeneous,the solution has the form as R(r)=rs.Substituting it into Eq.(5)yields

    In the far field where the host medium has a thermal conductivity of κm=1,the temperature is only determined bywhich means Tr→∞=?J0rcos(θ).In the material,the condition of convergence ensures that Tr→0= finite value.So the terms for s≥ 2 vanish.The temperature fields in the material and host medium are respectively given by

    The coefficients are determined by the associated boundary conditions,

    As a result,we obtain

    Since both the gradation pro file and the temperature boundary condition are symmetric,we concern more about the space variation of the temperature field along the x-axis,which can be written as

    To analyze the response of the material to the external temperature field,we introduce the effective thermal conductivity κe.If the thermal conductivity distributed in the material is replaced by the uniform thermal conductivity κe,the value and gradient of the temperature at the boundary between the material and host medium will not change.In this case,the thermal medium with κeshows a dipolar effect on the external temperature field.So we obtain

    where S denotes the area occupied by the material.Calculating the above equation gives

    If b=0,κ(r)is a constant,and s=1.Then we achieve the desired result,

    2.2 Exact Solution for Thermal Conductivity Distributed in a Linear Pro file

    We consider a linear gradation pro file κ(r)=cr+d for the graded material,where c and d are two coefficients.The analytic procedure is much the same as in Subsec.2.1.For the sake of simplicity,we set?r=(d/c)r.Then,the radial function follows

    The power series solution can be expressed as

    Substituting it into Eq.(15)yields

    The coefficient of each term should vanish.After solving the lowest term,we can easily get

    and the recursion relation

    The series should be convergent for seeking the exact solution.Therefore,we require the condition of linear profiles with a small slope,which means|d/c|>1.Whereafter,the temperature fields in the material(Ti)and host medium(Tm)are respectively given by

    where

    Here

    On the other hand,solving the temperature field along the x-axis yields

    The substitution of Eq.(23)into Eq.(12)yields the effective thermal conductivity

    where

    When c=0,κ(r)is a constant,and Eq.(24)reduces to the known case,

    Now we are allowed to compare the exact solutions(Eq.(13)and Eq.(24))with the results obtained from the differential equation(Eq.(30)),in order to validate the above DAM.The numerical integration has been done by the fourth-order Runge-Kutta algorithm.Figure 1 shows power-law and linear gradation pro files of κ(r)with various coefficients.Clearly the DAM(Eq.(30))agrees with the exact results predicted from Eq.(13)(Fig.1(a))and Eq.(24)(Fig.1(b)),as expected.It is worth noting that the linear solutions should satisfy the small slope condition,which causes the lack of solutions when d is relatively small;see Fig.1(b).

    Fig.1 (Color online)Effective thermal conductivity κefor two gradation pro files:(a) κ(r)=arband(b)κ(r)=cr+d.(a)κeversus a for different b;(b)κeversus d for different c.The solid lines denote the results calculated from the DAM(Eq.(30));the symbols are exact results predicted from(a)Eq.(13)and(b)Eq.(24).

    3 Differential Approximation Method(DAM):A Differential Equation Approach

    A graded material may be regarded differentially as a multi-layer structure.Let us start by considering a simple material that is composed of a homogeneous circular core(with thermal conductivity κc)plus a homogeneous circular shell(with κs).Solving Laplace’s equation and the associated boundary conditions yields the following expression for its effective thermal conductivity κe,

    where p is the area fraction of the core.For the sake of convenience,we rewrite Eq.(27)as

    On the other hand,we construct a graded material with radius r.Then,we encircle the material with a shell of infinitesimal thickness dr.The effective thermal conductivity changes from κe(r)to κe(r+dr).In this case,Eq.(28)helps to obtain

    Here κ(r)is the thermal conductivity of the shell.Then,we obtain a differential equation,

    Given the gradation pro file κ(r)and the initial condition when radius is close to zero,the effective thermal conductivity of the whole graded circular material,κe(r),can be achieved according to Eq.(30).This differential equation requires that the thermal conductivity of each shell cannot be zero,of which the first-order derivative should be continuous.

    Incidentally,the differential equation for the effective thermal conductivity of a graded spherical material can be readily obtained on the same footing,

    4 Computer Simulations Based on a Finite-Element Method

    By using COMSOL(https://www.comsol.com),we perform two-dimensional finite-element simulations to further con firm the validity of DAM.In the mean time,more detailed thermal responses of graded materials can be revealed.The basic parameters of our simulation system are set as follows.A graded circular material with the radius of 6 cm is embedded in the center of a square host medium with the side length of 20 cm.To maintain a uniform density of heat flux,the left side of the host medium holds a line hot source with temperature 313 K,while the right side 273 K.

    Figures 2(a),2(d),2(g)show the simulation results for three different power-law gradation pro files. Figurs 2(b),2(e),2(h)represent effective thermal materials of Figs.2(a),2(d),2(g)respectively,whose thermal conductivities are computed according to both Eq.(30)and Eq.(13)(the two equations give the same results).The thermal conductivity of the host medium in Fig.2(a),2(b),2(d),2(e),2(g),2(h)has the same value,which equals the effective thermal conductivity of the graded material shown in Fig.2(d).Accordingly,we observe the different temperature patterns within the host medium areas in Figs.2(a),2(d),2(g)or Figs.2(b),2(e),2(h).For more detailed comparison,Figs.2(c),2(f),2(i)display the calculated difference between Fig.2(a)and Fig.2(b),Fig.2(d)and Fig.2(e),and Fig.2(g)and Fig.2(h),respectively.Clearly,Figs.2(c),2(f),2(i)show the zero value outside the circular material region,which further con firms the validity of(and agreement between)Eq.(30)and Eq.(13).

    Fig.2 (Color online)Finite-element simulations for power-law gradation pro files.The color surfaces denote the distribution patterns of(a),(b),(d),(e),(g),(h)temperature and(c),(f),(i)temperature difference,as represented by the associated color bar.The thermal conductivity of the materials is(a)1.0r2,(b)10.36 W·m?1·K?1,(d)1.0r1,(e)3.09 W·m?1·K?1,(g)0.5r1,and(h)1.74 W·m?1·K?1;in(a),(b),(d),(e),(g),(h),the host medium has a thermal conductivity of 3.09 W·m?1·K?1.(c),(f),and(i)show the temperature difference between(a)and(b),(d)and(e),and(g)and(h),respectively.

    The layout of Fig.3 is roughly the same as Fig.2,but for the graded material with linear gradation pro files in Figs.3(a),3(d),3(g).The thermal conductivities of materials in Figs.3(b),3(e),3(h)are different,which respectively equal to the effective thermal conductivity of Figs.3(a),3(d),3(g)according to Eq.(30)or Eq.(13).Similarly,Fig.3(c),3(f),3(i)display the zero value outside the circle area,which also helps to validate Eq.(30)and Eq.(13).

    So far,both Figs.2 and 3 have shown that the DAM(Eq.(30))works well under the conditions of power-law or linear gradation pro files of thermal conductivity.Actually,the DAM is applicable for arbitrary gradation profiles,including multi-layer structures.See Fig.4.Figure 4 has the same layout as Fig.3,but displaying three multi-layer structures in Figs.4(a),4(d),4(g).The thermal conductivities adopted for the circular materials in Figs.4(b),4(e),4(h)are educed by the DAM(Eq.(30))for the multi-layer structures displayed in Fig.4(a),4(d),4(g)respectively.Note that by choosing the layer thicknesses appropriately,the effective thermal conductivities of the three multi-layer structures are exactly the same in Figs.4(a),4(d),4(g),as calculated by Eq.(30).Clearly,Figs.4(c),4(f),4(i)also display the zero value outside the multi-layer structure,which validates Eq.(30)for the multi-layer structure indeed.

    Fig.3 (Color online)Finite-element simulations for linear gradation pro files.The thermal conductivities of the host medium and the material are(a)5.64 W·m?1·K?1and 0.5r+4,(b)5.64 W·m?1·K?1and 5.64 W·m?1·K?1,(d)7.23 W·m?1·K?1and 1.0r+4,(e)7.23 W·m?1·K?1and 7.23 W·m?1·K?1,(g)10.39 W·m?1·K?1and 2.0r+4,and(h)10.39 W·m?1·K?1and 10.39 W·m?1·K?1.(c),(f)and(i)display the temperature difference between(a)and(b),(d)and(e),and(g)and(h),respectively.

    Fig.4 (Color online)Finite-element simulations for multi-layer pro files.In(a,d,g),the multi-layer material is made of two materials(with thermal conductivity 10 W·m?1·K?1and 90 W·m?1·K?1)in alternation:(a)two layers,(d)six layers,and(g)ten layers;the central layer of(a),(d),(g)has the thermal conductivity of 10 W·m?1·K?1.In(a),(b),(d),(e),(g),(h),the thermal conductivity of the host medium is 60 W·m?1·K?1.(c),(f)and(i)represent the temperature difference between(a)and(b),(d)and(e),and(g)and(h),respectively.

    5 Experiments Based on a Multi-Layer Circular Structure

    In order to further con firm the validity of the DAM(Eq.(30)),here we experimentally investigate a multilayer material. Our experimental design is shown in Figs.5(a),5(d).Figure 5(a)contains a six-layer material,which is made of two materials(copper and phosphor bronze)in alternation.For comparison,Fig.5(d)includes a homogeneous material(brass)with the thermal conductivity(109 W·m?1·K?1)equal to the effective thermal conductivity of the multi-layer material shown in Fig.5(a)calculated according to Eq.(30).The left-hand side of the host medium(copper)is connected with hot water,and the right-hand side immerged into cold water.A thermal imager is emplaced right above the multi-layer material.The experiment is conducted in the air.Air convection and thermal contact resistance are two possible factors affecting experimental accuracy,which,however,can be reduced by using appropriate approaches(e.g., fine welding).Figures 5(b),5(e)show the finite element simulations of Figs.5(a),5(d),respectively.Figures 5(c),5(f)exhibit the experimental results of Figs.5(a),5(d),respectively.Clearly the experimental results(Figs.5(c),5(f))echo with the simulation results(Figs.5(b),5(e)).Importantly,the temperature distribution patterns in Figs.5(b),5(c)are similar to those in Figs.5(e),5(f).This behavior indicates that our experimental results support the DAM(Eq.(30))indeed.

    Fig.5 (Color online)Experimental results of a multi-layer material.(a)Experimental structure,(b) finite element simulation of(a),and(c)experimental measurement results of(a).(d),(e)and(f)are the reference group of(a),(b)and(c),respectively.The thickness of the experimental structures shown in(a),(d)is 0.03 cm;other parameters are indicated in the figure.

    6 Discussion and Conclusions

    We have derived both a first-principles approach and a DAM(differential approximation method;Eq.(30))for calculating the effective thermal conductivity of a circular material whose thermal conductivity varies along the radius with specific or arbitrary gradation pro files.This equation(Eq.(30))has been con firmed by analytic theory(based on a first-principles approach),computer simulations(based on a finite-element method),and experiments(based on a multi-layer circular structure).

    Self-heating objects are common in nature,such as human bodies or electric equipments.Our DAM(Eq.(30))may hold for such self-heating cases under some conditions.For example,let us introduce a kind of self-heating multi-layer material and deduce the effective thermal conductivity.Here the self-heating means that the center of the multi-layer material is keeping at a constant temperature,which can be seen as another boundary condition in the thermal model.Meanwhile,the multi-layer material is located in a uniform density of heat flux along x-axis.What we aspire herein is that the thermal responses of the self-heating multi-layer material is just the same as a homogeneous material.On one hand,when there is no self-heating,we may resort to the DAM(Eq.(30)).The corresponding simulation results are shown in Figs.6(a),6(b),6(c).On the other hand,we need to make sure that the self-heating multi-layer material can be replaced by a homogeneous material.Considering the boundary conditions,we may derive the effective thermal conductivity κeat the view of the center of material as

    in which n is the total number of layers,and i is the serial number of each layer(with radius riand conductivity κi)of the multi-layer material from inside-out.Figures 6(d),6(e),6(f)show the simulation results.If the effective thermal conductivities calculated from the above two approaches(namely,Eq.(30)and Eq.(32))are coincidently identical,we can safely superpose the thermal effects induced by these two kinds of heat sources adopted in Figs.6(a),6(d).As a result,Fig.6(g)depicts a selfheating multi-layer material subjected to a uniform density of heat flux,which behaves just like a homogeneous material as shown in Figs.6(h)and 6(i).

    This work is useful for designing new thermal metamaterials(including or going beyond thermal cloaks and thermal concentrators)for controlling/manipulating heat transfer,say,yielding the behavior of thermal transparency[6]when thermal conductivities depend on temperature or not.[18]Also,it is helpful for interdisciplinary researches on other kinds of gradation pro files when Laplace’s equation governs the system.[19?21]

    Fig.6 (Color online)Finite element simulations for self-heating multi-layer materials.In(a),(b),(d),(e),(g),(h),the thermal conductivity of the host medium is 300 W·m?1·K?1.In(a),(d),(g),the 4-layer structure is made of materials with thermal conductivity 300,275,390 and 275 W·m?1·K?1from inside-out.(a)A 4-layer material(without self-heating)subjected to a uniform density of heat flux;(d)a self-heating 4-layer material;(g)a self-heating 4-layer material subjected to a uniform density of heat flux.In(b),the homogeneous circle’s thermal conductivity(300 W·m?1·K?1)is equal to the effective thermal conductivity of the multi-layer material shown in(a)determined by Eq.(30);in(e),the homogeneous circle’s thermal conductivity(300 W·m?1·K?1)equals the effective thermal conductivity of the multi-layer material shown in(d)determined by Eq.(32);in(h),the homogeneous circle’s thermal conductivity(300 W·m?1·K?1)equals the effective thermal conductivity of the multi-layer material shown in(g)determined by either Eq.(30)or Eq.(32).(c),(f)and(i)display the temperature difference between(a)and(b),(d)and(e),and(g)and(h),respectively.

    [1]C.Z.Fan,Y.Gao,and J.P.Huang,Appl.Phys.Lett.92(2008)251907.

    [2]T.Chen,C.N.Weng,and J.S.Chen,Appl.Phys.Lett.93(2008)114103.

    [3]J.Y.Li,Y.Gao,and J.P.Huang,J.Appl.Phys.108(2010)074504.

    [4]S.Guenneau,C.Amra,and D.Veynante,Opt.Express 20(2012)8207.

    [5]S.Narayana and Y.Sato,Phys.Rev.Lett.108(2012)214303.

    [6]X.He and L.Z.Wu,Phys.Rev.E 88(2013)033201.

    [7]R.Schittny,M.Kadic,S.Guenneau,and M.Wegener,Phys.Rev.Lett.110(2013)19590.

    [8]T.Han,J.Zhao,T.Yuan,et al.,Energy Environ.Sci.6(2013)3537.

    [9]T.Han,X.Bai,D.Gao,et al.,Phys.Rev.Lett.112(2014)054302.

    [10]Y.Li,X.Y.Shen,Z.H.Wu,et al.,Phys.Rev.Lett.115(2015)195503.

    [11]X.Y.Shen,Y.Li,C.R.Jiang,and J.P.Huang,Phys.Rev.Lett.117(2016)055501.

    [12]X.Y.Shen,Y.X.Chen,and J.P.Huang,Commun.Theor.Phys.65(2016)375.

    [13]Y.J.Xiang,S.C.Wen,X.Y.Dai,and D.Y.Fan,Phys.Rev.E 82(2010)056605.

    [14]A.Acreman,M.Kaczmarek,and G.D’Alessandro,Phys.Rev.E 90(2014)012504.

    [15]E.Reyes-Gomez,S.B.Cavalcanti,and L.E.Oliveira,Phys.Rev.E 91(2015)063205.

    [16]L.Z.Wu,J.Heat Transfer 137(2015)021301.

    [17]G.Q.Xu,H.C.Zhang,Q.Zou,and Y.Jin,Int.J.Heat and Mass transfer 109(2017)746.

    [18]Y.Y.Li,N.B.Li,and B.W.Li,Eur.Phys.J.B 88(2015)182.

    [19]L.Dong,G.Q.Gu,and K.W.Yu,Phys.Rev.B 67(2003)224205.

    [20]L.Dong,J.P.Huang,K.W.Yu,and G.Q.Gu,Eur.Phys.J.B 48(2005)439.

    [21]C.Z.Fan,Y.H.Gao,Y.Gao,and J.P.Huang,Commun.Theor.Phys.53(2010)913.

    欧美午夜高清在线| 欧美黄色淫秽网站| 亚洲人成77777在线视频| 午夜福利欧美成人| 国产又色又爽无遮挡免费看| 国产又色又爽无遮挡免费看| 岛国视频午夜一区免费看| 99在线人妻在线中文字幕| 精品一品国产午夜福利视频| 国产野战对白在线观看| 97人妻精品一区二区三区麻豆 | 国产精品香港三级国产av潘金莲| 12—13女人毛片做爰片一| 国产精品乱码一区二三区的特点 | 欧美日本亚洲视频在线播放| 亚洲少妇的诱惑av| 国产精品亚洲一级av第二区| 久久 成人 亚洲| 狂野欧美激情性xxxx| 日韩大码丰满熟妇| 18禁国产床啪视频网站| 欧美av亚洲av综合av国产av| 国产成人欧美| 久久国产精品影院| 欧美另类亚洲清纯唯美| 久久香蕉激情| 亚洲狠狠婷婷综合久久图片| 午夜免费观看网址| 亚洲国产毛片av蜜桃av| 侵犯人妻中文字幕一二三四区| 最新美女视频免费是黄的| 三级毛片av免费| 午夜精品在线福利| 亚洲无线在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品国产高清国产av| 亚洲精品国产色婷婷电影| 十分钟在线观看高清视频www| 色综合站精品国产| 午夜影院日韩av| 999久久久国产精品视频| 国产日韩一区二区三区精品不卡| 一区在线观看完整版| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 国产欧美日韩综合在线一区二区| 午夜福利视频1000在线观看 | 1024视频免费在线观看| 久久中文字幕一级| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文字幕一区二区三区有码在线看 | 黄色丝袜av网址大全| 丝袜人妻中文字幕| 淫秽高清视频在线观看| 国产精品免费一区二区三区在线| 色在线成人网| 亚洲全国av大片| 国产激情欧美一区二区| 国产精品二区激情视频| 女人高潮潮喷娇喘18禁视频| 黄网站色视频无遮挡免费观看| 国产免费男女视频| 波多野结衣巨乳人妻| 国内久久婷婷六月综合欲色啪| 国产成人一区二区三区免费视频网站| 色精品久久人妻99蜜桃| 叶爱在线成人免费视频播放| 欧美黄色片欧美黄色片| 国产野战对白在线观看| 午夜福利高清视频| 激情在线观看视频在线高清| 国产成人精品久久二区二区免费| 美女扒开内裤让男人捅视频| 国产成人一区二区三区免费视频网站| 精品国产一区二区久久| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 熟女少妇亚洲综合色aaa.| 天堂影院成人在线观看| 一级毛片精品| 久久久国产成人精品二区| 亚洲五月婷婷丁香| 最近最新免费中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 日日干狠狠操夜夜爽| 天天添夜夜摸| 美女高潮喷水抽搐中文字幕| 日韩欧美一区视频在线观看| 久久国产精品男人的天堂亚洲| 乱人伦中国视频| 国产99白浆流出| 午夜激情av网站| 热re99久久国产66热| 午夜久久久久精精品| 亚洲av电影不卡..在线观看| 精品国产一区二区久久| 一区二区三区精品91| 99国产精品一区二区蜜桃av| 国内毛片毛片毛片毛片毛片| 国产午夜精品久久久久久| 久久精品国产清高在天天线| 午夜福利18| 亚洲av成人不卡在线观看播放网| 免费在线观看影片大全网站| 日本黄色视频三级网站网址| 老熟妇乱子伦视频在线观看| 老司机深夜福利视频在线观看| 亚洲av成人一区二区三| 91在线观看av| 好看av亚洲va欧美ⅴa在| 亚洲欧美精品综合一区二区三区| 中文字幕人妻熟女乱码| 国产色视频综合| 免费搜索国产男女视频| 亚洲国产精品成人综合色| 国产成人精品无人区| а√天堂www在线а√下载| 啪啪无遮挡十八禁网站| 色播亚洲综合网| 男女床上黄色一级片免费看| 国产xxxxx性猛交| 日韩欧美国产一区二区入口| 久久久久国产一级毛片高清牌| 波多野结衣一区麻豆| 午夜福利在线观看吧| 51午夜福利影视在线观看| or卡值多少钱| 亚洲九九香蕉| 女性生殖器流出的白浆| 亚洲av美国av| 欧美日本中文国产一区发布| 亚洲成av片中文字幕在线观看| 亚洲第一青青草原| 欧美老熟妇乱子伦牲交| 国产私拍福利视频在线观看| 久久狼人影院| 欧美性长视频在线观看| 国产片内射在线| 久久青草综合色| 咕卡用的链子| 一边摸一边抽搐一进一出视频| 熟妇人妻久久中文字幕3abv| 一本大道久久a久久精品| 九色国产91popny在线| 中文字幕久久专区| 中文字幕高清在线视频| 看片在线看免费视频| 精品高清国产在线一区| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品一区二区免费欧美| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐动态| 国产精品 欧美亚洲| 欧美最黄视频在线播放免费| 手机成人av网站| 国产99白浆流出| 一区二区三区激情视频| 亚洲一区二区三区色噜噜| 精品人妻1区二区| 1024香蕉在线观看| 国产午夜精品久久久久久| 亚洲成人国产一区在线观看| 亚洲,欧美精品.| 一进一出好大好爽视频| 欧美老熟妇乱子伦牲交| 欧美黑人欧美精品刺激| 国产成人系列免费观看| 午夜福利高清视频| 大型黄色视频在线免费观看| 免费在线观看影片大全网站| 欧美日本亚洲视频在线播放| 欧美av亚洲av综合av国产av| 在线视频色国产色| 国产主播在线观看一区二区| 久久天堂一区二区三区四区| 精品国产美女av久久久久小说| 久久久国产欧美日韩av| 婷婷精品国产亚洲av在线| 国产又爽黄色视频| 国产高清激情床上av| 日本 av在线| 91麻豆精品激情在线观看国产| 亚洲久久久国产精品| 长腿黑丝高跟| 久久久久久国产a免费观看| 国产精品爽爽va在线观看网站 | 熟女少妇亚洲综合色aaa.| 欧美久久黑人一区二区| 看免费av毛片| 老司机深夜福利视频在线观看| 天堂影院成人在线观看| 大码成人一级视频| xxx96com| 国产伦一二天堂av在线观看| 亚洲一区中文字幕在线| 欧美日本亚洲视频在线播放| av电影中文网址| 亚洲国产高清在线一区二区三 | 桃色一区二区三区在线观看| 99在线视频只有这里精品首页| 国产av又大| 久久久国产成人精品二区| 午夜成年电影在线免费观看| 日日夜夜操网爽| 欧美激情久久久久久爽电影 | 欧美激情高清一区二区三区| 中国美女看黄片| 国产色视频综合| 一本久久中文字幕| 精品一区二区三区四区五区乱码| 老司机福利观看| 久久人妻av系列| 国产亚洲精品综合一区在线观看 | 国内毛片毛片毛片毛片毛片| 国产精品一区二区三区四区久久 | 在线十欧美十亚洲十日本专区| 757午夜福利合集在线观看| 变态另类成人亚洲欧美熟女 | cao死你这个sao货| 国产av又大| 国产麻豆69| 18禁裸乳无遮挡免费网站照片 | 精品电影一区二区在线| 村上凉子中文字幕在线| 中文字幕人妻丝袜一区二区| 一区二区日韩欧美中文字幕| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 国产成年人精品一区二区| 亚洲熟妇熟女久久| 久久人妻熟女aⅴ| 18禁裸乳无遮挡免费网站照片 | 制服人妻中文乱码| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 91成人精品电影| 欧美激情 高清一区二区三区| 黄色视频,在线免费观看| 国内精品久久久久久久电影| 亚洲精品av麻豆狂野| 免费在线观看视频国产中文字幕亚洲| 欧美国产精品va在线观看不卡| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 在线永久观看黄色视频| 国产三级黄色录像| 免费人成视频x8x8入口观看| 国产av又大| 女人被狂操c到高潮| 亚洲在线自拍视频| 搡老熟女国产l中国老女人| 国产精品乱码一区二三区的特点 | 欧美激情极品国产一区二区三区| 一夜夜www| 国产色视频综合| 国产单亲对白刺激| 久久影院123| 国产精品亚洲美女久久久| 精品国产亚洲在线| 搡老岳熟女国产| 长腿黑丝高跟| 电影成人av| 免费不卡黄色视频| 级片在线观看| 在线观看舔阴道视频| av免费在线观看网站| 一a级毛片在线观看| 淫秽高清视频在线观看| 日韩大码丰满熟妇| 精品日产1卡2卡| 9色porny在线观看| 欧美激情久久久久久爽电影 | 精品国产乱码久久久久久男人| 99riav亚洲国产免费| 大型av网站在线播放| 热99re8久久精品国产| 精品久久久久久久久久免费视频| 亚洲av成人一区二区三| 免费在线观看影片大全网站| 亚洲一区中文字幕在线| 天天躁夜夜躁狠狠躁躁| 天堂√8在线中文| 国产三级在线视频| 一a级毛片在线观看| 黄色成人免费大全| 99久久99久久久精品蜜桃| 精品福利观看| 少妇熟女aⅴ在线视频| 亚洲va日本ⅴa欧美va伊人久久| 成人国产一区最新在线观看| 可以免费在线观看a视频的电影网站| 欧洲精品卡2卡3卡4卡5卡区| 好看av亚洲va欧美ⅴa在| 日本撒尿小便嘘嘘汇集6| 午夜久久久久精精品| 国产熟女xx| 亚洲美女黄片视频| 精品久久久久久久毛片微露脸| 一级,二级,三级黄色视频| 国内精品久久久久久久电影| 正在播放国产对白刺激| 色播在线永久视频| 欧美亚洲日本最大视频资源| 在线观看一区二区三区| 亚洲人成77777在线视频| 禁无遮挡网站| 亚洲男人的天堂狠狠| 91老司机精品| 欧美国产精品va在线观看不卡| 日韩精品青青久久久久久| 宅男免费午夜| 欧美成人性av电影在线观看| 热99re8久久精品国产| 免费在线观看日本一区| 一区二区三区激情视频| 在线观看一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产精华一区二区三区| 午夜福利成人在线免费观看| 国产99久久九九免费精品| 欧美国产精品va在线观看不卡| 国产97色在线日韩免费| 亚洲欧美日韩高清在线视频| 悠悠久久av| 在线永久观看黄色视频| 国产一区二区三区在线臀色熟女| 99riav亚洲国产免费| 夜夜躁狠狠躁天天躁| 亚洲伊人色综图| 黄片小视频在线播放| 波多野结衣一区麻豆| 好看av亚洲va欧美ⅴa在| 午夜影院日韩av| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| av视频免费观看在线观看| 青草久久国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲自拍偷在线| 久久久久久久精品吃奶| www.精华液| 免费在线观看影片大全网站| 国产一区二区三区综合在线观看| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点 | 国产精品美女特级片免费视频播放器 | 国产一区二区三区在线臀色熟女| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 美国免费a级毛片| 国产三级在线视频| 天堂√8在线中文| 制服诱惑二区| 熟女少妇亚洲综合色aaa.| 不卡av一区二区三区| 午夜影院日韩av| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 精品久久久久久久久久免费视频| 曰老女人黄片| 在线观看一区二区三区| 男女下面插进去视频免费观看| 亚洲一区高清亚洲精品| 一本综合久久免费| 99国产极品粉嫩在线观看| 成人免费观看视频高清| av福利片在线| 国产成人免费无遮挡视频| 老司机靠b影院| 十八禁网站免费在线| 高清毛片免费观看视频网站| 色av中文字幕| 色婷婷久久久亚洲欧美| 久久人人精品亚洲av| 露出奶头的视频| 免费不卡黄色视频| 免费观看精品视频网站| 国产视频一区二区在线看| 免费av毛片视频| 久久精品成人免费网站| 亚洲精品国产一区二区精华液| 黄色成人免费大全| 亚洲av成人av| 在线观看日韩欧美| 国产激情欧美一区二区| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| 电影成人av| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 他把我摸到了高潮在线观看| а√天堂www在线а√下载| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av香蕉五月| 一级作爱视频免费观看| netflix在线观看网站| 亚洲自拍偷在线| cao死你这个sao货| xxx96com| 欧美日本亚洲视频在线播放| 一级片免费观看大全| 国产成人啪精品午夜网站| 18禁观看日本| 日本 欧美在线| 制服人妻中文乱码| 老汉色∧v一级毛片| 色综合站精品国产| 狂野欧美激情性xxxx| 欧美成人午夜精品| 国产一区二区激情短视频| 免费不卡黄色视频| 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| 亚洲色图 男人天堂 中文字幕| 成人欧美大片| 亚洲欧美日韩无卡精品| 中国美女看黄片| 久久青草综合色| 在线视频色国产色| 亚洲精品久久国产高清桃花| 精品一区二区三区av网在线观看| 999久久久精品免费观看国产| 国产一区二区激情短视频| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 99热只有精品国产| 午夜老司机福利片| 欧美激情久久久久久爽电影 | 午夜精品久久久久久毛片777| 精品久久久精品久久久| 久久人人精品亚洲av| 性色av乱码一区二区三区2| 日韩欧美国产在线观看| 午夜视频精品福利| 国产成人精品无人区| 欧美最黄视频在线播放免费| 日本欧美视频一区| bbb黄色大片| 亚洲自偷自拍图片 自拍| 丰满的人妻完整版| 国产欧美日韩综合在线一区二区| 757午夜福利合集在线观看| 老汉色av国产亚洲站长工具| 国产单亲对白刺激| 老汉色∧v一级毛片| 欧美激情高清一区二区三区| 精品国产乱子伦一区二区三区| 美女免费视频网站| 中国美女看黄片| 看免费av毛片| 亚洲欧美日韩无卡精品| 免费看十八禁软件| 国产激情久久老熟女| 亚洲中文字幕一区二区三区有码在线看 | 丝袜美足系列| 精品一品国产午夜福利视频| 国产97色在线日韩免费| 麻豆成人av在线观看| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 成年版毛片免费区| 天堂动漫精品| 久久久国产成人精品二区| 欧美不卡视频在线免费观看 | 两人在一起打扑克的视频| 免费无遮挡裸体视频| 91精品三级在线观看| 女人精品久久久久毛片| 亚洲五月色婷婷综合| 国产精品日韩av在线免费观看 | 悠悠久久av| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 免费女性裸体啪啪无遮挡网站| 久久伊人香网站| 精品电影一区二区在线| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频 | 国产高清激情床上av| 99精品久久久久人妻精品| 看黄色毛片网站| 男女午夜视频在线观看| 欧美成人一区二区免费高清观看 | av天堂久久9| 午夜免费成人在线视频| www.www免费av| 国产熟女xx| 午夜福利,免费看| 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 久久久久精品国产欧美久久久| 男人舔女人的私密视频| 啪啪无遮挡十八禁网站| 怎么达到女性高潮| 免费少妇av软件| 亚洲人成电影免费在线| 午夜激情av网站| 午夜福利免费观看在线| 成人18禁高潮啪啪吃奶动态图| 午夜免费成人在线视频| 麻豆av在线久日| 热re99久久国产66热| 他把我摸到了高潮在线观看| 精品国产一区二区久久| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| www.精华液| 人人妻人人澡欧美一区二区 | 一级黄色大片毛片| 国产精品av久久久久免费| 9色porny在线观看| 亚洲国产精品999在线| 真人一进一出gif抽搐免费| 欧美不卡视频在线免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 男女下面插进去视频免费观看| 国产亚洲精品av在线| 天堂√8在线中文| 欧美中文综合在线视频| 国产精品久久久久久亚洲av鲁大| 国产精品 国内视频| 可以在线观看毛片的网站| 精品一品国产午夜福利视频| 黄色片一级片一级黄色片| 在线观看66精品国产| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 亚洲成人精品中文字幕电影| 一区在线观看完整版| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 午夜久久久久精精品| 中文字幕人成人乱码亚洲影| 久久这里只有精品19| 日本免费一区二区三区高清不卡 | 看黄色毛片网站| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| av在线播放免费不卡| 国产麻豆69| 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 国产精品国产高清国产av| 免费高清在线观看日韩| 淫妇啪啪啪对白视频| 久久天堂一区二区三区四区| 性少妇av在线| 99国产极品粉嫩在线观看| 日本一区二区免费在线视频| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 韩国av一区二区三区四区| 99国产精品免费福利视频| 9色porny在线观看| av视频免费观看在线观看| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 级片在线观看| 色综合亚洲欧美另类图片| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 操出白浆在线播放| 午夜两性在线视频| 麻豆av在线久日| 亚洲熟女毛片儿| 18禁裸乳无遮挡免费网站照片 | 日韩一卡2卡3卡4卡2021年| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看 | 国产精品久久久av美女十八| 最好的美女福利视频网| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 母亲3免费完整高清在线观看| 一级黄色大片毛片| 在线观看午夜福利视频| 欧美日韩精品网址| av网站免费在线观看视频| 国产熟女xx| 香蕉丝袜av| 757午夜福利合集在线观看| 免费女性裸体啪啪无遮挡网站| 欧美绝顶高潮抽搐喷水| 久久中文字幕一级| 少妇熟女aⅴ在线视频| 亚洲五月天丁香| 国产亚洲av高清不卡| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片| 不卡一级毛片| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产主播在线观看一区二区| √禁漫天堂资源中文www| 国产精品久久久人人做人人爽| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 国产激情久久老熟女| 91麻豆精品激情在线观看国产| 高清在线国产一区| 深夜精品福利| 国产精品电影一区二区三区| 黄色视频不卡|