• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    2018-05-02 01:51:50HossienkhaniFayazJafariandYousefi
    Communications in Theoretical Physics 2018年4期

    H.Hossienkhani, V.Fayaz, A.Jafari, and H.Youse fi

    1Department of Physics,Hamedan Branch,Islamic Azad University,Hamedan,Iran

    2Department of Science,Hamedan University of Technology,Hamedan 65155,Iran

    1 Introduction

    The verification of the late-time acceleration of the universe(see Ref.[1]for a detailed discussion of the recent astronomical observations)has led to extensive research towards its explanation.This result is based on fitting a Friedman-Robertson-Walker type geometry,together with the corresponding cosmology,to the existing astronomical data.However,by taking into account the present day astronomical observational information,at this stage,the only model independent conclusion is that the observations do favor the pressureless Einstein-de Sitter model.According to recent observational data sets,[2?3]our current universe is flat and undergoing a phase of the accelerated expansion,which started about five billion years ago.In principle,this phenomenon can be explained by either dark energy(DE)(see,e.g.,Ref.[4]),in which the reason of this phenomenon is due to an exotic component with large negative pressure,or modified theories of gravity.[5]DE is believed to dominate the mass-energy budget of the universe,it violates the strong energy conditions and it can cluster at the largest accessible scale.But,aside from these two features,nothing is known for certain about the nature of DE,which has become a matter of intense debate.[6]Although the nature of neither dark matter(DM)nor DE is currently known,it is felt that both DM and DE are non-baryonic in origin,and that DM is distinguished from DE by the fact that the former clusters on sub-Megaparsec scales.Indeed,the need for DM was originally pointed out by Zwicky[7]who realized that the velocities of individual galaxies located within the Coma cluster were quite large,and that this cluster would be gravitationally bound only if its total mass substantially exceeded the sum of the masses of its component galaxies.Several independent techniques like cluster mass-to-light ratios[8]baryon densities in clusters[9]weak lensing of clusters[10]and the existence of massive clusters at high redshift[11]have been used to obtain a handle on DM.On larger scales,evidence for DM in clusters comes from gravitational lensing,[12]virial analyses,[13]or X-ray halos of hot gas.[14]Wang and Steinhardt[15]first argued that the cluster abundance can be used to probe the properties of DE,and Haiman et al.[16]showed that a survey with several thousand clusters can yield precise statistical constraints on both the DE densities and the equation of state.Since then,a series of papers has focused on the prospects of high yield cluster surveys as probes of DE model.[17]These papers also show that constraints from cluster surveys will be complimentary to those from cosmic microwave background(CMB)anisotropy and SNe Ia distance measurements.Thus far,the most successful candidate for DE is the cosmological constant Λ,which together with cold dark matter(CDM)and radiation form the standard cosmological model,ΛCDM.Besides the conventional choice of the cosmological constant,a good number of DE candidates,such as quintessence,kessence,phantom,tachyon,and Ricci DE,have been proposed in recent years to handle the issue of late time cosmic acceleration.[18?31]

    Recently the so-called QCD ghost DE(GDE)has been proposed in Refs.[32]–[34].The Veneziano ghost field plays a crucial role in the resolution of the U(1)a problem in QCD.[35]One clarification is that there are some DE models where the ghost plays the role of DE(see,e.g.,Ref.[36])and becomes a real propagating physical degree of freedom subjected to some severe constraints.In Ref.[37],the author discussed that the contribution of the Veneziano QCD ghost field to the vacuum energy is not exactly of order H and a subleading term H2appears due to the fact that the vacuum expectation value of the energy-momentum tensor is conserved in isolation.[38]It was argued that the vacuum energy of the ghost field can be written as H+O(H2),where the subleading term H2in the GDE model might play a crucial role in the early stage of the universe evolution,acting as the early DE.[39]It was investigated the GGDE model in the framework of Brans-Dicke cosmology in Ref.[40].There has been a lot of interest in recent years in establishing a connection between DE and scalar field models.[41]

    Scalar-tensor theories of gravity have experienced a resurgence of sorts,over the last twenty years.This is due in part to string theory,where the plethora of compactification moduli generically appear in the 4D effective theory with kinetic mixing with the graviton.Moreover,the discovery of accelerated expansion makes the possibility that General Relativity is modified on the largest scales plausible.The simplest model of a scalar-tensor theory is due to Brans and Dicke(BD).[42]But an interesting scalar field,“Galileon”,theory,[43]inspired by the decoupling limit of the Dvali-Gabadadze-Porrati(DGP)model[44]and its cosmological consequences,[45]was introduced.The self-interacting solution for Galileon gravity has been constructed in Ref.[46].Recently,Jamil et al.[47]and Ranjit et al.[48]have studied the observational constraints of some parameters in Galileon gravity.Also,Biswas and Debnath[49]have discussed the GGDE in Galileon gravity.All the above reasons motivate us to investigate the GGDE model with subleading term H2in the framework of FRW universe.

    It is natural to assume that the geometry at very early epoch more general than just the isotropic and homogeneous FRW.Although the universe,on large scale,seems homogeneous and isotropic at present,there is no observational data that guarantees the isotropy in an era prior to the recombination.In fact,it is possible to begin with an anisotropic universe,which isotropizes during its evolution.Fayaz et al.[50]discussed the perfect fluid and DE with time varying G and Λ in an anisotropic universe.We investigate the general theory of Galileon gravity about a Bianchi I(BI)background spacetime.We will try to generalize the work in Ref.[49]in order to obtain a general and we reconstructed field equations in the BI anisotropic space.Recently,Hossienkhani et al.[51]investigated the various DE models in a sense of BI model by considering a Brans-Dicke framework in,which there is a non-minimal coupling between the scalar field.Consequently,it would be worthwhile to explore anisotropic DE models in the context of Galileon theory.

    In this work,we have obtained some accelerating models in the framework of the Galileon gravity for an anisotropic BI universe.For this purpose,we consider theflat anisotropy BI universe.The arrangement for the paper is as follows.In Sec.2,we provide the preliminary formalism for Galileon gravity.The exact solutions of thefield equations are derived for an anisotropic BI universe in Sec.3.In Sec.4,we consider the GGDE model in the framework of Galileon gravity and we reconstruct the BI field equations of the GGDE model,which describes accelerated expansion.We obtain numerical solutions in Sec.5.Conclusions and discussions on our work are given in the last section.

    2 A Brief Galileon Gravity

    The Galileon gravity is described by the action[43,46,52?53]

    where R is the Ricci scalar curvature,? is the Galileon field and the coupling f(?)has dimension of length,(??)2=gμν?μ??ν?,?? =gμν?μ?ν?,and Lmstands for the matter Lagrangian.The matter Lagrangian does not depend on the Galileon field ?.The Einstein and field equations are given by[46,52]

    where Tμνis the energy-momentum tensor for matter.For the case of ω =0 and f(?)=r2M2p/?3(where Mpis the Planck scale and r is the crossover scale),the model reduces to the DGP braneworld.[54]

    3 Background Anisotropy Cosmology

    Recently,the existence of anisotropy at the early times is a natural phenomenon for investigation,based on theoretical arguments and observational data.Therefore,it considers models of a universe with an initially anisotropic background.The anisotropic Bianchi models may provide an adequate description of anisotropic phase in the history of the universe.The simplest models of the anisotropic universe are the BI model,which spatial sections are flat,but the scale factors are different in each direction.

    The anisotropic BI geometry is described by

    where A(t),B(t),and C(t)are the scale factors for each of the three spatial directions.It reduces to the FRW case when A(t)=B(t)=C(t)=a(t).Given this metric the connection components are

    where the over dot on the scale factors denotes differentiation with respect to time t.Now,we assume that the universe is filled with isotropic fluid i.e.,px=py=pz.In presence of anisotropy,the Einstein and field equations,Eqs.(2)and(3)give

    where ρΛand pΛare respectively,the energy density and pressure of DE.Defining the time-like hyper surfaceorthogonal vector u= ?/?t,we can define the generalized mean Hubble’s parameter,H,and the shear,σμν,as follows:

    where a=(ABC)1/3is the mean scale factor.The corresponding shear scalar and Ricci scalar become

    By using Eqs.(9),(10),(11),and(12),we can rewrite thefield equations(6),(7),and(8)as follows

    As above,Eqs.(13),(14),and(15)are independent equations,which have unknown parameters such as ?,H,f(?)and σ.Here,our task is to solve these equations simultaneously. To this end,we use the ansatz ?= ?(r,a(t))=S(a)P(r).It can be shown that,[55]in a cosmological background,P(r)=constant and we are led to ? = ?(a)=S(a).In BD theory 1/? plays the role of effective gravitational coupling G.Here,we assume ?=?0a?,[55]where ? is any integer,implies that=?H?.Also,since f(?)is the arbitrary function,so we may assume f(?)=1/(M2?2)[46,52]where M is the parameter of the model.From this we have,d lnf/d ln?=?2.So,Eq.(13)leads to

    where

    It is straightforward to show that this equation of motion reduces to the Einstein gravity in the limiting case corresponding to ?=0(γ1=1,γ2=0).

    4 Bianchi Type I Field Equations and Generalized Ghost Dark Energy in Galileon Cosmology

    In the Galileon gravity,the GGDE can be assumed as[56?58]in the following form

    where α is a constant of order(with ΛQCDbeing the QCD mass scale)and β is another constant parameter of the model with dimension of[energy]2.In the original GDE(β =0)with ΛQCD~ 100 MeV and H ~ 10?33eV,gives the right order of magnitude~(3×103eV)4for the observed DE density.[33]In the GGDE,β is a free parameter and can be adjusted for better agreement with observations.In this work we are interested to suggest a phenomenological modification of the generalized ghost DE and investigate cosmological consequences of such modification.As usual the fractional energy densities are defined as

    where the critical energy density(i.e.,the energy density required in order to obtain flatness)is given by ρcr=6?H2(γ1? H2γ2).Thus,the BI equation can be rewritten as follows:

    In noninteracting scenario the energy conservation laws for spatially non-isotropic universe are as follows

    where ωΛ=pΛ/ρΛis the equation of state parameter of DE.Differentiating Eq.(16)with respect to time,we obtain

    Taking the derivative of Eq.(17)with respect to time i.e.,˙ρΛ=3(?˙H(α+2βH)+˙?H(α+βH))and using Eqs.(20)and(23),the EoS parameter can be obtained as

    Using Eqs.(18),(19),(20),and(21)and with the help of u= ρm/ρΛ=(1??σ??Λ)/?Λ,we find

    A case of particular interest is that when ? is small whereas ω is high so that the product ?ω results of order unity.[61?62]This is interesting because local astronomical experiments set a very high lower bound on ω;[63]in particular,the Cassini experiment implies that ω >104.[5,64]Also,Sheykhi et al.[40]obtained the result for the value of ? is ?<0.01.The GGDE model in Galileon framework has an interesting feature compared to the GGDE model in BI universe.Also,the deceleration parameter is obtained as

    where ξ is given by β/α.In the absence of Galileon scalar field,i.e.,for ?=0(γ1=1,γ2=0)and the original GDE(ξ= β =0)we obtain[59?60]

    When ?= β =0 we obtain the deceleration parameter in BI models for the original GDE[59]

    We can also obtain the evolution behavior of the DE.Taking the derivative of Eq.(18),we find

    Substituting q from Eq.(26)into Eq.(28)and using relationit follows that

    This is the equation of motion governing the evolution of GGDE in the framework of Galileon gravity.In the limit of standard cosmology ?=0 and σ = β =0,Eq.(29)reduces to its respective expression in GDE model.[65]

    5 Numerical Solutions

    It is easy to solve numerically for the intermediate regime between the early-time solution and the late-time accelerating one.We can solve Eqs.(13)–(15)numerically with appropriate initial conditions.We set initial conditions at GGDE domination and found the appropriate set of initial conditions in order to get acceleration at present time(defined by M=0.024 H0for ω = ?500).We computed the comoving distance r(z)=∫z0dz′/H(z′),for different ?σ0as a function of redshift z(:=1/a ? 1),which is plotted in Fig.1.For all values of ?σ0,the background evolution in GGDE BI and the GDE of FRW models in Galileon cosmology is almost indistinguishable from the ΛCDM model.Due the quintessence behaviour ωΛ> ?1(see Fig.4),the distance is smaller than in ΛCDM.This behavior can be explained by taking into account the evolution of Hubble parameter in Fig.2.The Hubble parameter is larger in the GGDE of the BI models,it takes intermediate values in the GDE of FRW and the smallest expansion appears to be in the ΛCDM model.Therefore the distance r(z)for the GGDE will always fall behind the GDE model in Galileon cosmology.The values of H(z)are fully compatible with ΛCDM,constraining the expansion rate very firmly.We analyze the model,using observed value of Hubble parameter at different redshifts(28 data points)listed in observed Hubble data by“SVJ”,“Clustering” and “DA” measurement are in the range of 0≤ z≤ 1.96[67?69]The Hubble parameter H(z)and the standard error σ′(z)for different values of redshift z are given in Table 1.Also from Fig.2,we can clearly see that for different ?σ0parameter values the process of cosmic evolution looks quite similar,that is,the bigger the value of the ?σ0parameter,the best the value of the Hubble expansion rate H(z).In other words,according to the curves,BI model shows that universe evolution(accelerated expansion)much faster than FRW universe.This implies that the BI model would play a more important role for constraining the models with more parameters.Note that the ΛCDM model Hubble’s parameter is H=H0(?m0(1+z)3+?σ0(1+z)6+?Λ)1/2and the EoS of DE is fixed to be ωΛ= ?1.The current fit value from cosmological observations is ?Λ=0.73±0.04.[70]For the ΛCDM cosmology,?m0is chosen to be 0.274 as given by the WMAP five-year observations.[71]The Hubble parameter is bigger in these models,which is compared to the ΛCDM universe.Therefore,from the above analysis,we will figure out that the parameters,?σ0,ξ and ω,can impact the cosmic expansion history in the GDE and GGDE of Galileon theory in BI model.

    Table 1 The Hubble parameter H(z)and the standard error σ′(z)for different values of redshift z.

    In Fig.3 we show the evolution of the DE density parameter ?Λand DM density parameter ?mas a function of the cosmic redshift z for three different values of the anisotropy energy density parameter ?σ0.The evolution of ?Λand ?mdepends on the value of the parameter ?σ0.From this figure it can be concluded that for smaller values of ?σ0the evolution of ?Λand ?mwill be flatter.

    Fig.1 The comoving distance r(z)as a function of redshift for different values of ?σ0.

    Fig.2 Comparison of the ΛCDM and GGDE models in the framework of Galileon gravity with the current H(z)measurements versus redshift z for different value of the anisotropy energy density parameter ?σ0,by considering H0=72 km·s?1·Mpc?1,[66]?m0=0.27,=0.69,ξ=0.1,?=0.003 and M=0.024H0.The data points with errorbars,and theoretical lines for different DE models and the observational H(z)data.[67?69]

    Fig.3 Evolutions of ?Λ and ?mversus the redshift for different ?σ0.Lines showing values increasing with z is ?m,and the decreasing lines are for ?Λ.The rest of parameters are as in Fig.2.

    The GGDE model in Galileon cosmology has an interesting feature compared to the GGDE and GDE models in Einstein’s gravity.Choosing ?Λ=0.72 for the present time,this inequality valid provided we take ?=0.003,which is consistent with observations.This indicates that one can generate a quintessence-like EoS for the GGDE in the Galileon framework.We see that for all value of?σ0,the EoS parameter for ghost and generalised ghost DE models is always bigger than ωΛ= ?1 and remains in the quintessence regime,i.e.,ωΛ>?1 as shown in Fig.4.

    Fig.4 Evolution of the EoS parameter ωΛ(z)as a function of cosmic redshift z for the different value of the anisotropy energy density parameter ?σ0.As shown in the legend,the ghost DE is indicated by GDE,generalised ghost DE by GGDE.The same parameters as in Fig.2 are used.

    Fig.5 Evolution of q(z)in terms of z for the GDE and GGDE of Galileon theory with different ?σ0and ΛCDM model with ?m0=0.3 and=0.7.

    Fig.6 Time evolution of the shear scalar with respect to the scale factor a for both of GDE and GGDE of Galileon cosmology with σ0=0.05[72]for H0=72 km·s?1·Mpc?1, ?m0=0.27, ?0Λ =0.69, ξ=0.1,?=0.003,and M=0.024H0.

    We figure out that the behaviour of the deceleration parameter for the best- fit universe is quite different from the ΛCDM cosmology as shown in Fig.5.We can also see that the best fit values of transition redshift and current deceleration parameter with ghost and generalized DE of Galileon theory are z=and q0=which is matchable with the observations[73]while for the case of ΛCDM,where z ~ 0.67 and q0= ?0.54.We can see that increasing ?σ0increases the value of q(z).

    Fig.7 The evolution of the anisotropy parameter σ/H with respect to the scale factor a in a Galileon cosmology with σ0=0.05.[72]It becomes almost constant during the anisotropic inflationary phase.Then it falls rapidly down to O(σH).The initial data is same as in Fig.6.

    The evolution of the σ is plotted in Fig.6.From Fig.6,it can be observed that evolution of shear depends on the initial conditions.Signature change of shear can be seen for both GDE and GGDE in the Galileon framework.Also,the shear scalar becomes negligible at late times and σ of GDE decreases slowly for walls compared to the GGDE.Finally we have considered,the model isotropize.The measure of the anisotropy is described by σ/H,describe the magnitude of the spacetime shear per the average expansion rate.However,as shown in Fig.7,during the inflationary phase,we find that the effect of shear cannot become as large as the Hubble parameter and the shear decreases at the end of the inflation.In other words,it becomes almost constant during the anisotropic inflationary phase.Then it falls rapidly down to O(σH).

    5.1 Statefinder Parameters

    In order to distinguish between the numerous dark energy models,et al.[76]proposed a cosmological diagnostic pair{r,s},which is known as statefinder parameters.Since the two parameters are derived from the cosmic scale factor alone,they are dimensionless and geometrical in nature.The diagnostic pair is defined as follows:

    where q′=dq/dz and q is given by Eq.(26). The statefinder is a “geometrical”diagnostic in the sense that it depends upon the expansion factor and hence upon the metric describing space-time.As demonstrated in Refs.[77–78],the statefinder diagnostic can be effectively differentiate between a wide variety of DE models.We will soon see that it has a remarkable property for the basic flat ΛCDM BI model.The statefinder parameter s is a linear combination of r and q.In the{r,s}plane,s>0 corresponds to a quintessence-like model of DE and s<0 corresponds to a phantom-like model of DE.In Fig.8,we have studied the statefinder trajectories in the GGDE of Galileon gravity for the three cases we considered in this paper and we have observed that the flat ΛCDM point is attainable.The statefinder diagnostic can be discriminate between various DE models effectively.The r-s plane shows the GGDE behavior,ΛCDM limit and phantom and will also approach to quintessence behavior(see Fig.8(a)).When the anisotropy is absent(or FRW model),the endpoints of the r(s)curves could not arrive at the ΛCDM fixed point(1,0),though all of the evolution trajectories tend to approach this point.We have also studied the evolutionary behavior in the r-q plane in Fig.8(b).It shows that both ΛCDM and GGDE of Galileon gravity commence evolving from the same point in the past correspond to a matter dominated SCDM universe(r=1,q=0.5).As the universe is evolving,the value of r will be decreased from one.The star in the figure also corresponds to the ΛCDM fixed point and the dots marked on the curves represent the present values of the statefinder parameters.In Table 2 we have computed different values of r,s and q for the current universe(a=1)and for different choices of ?σ0.

    Table 2 Today’s values of r,s,q.

    6 Conclusion

    In this paper,we have constructed the BI metric(which is spatially homogeneous and anisotropic)in the framework of the Galileon theory of gravity considering the GGDE model.We have discussed primary characters by choosing values of the parameters ? and ω and different values of the anisotropy energy density parameter ?σ0,and the discussion is summarized as follows.

    We reconstructed the field equations of GGDE of Galileon theory in an anisotropic universe.With these considerations,we have evaluated the EoS,deceleration,and the evolution of the density parameter for GGDE models. We have also assumed that the evolution of the scalar field is related to that of the scale factor as ? ~ a?.First of all,the EoS parameter ωΛof the GGDE in Galileon theory with all values of ?σ0approaches to quintessence behavior.Then,the evolution of GGDE density parameter ?Λdepends on the anisotropy density parameter ?σ0.On the basis of the above considerations,it seems reasonable to investigate an anisotropic Universe,in,which the present cosmic acceleration is followed by a decelerated expansion in an early matter dominant phase.In other words,it indicates that the values of transition scale factor and current deceleration parameter areandfor the case of GGDE with Galileon theory while for the case of ΛCDM model,z=0.67 and q0= ?0.54,which is consistent with observations.[74?75]We have used the Hubble parameter versus redshift data to constrain cosmological parameters of GDE and GGDE of Galileon cosmology in BI universe.We found that,by choosing appropriate values of constant parameters,we figure out our model has more agreement with observational data than ΛCDM.Furthermore,we show that in an anisotropic universe with GGDE of Galileon cosmology,the Hubble parameter is greater than GDE of FRW and the ΛCDM models.Also,in the GGDE of BI model,the comoving distance evolves more slowly compared to the GDE of FRW in Galileon theory(see in Fig.1).Finally,we have studied the evolution of the σ and σ/H as shown in Figs.6 and 7.Although the shear is constant during the inflation,it can fall at the end of the inflation.Moreover,we have seen that the anisotropy of the universe σ/H can increase to O(1)at the end of the inflation.We have investigated the behavior of the state finder parameters r and s.These serve the purpose of distinguishing the model under consideration with other models,presenting a unique nature to it(the model).In other words,we can obtain various well-known limits through r-s and r-q planes such as,ΛCDM limit(r,s)=(1,0),de Sitter limit(r,q)=(1,?1),SCDM(r,q)=(1,0.5),phantom and quintessence DE eras(s<0 and s>0).In the case of GGDE model in Galileon theory,the trajectories of r-s plane with all values of ?σ0=0 approaches to quintessence behavior as well as ΛCDM limit as shown in Fig.8(a).But for the limiting case of ?σ0≠0 it shows the ΛCDM limit and phantom and also approaches to quintessence behavior.Also,the r-q plane has been used for discussion on the evolutionary property of the Galileon gravity(see in Fig.8(b)).

    Fig.8 (a)Evolutionary trajectory in the statefinder r-s plane for GGDE of Galileon gravity in the cases of?σ0=0,0.04 and 0.08,respectively.The ΛCDM model corresponds to a fixed point{1,0}.(b)Evolution trajectory in the statefinder r-q plane for GGDE of Galileon gravity,and a star denotes the the ΛCDM model fixed point{1,?0.54}.[73]Color dots locate the current values of the statefinder pair r0,s0,q0.Selected curves of are plotted by fixing H0=72 km·s?1·Mpc?1,?m0=0.27,=0.69,ξ=0.1,?=0.003,and M=0.024H0.

    [1]M.Betoule,R.Kessler,J.Guy,et al.,[SDSS Collaboration],A&A 568(2014)A22.

    [2]A.G.Reiss,A.V.Filippenko,P.Challis,et al.,Astron.J.116(1998)1009.

    [3]S.Perlmutter,G.Aldering,G.Goldhaber,et al.,Astro-phys.J.517(1999)565.

    [4]E.J.Copeland,M.Sami,and S.Tsujikawa,Int.J.Mod.Phys.D 15(2006)1753.

    [5]C.Brans and R.H.Dicke,Phys.Rev.124(1961)925;G.Dvali,G.Gabadadze,and M.Porrati,Phys.Lett.B 485(2000)208.

    [6]T.Padmanbhan,Phys.Rep.380(2003)245;V.Sahni,Lect.Notes Phys.653(2004)141;J.A.S.Lima,Braz.J.Phys.34(2004)194.

    [7]F.Zwicky,Helv.Phys.Acta 6(1933)110.

    [8]R.G.Carlberg,H.K.C.Yee,and E.Ellingson,Astrophys.J.478(1997)462.

    [9]J.J.Mohr,B.Mathiesen,and A.E.Evrard,Astrophys.J.517(1998)627.

    [10]G.Wilson,N.Kaiser,and G.A.Luppino,Astrophys.J.556(2001)601.

    [11]N.A.Bahcall and X.Fan,Proc.Natl.Acad.Sci.95(1998)5956.

    [12]Y.Mellier,ARA&A 37(1999)127.

    [13]R.G.Carlberg,H.K.C.Yee,E.Ellingson,et al.,Astrophys.J.462(1996)32.

    [14]D.A.White and A.C.Fabian,Mon.Not.R.Astron.Soc.273(1995)72.

    [15]L.Wang and P.J.Steinhardt,Astrophys.J.508(1998)483.

    [16]Z.Haiman,J.J.Mohr,and G.P.Holder,Astrophys.J.553(2001)545.

    [17]G.P.Holder,Z.Haiman,and J.J.Mohr,Astrophys.J.560(2001)L111;W.Hu and A.V.Kravtsov,Astrophys.J.584(2003)702;W.Hu,Phys.Rev.D 67(2003)081304;J.Weller,R.A.Battye,and R.Kneissl,Phys.Rev.Lett.88(2002)1301.

    [18]R.R.Caldwell,M.Kamionkowski,and N.N.Weinberg,Phys.Rev.Lett.91(2003)071301.

    [19]R.R.Caldwell and P.J.Steinhardt,Phys.Rev.D 57(1998)6057.

    [20]P.J.Steinhardt,L.M.Wang,and I.Zlatev,Phys.Rev.D 59(1999)123504.

    [21]S.Capozziello,S.Carloni,and A.Troisi,Recent Res.Dev.Astron.Astrophys.1(2003)625.

    [22]M.Li,Phys.Lett.B 603(2004)1.

    [23]R.G.Cai,Phys.Lett.B 657(2007)228.

    [24]H.Wei and R.G.Cai,Phys.Lett.B 660(2008)113.

    [25]M.X.Luo and Q.P.Su,Phys.Lett.B 626(2005)7.

    [26]B.Feng,X.L.Wang,and X.M.Zhang,Phys.Lett.B 607(2005)35.

    [27]C.Gao,X.Chen,and Y.G.Shen,Phys.Rev.D 79(2009)043511.

    [28]Z.Zhang,S.Li,X.D.Li,et al.,JCAP 1206(2012)009.

    [29]J.Zhang,X.Zhang,and H.Liu,Eur.Phys.J.C 54(2008)303.

    [30]C.Armendariz-Picon,V.F.Mukhanov,and P.J.Steinhardt,Phys.Rev.Lett.85(2000)4438.

    [31]A.Sen,J.High Energy Phys.0207(2002)065;T.Padmanabhan,Phys.Rev.D 66(2002)021301.

    [32]F.R.Urban and A.R.Zhitnitsky,Phys.Lett.B 688(2010)9.

    [33]N.Ohta,Phys.Lett.B 695(2011)41.

    [34]R.G.Cai,Z.L.Tuo,H.B.Zhang,and Q.Su,Phys.Rev.D 84(2011)123501.

    [35]E.Witten,Nucl.Phys.B 156(1979)269;G.Veneziano,Nucl.Phys.B 159(1979)213.

    [36]F.Piazza and S.Tsujikawa,JCAP 0407(2004)004.

    [37]A.R.Zhitnitsky,Phys.Rev.D 86(2012)045026.

    [38]M.Maggiore,Phys.Rev.D 83(2011)063514.

    [39]R.G.Cai,Z.L.Tuo,Y.B.Wu,and Y.Y.Zhao,Phys.Rev.D 86(2012)023511.

    [40]A.Sheykhi,E.Ebrahimi,and Y.Yose fi,Can.J.Phys 91(2013)662.

    [41]X.Zhang,Phys.Lett.B 648(2007)1;A.Sheykhi,Phys.Lett.B 682(2010)329.

    [42]C.Brans and R.H.Dicke,Phys.Rev.124(1961)925.

    [43]A.Nicolis,R.Rattazzi,and E.Trincherini,Phys.Rev.D 79(2009)064036.

    [44]G.R.Dvali,G.Gabadadze,and M.Porrati,Phys.Lett.B 485(2000)208.

    [45]C.Deffayet,Phys.Lett.B 502(2001)199.

    [46]F.P.Silva and K.Koyama,Phys.Rev.D 80(2009)121301.

    [47]M.Jamil,D.Momeni,and R.Myrzakulov,Eur.Phys.J.C 73(2013)2347.

    [48]C.Ranjit,P.Rudra,and U.Debnath,Can.J.Phys 92(2014)1667.

    [49]M.Biswas and U.Debnath,Commun.Theor.Phys.65(2016)121.

    [50]V.Fayaz,H.Hossienkhani,and F.Felegary,Int.J.Theor.Phys.51(2012)2656.

    [51]H.Hossienkhani,V.Fayaz,and N.Azimi,Astrophys.Space Sci.362(2017)55;H.Hossienkhani,Astrophys.Space Sci.361(2016)216;V.Fayaz,H.Hossienkhani,A.Pasqua,et al.,Can.J.Phys.94(2016)201.

    [52]T.Kobayashi,H.Tashiro,and D.Suzuki,Phys.Rev.D 81(2010)063513.

    [53]C.Deffayet,G.Esposito-Farese,and A.Vikman,Phys.Rev.D 79(2009)084003.

    [54]N.Chow and J.Khoury,Phys.Rev.D 80(2009)024037.

    [55]N.Riazi and B.Nasr,Astrophys.Space Sci.271(2000)237.

    [56]W.Q.Yang,L.M.Song,Y.Y.Su,et al.,Mod.Phys.Lett.A 26(2011)191.

    [57]M.Sharif and S.Waheed,Astrophys.Space Sci.348(2013)261.

    [58]U.Debnath,Eur.Phys.J.Plus 129(2014)272.

    [59]H.Hossienkhani,Astrophys.Space Sci.361(2016)136;V.Fayaz,H.Hossienkhani,Z.Zarei,and N.Azimi,Eur.Phys.J.Plus 131(2016)22.

    [60]N.Azimi and F.Barati,Int.J.Theor.Phys.55(2016)3318.

    [61]N.Banerjee and D.Pav′on,Phys.Lett.B 647(2007)447.

    [62]A.Sheykhi,Phys.Lett.B 681(2009)205.

    [63]C.M.Will,Theory and Experiment in Gravitational Physics,Cambridge University Press,2nd ed.,Basic Books/Perseus Group,Cambridge(1993).

    [64]V.Acquaviva and L.Verde,JCAP 0712(2007)001.

    [65]A.Sheykhi and M.S.Movahed,Gen.Relativ.Gravit.44(2012)449.

    [66]D.N.Spergel,R.Bean,O.Dor′e,et al.,Astrophys.J.Suppl.170(2007)377.

    [67]J.Simon,L.Verde,and R.Jimenez,Phys.Rev.D 71(2005)123001.

    [68]C.Blake,et al.,Mon.Not.R.Astron.Soc.425(2012)405.

    [69]Y.L.Li,S.Y.Li,T.J.Zhang,and T.P.Li,Astrophys.J.789(2014)L15.

    [70]T.M.Davis,E.Mortsell,J.Sollerman,et al.,Astrophys.J.666(2007)716.

    [71]E.Komatsu,et al.,Astrophys.J.Suppl.180(2009)330.

    [72]P.K.Aluri,S.Panda,M.Sharma,and S.Thakur,JCAP 12(2013)003.

    [73]E.E.O.Ishida,et al.,Astropart.Phys,28(2008)547.

    [74]Y.G.Gong and A.Wang,Phys.Rev.75(2006)043520.

    [75]Y.S.Myung,Phys.Lett.B 652(2007)223;K.Y.Kim,H.W.Lee,and Y.S.Myung,Phys.Lett.B 660(2008)118.

    [76]V.Sahni,et al.,JETP 77(2003)201.

    [77]X.Zhang,Phys.Lett.B 611(2005)1.

    [78]S.Chattopadhyay,Proceedings of the National Academy of Sciences,India Section A:Physical Sciences 84(2014)87.

    欧美成人一区二区免费高清观看| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 日韩在线高清观看一区二区三区| 亚洲av中文字字幕乱码综合| 可以在线观看毛片的网站| 天堂网av新在线| 久久亚洲国产成人精品v| av在线蜜桃| 色吧在线观看| 老司机影院成人| 中文字幕人妻熟人妻熟丝袜美| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 男女边吃奶边做爰视频| 日本免费a在线| 91久久精品国产一区二区成人| 成人无遮挡网站| 毛片女人毛片| 1024手机看黄色片| 少妇人妻精品综合一区二区 | 欧美高清性xxxxhd video| 国产成人精品一,二区 | 精品久久久久久久久av| 淫秽高清视频在线观看| 国产视频首页在线观看| 青青草视频在线视频观看| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 久久久国产成人免费| 久久精品国产亚洲网站| 久久久国产成人精品二区| 成熟少妇高潮喷水视频| 在线播放国产精品三级| 成人欧美大片| av.在线天堂| 男的添女的下面高潮视频| 亚洲欧洲国产日韩| 国产三级在线视频| 色综合亚洲欧美另类图片| 97超视频在线观看视频| 中文字幕熟女人妻在线| 男人狂女人下面高潮的视频| 国产精品乱码一区二三区的特点| 国内揄拍国产精品人妻在线| 高清毛片免费观看视频网站| 天堂网av新在线| 亚洲欧美精品自产自拍| 丰满人妻一区二区三区视频av| 97热精品久久久久久| 日本三级黄在线观看| 99久久九九国产精品国产免费| av国产免费在线观看| 亚洲av第一区精品v没综合| 国产69精品久久久久777片| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 91精品国产九色| 不卡视频在线观看欧美| 亚洲美女视频黄频| 日韩高清综合在线| 国产视频内射| 一本精品99久久精品77| 成人一区二区视频在线观看| 欧美人与善性xxx| 国产精品福利在线免费观看| 久久6这里有精品| 亚洲av电影不卡..在线观看| 免费av不卡在线播放| 婷婷六月久久综合丁香| 久久综合国产亚洲精品| 性色avwww在线观看| 久久久国产成人免费| 久久草成人影院| 国产成人a区在线观看| 国产精品野战在线观看| 少妇高潮的动态图| 精品人妻偷拍中文字幕| 国产成人精品婷婷| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 26uuu在线亚洲综合色| 69av精品久久久久久| 成年av动漫网址| 在线a可以看的网站| 国产精品久久久久久精品电影| 欧美zozozo另类| 狂野欧美白嫩少妇大欣赏| 国产片特级美女逼逼视频| 亚洲av免费高清在线观看| 亚洲国产精品成人久久小说 | 永久网站在线| 亚洲精品久久久久久婷婷小说 | 久久精品91蜜桃| 国产亚洲5aaaaa淫片| 深夜精品福利| 在现免费观看毛片| 国产精品无大码| 久久综合国产亚洲精品| 国产在视频线在精品| av.在线天堂| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 久久久欧美国产精品| 2022亚洲国产成人精品| 免费人成视频x8x8入口观看| 久久久精品大字幕| 国产一区二区三区av在线 | 国内精品美女久久久久久| 国产av不卡久久| 久久午夜亚洲精品久久| 国产探花极品一区二区| 婷婷六月久久综合丁香| 18禁裸乳无遮挡免费网站照片| 国产美女午夜福利| 亚洲18禁久久av| 国产一区二区亚洲精品在线观看| 国产高清视频在线观看网站| 又粗又硬又长又爽又黄的视频 | а√天堂www在线а√下载| 最近手机中文字幕大全| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 九草在线视频观看| 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 精品一区二区三区视频在线| 国产单亲对白刺激| av在线老鸭窝| 欧美+日韩+精品| 不卡一级毛片| av国产免费在线观看| 精品午夜福利在线看| а√天堂www在线а√下载| 一本久久中文字幕| 高清毛片免费看| 精品熟女少妇av免费看| 综合色丁香网| 国产成人a区在线观看| 亚洲精品自拍成人| 美女内射精品一级片tv| 一级av片app| 亚洲av中文字字幕乱码综合| 国产精品一区二区在线观看99 | 亚洲va在线va天堂va国产| 成人性生交大片免费视频hd| 丝袜喷水一区| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 美女xxoo啪啪120秒动态图| 国产亚洲av嫩草精品影院| 国产精品久久久久久久久免| 亚洲精品乱码久久久v下载方式| 免费av观看视频| 三级国产精品欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 日韩欧美一区二区三区在线观看| 51国产日韩欧美| 色5月婷婷丁香| 一进一出抽搐gif免费好疼| av国产免费在线观看| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 欧美成人精品欧美一级黄| 白带黄色成豆腐渣| 97人妻精品一区二区三区麻豆| 麻豆国产97在线/欧美| 一本一本综合久久| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 欧美日韩精品成人综合77777| 有码 亚洲区| av视频在线观看入口| 国产69精品久久久久777片| 亚洲av二区三区四区| 天堂√8在线中文| 亚洲一区高清亚洲精品| 1000部很黄的大片| 欧美一区二区国产精品久久精品| 日本欧美国产在线视频| 久久久久性生活片| 精品99又大又爽又粗少妇毛片| 中文字幕制服av| 岛国毛片在线播放| 久久精品国产清高在天天线| 亚洲欧美清纯卡通| 久久人妻av系列| 看免费成人av毛片| 亚洲激情五月婷婷啪啪| 99热只有精品国产| 国产成人影院久久av| 看黄色毛片网站| 亚洲美女视频黄频| 精品无人区乱码1区二区| 99久久九九国产精品国产免费| 一边亲一边摸免费视频| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 亚洲精品国产成人久久av| 亚洲久久久久久中文字幕| 91久久精品电影网| videossex国产| 在线国产一区二区在线| 日日撸夜夜添| 欧美成人免费av一区二区三区| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 只有这里有精品99| 日本免费a在线| 性欧美人与动物交配| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 国产一区二区三区av在线 | 久久久久久九九精品二区国产| 狠狠狠狠99中文字幕| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄 | 国产久久久一区二区三区| 日韩人妻高清精品专区| 网址你懂的国产日韩在线| 少妇的逼好多水| 精品日产1卡2卡| 日韩人妻高清精品专区| 给我免费播放毛片高清在线观看| 亚洲色图av天堂| 欧美一区二区国产精品久久精品| 99久久成人亚洲精品观看| 国产亚洲5aaaaa淫片| 国产精华一区二区三区| 亚洲av二区三区四区| 亚洲最大成人av| 久久人妻av系列| 美女大奶头视频| 在现免费观看毛片| 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 亚洲在久久综合| 国产成人福利小说| 亚洲在线观看片| 在线观看一区二区三区| 性欧美人与动物交配| 12—13女人毛片做爰片一| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av涩爱 | 伦精品一区二区三区| 亚洲熟妇中文字幕五十中出| 国产亚洲av片在线观看秒播厂 | 特级一级黄色大片| or卡值多少钱| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| 三级毛片av免费| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 国产午夜精品一二区理论片| 长腿黑丝高跟| 精品久久久久久久久久免费视频| 久久精品国产自在天天线| 国产精品美女特级片免费视频播放器| 国产成人精品久久久久久| 成人午夜高清在线视频| 欧美激情国产日韩精品一区| 国产精品精品国产色婷婷| 99热这里只有是精品50| www.色视频.com| 国产一级毛片在线| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 网址你懂的国产日韩在线| 深爱激情五月婷婷| 在线国产一区二区在线| 国产精品三级大全| 最近最新中文字幕大全电影3| 日韩中字成人| 国产精品伦人一区二区| 国产三级在线视频| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 久久6这里有精品| 中国美白少妇内射xxxbb| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 全区人妻精品视频| 一本久久中文字幕| 在线天堂最新版资源| av在线播放精品| 亚洲精华国产精华液的使用体验 | av在线亚洲专区| 精品久久国产蜜桃| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 长腿黑丝高跟| 国产亚洲欧美98| www.av在线官网国产| 午夜a级毛片| 六月丁香七月| 啦啦啦韩国在线观看视频| 99热网站在线观看| 亚洲不卡免费看| 91av网一区二区| 久久久久性生活片| 日本五十路高清| 午夜爱爱视频在线播放| 一进一出抽搐gif免费好疼| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 免费av不卡在线播放| 国产高清有码在线观看视频| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 中文字幕制服av| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 在线观看av片永久免费下载| 三级毛片av免费| 22中文网久久字幕| 久久九九热精品免费| 九九在线视频观看精品| 午夜福利视频1000在线观看| 亚洲欧美精品自产自拍| 1024手机看黄色片| 男的添女的下面高潮视频| 久久久久网色| 久久热精品热| 国产麻豆成人av免费视频| 亚洲成人久久性| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线 | 插阴视频在线观看视频| 国产熟女欧美一区二区| 亚洲四区av| 全区人妻精品视频| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 久久6这里有精品| 成人欧美大片| 欧美日韩综合久久久久久| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看 | 亚洲成人精品中文字幕电影| 六月丁香七月| 亚洲av中文字字幕乱码综合| 亚洲精品日韩av片在线观看| 插阴视频在线观看视频| av专区在线播放| 久久99精品国语久久久| 免费人成视频x8x8入口观看| 特级一级黄色大片| 青青草视频在线视频观看| av在线亚洲专区| 一级二级三级毛片免费看| 中文字幕av在线有码专区| 色综合站精品国产| 在线播放无遮挡| 激情 狠狠 欧美| kizo精华| 一夜夜www| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 久久久久网色| 91午夜精品亚洲一区二区三区| 午夜爱爱视频在线播放| 午夜福利在线在线| 一级av片app| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 日韩欧美精品免费久久| 色哟哟哟哟哟哟| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕 | 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 在线观看午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久com| 色哟哟哟哟哟哟| 国产人妻一区二区三区在| 在线观看av片永久免费下载| 麻豆乱淫一区二区| 亚洲成人中文字幕在线播放| 亚洲国产精品国产精品| 久久久久久久久久黄片| 亚洲av中文字字幕乱码综合| 我要搜黄色片| 亚洲经典国产精华液单| 久久九九热精品免费| 99久久久亚洲精品蜜臀av| 国产美女午夜福利| 国产真实伦视频高清在线观看| 亚洲精品456在线播放app| 少妇丰满av| 女的被弄到高潮叫床怎么办| 久久99精品国语久久久| 在线免费十八禁| h日本视频在线播放| 97在线视频观看| 午夜久久久久精精品| av免费在线看不卡| 特大巨黑吊av在线直播| 日日啪夜夜撸| 亚洲欧美日韩高清专用| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 欧美不卡视频在线免费观看| 青青草视频在线视频观看| 精品国内亚洲2022精品成人| 国产黄a三级三级三级人| 日韩欧美在线乱码| av视频在线观看入口| 夫妻性生交免费视频一级片| 欧美色视频一区免费| 欧美+亚洲+日韩+国产| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 狂野欧美激情性xxxx在线观看| 麻豆成人av视频| 女人十人毛片免费观看3o分钟| av福利片在线观看| 麻豆成人午夜福利视频| 久久人人精品亚洲av| 欧美成人精品欧美一级黄| 九九久久精品国产亚洲av麻豆| 一本精品99久久精品77| 成年女人永久免费观看视频| 特级一级黄色大片| 日韩欧美精品免费久久| 日本免费一区二区三区高清不卡| 成人二区视频| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| 99久久精品国产国产毛片| 插逼视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲最大成人中文| 最后的刺客免费高清国语| 亚洲欧美精品自产自拍| 久久精品综合一区二区三区| 亚洲无线观看免费| 中国美女看黄片| 人妻夜夜爽99麻豆av| 国产视频内射| 日韩欧美一区二区三区在线观看| 美女被艹到高潮喷水动态| 我要搜黄色片| 欧美区成人在线视频| 久99久视频精品免费| 精品人妻视频免费看| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 99久国产av精品| 在线免费观看的www视频| 国产精品野战在线观看| 亚洲欧美日韩卡通动漫| 身体一侧抽搐| 男人狂女人下面高潮的视频| 亚洲一级一片aⅴ在线观看| 看黄色毛片网站| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 精品无人区乱码1区二区| 亚洲精品久久久久久婷婷小说 | 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 嫩草影院新地址| 国产精品99久久久久久久久| 国产成人福利小说| 亚洲av成人精品一区久久| 国产精品一及| 亚洲不卡免费看| 少妇丰满av| 午夜福利成人在线免费观看| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| av国产免费在线观看| 午夜福利成人在线免费观看| 久久久成人免费电影| 精品久久久久久久人妻蜜臀av| 久久6这里有精品| 三级国产精品欧美在线观看| 国产精品伦人一区二区| 亚洲精品色激情综合| 国产午夜精品论理片| 国产成人影院久久av| 日日啪夜夜撸| 级片在线观看| 黄色视频,在线免费观看| 在线a可以看的网站| 在线免费观看不下载黄p国产| 国产不卡一卡二| 亚洲欧美日韩高清在线视频| а√天堂www在线а√下载| 寂寞人妻少妇视频99o| 国产精品伦人一区二区| 国产男人的电影天堂91| 欧美激情国产日韩精品一区| 毛片女人毛片| 亚洲精品日韩av片在线观看| 中文字幕久久专区| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 晚上一个人看的免费电影| 国产高清视频在线观看网站| 免费看光身美女| 亚洲最大成人手机在线| 精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 日日干狠狠操夜夜爽| 日韩欧美 国产精品| 精品久久久久久成人av| 亚洲精品粉嫩美女一区| 亚洲av二区三区四区| 在线免费观看不下载黄p国产| 男女做爰动态图高潮gif福利片| 亚洲丝袜综合中文字幕| 一个人观看的视频www高清免费观看| 悠悠久久av| 成年av动漫网址| 成人特级av手机在线观看| 在线观看66精品国产| 99热全是精品| 日日撸夜夜添| 久久久久久久久久成人| 久久久久网色| 精品国产三级普通话版| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片| 国产午夜精品久久久久久一区二区三区| 国产精品麻豆人妻色哟哟久久 | 国产一区二区在线av高清观看| 大香蕉久久网| 中文字幕精品亚洲无线码一区| 亚洲av.av天堂| 欧美+日韩+精品| 久久久国产成人免费| 亚洲欧洲国产日韩| 97超碰精品成人国产| 午夜免费激情av| 免费观看a级毛片全部| 可以在线观看毛片的网站| 亚洲五月天丁香| 免费看a级黄色片| 亚洲在线观看片| 丝袜美腿在线中文| 神马国产精品三级电影在线观看| 国产亚洲av片在线观看秒播厂 | 18禁黄网站禁片免费观看直播| 欧美潮喷喷水| 国模一区二区三区四区视频| 久久人人精品亚洲av| 国产探花在线观看一区二区| 欧美成人a在线观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清在线视频| 男女视频在线观看网站免费| 人人妻人人澡欧美一区二区| 啦啦啦观看免费观看视频高清| 国产成人a∨麻豆精品| 久久欧美精品欧美久久欧美| 国产精品麻豆人妻色哟哟久久 | 九九在线视频观看精品| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久av| 成人亚洲欧美一区二区av| 一级av片app| 久久久久久久午夜电影| 国产精品久久久久久久电影| 亚洲av不卡在线观看| 欧美一区二区国产精品久久精品| 熟女电影av网| 成熟少妇高潮喷水视频| 嫩草影院精品99| 人妻夜夜爽99麻豆av| 日本在线视频免费播放| 午夜亚洲福利在线播放| 久久精品人妻少妇| 亚洲人成网站高清观看| 久久韩国三级中文字幕|