• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    2018-05-02 01:51:46TariqJavedAhmedandSajid
    Communications in Theoretical Physics 2018年4期

    Tariq Javed,B.Ahmed,and M.Sajid

    Department of Mathematics and Statistics,International Islamic University,Islamabad 44000,Pakistan

    1 Introduction

    Recently many researchers and scientists have shown deep interest in fluid mechanics due to its application in numerous fields.There are certain fluid models in the fluid mechanics that has gained considerable importance in engineering and biomedical science.With all these models,peristalsis is one of most important and divest mechanism for transportation of fluid. Mixing and transportation of physiological fluids obey the peristaltic theory,which follows the progressive wave’s expansion and contraction along the length of the distensible tube that transportfluid.The mechanism is based on mainly neuromuscular property of tabular smooth muscle structure.Fixed speed and wavelengths are the main features of this kind of muscular tube.The phenomena can be found in the transportation of urine,movement of chyme,biologicalfluids in the lymphatic vessel and movement of bile.The peristaltic mechanism also finds in many application in bio-medical equipment and engineering like in designing of roller and finger pump,a heart-lung machine,a blood pump and dialysis machine.

    The pioneer work was done by Latham,[1]he was thefirst who gives the mathematical approach to observe peristalsis flow in his master thesis.A number of articles[2?10]addressing the peristaltic phenomenon for a different type of geometries under the assumption of long wavelength and low Reynolds number,small amplitude ratio and wave number are available.The lubrication theory was used by Shapiro et al.[11]to investigate the peristaltic transportation of fluid in the two-dimensional channel using a wave frame of reference.On the other hand,Fung&Yih[12]used the fixed frame of reference for investigation of peristaltic flow without using lubrication approach.The nonlinear terms get vanished through the approach by Shapiro et al.[11]and the problem becomes simpler in comparison to that of Fung and Yih[12]approach.In this way,effects of Reynolds number and wave number(rate of the characteristic length of the tube to the wavelength of the peristaltic wave)on various flow characteristics cannot be investigated.Due to the simplicity of the approach,this theory is used widely to study the peristaltic flow of Newtonian and non-Newtonian fluid in a number of scenarios.Jaffrin[13]discussed the perturbation solution of two-dimensional peristaltic flow in a channel. Zien and Ostrach[14]also discussed the peristaltic mechanism.Takabatake and Ayukawa[15?16]employed the finite difference method to numerically simulate two-dimensional peristaltic flow in a channel for moderate values of the Reynolds number and wave number.They showed the perturbation solution of Jaffrin.[13]Zien and Ostrach[14]presented the result in a narrow range and in accordance with Reynolds number,the reflux phenomenon does not cause the change of the whole situation in the flow.The application of immersed boundary technique to simulate the transport,solid particle in a two-dimensional channel by peristalsis was initiated by Fouci.[17]Mekheimer[18]discussed the magnetohydrodynamic effect in the natural limitation of the peristaltic phenomenon,which is not valid for moderate values of both Reynolds number and wave number. Peristaltic flow and heat transfer effect under the long wavelength assumption in a vertical annulus is reported by Vahravelu et al.[19]They conclude that heat transfer at the peristaltic wall has significantly affected by the amplitude of the wave.Mekheimer and Elmabond[20]studied Newtonian peristaltic flow with the effect of heat transfer and MHD in the vertical annulus by using low Reynolds number and long wavelength assumption.They conclude that the trapping bolus increases by increasing the heat observation and generation parameter.Srinivas and Kathandapani[21]discussed the mechanism of peristalsis passing through porous medium supported by compliant walls.They compared the heat and mass transfer and noticed that heat effects are more dominant in the straight channel as compared to that in the curved channel in presence of applied magnetic field.Ramesh[22]recently studied the peristaltic flow in slip and convective condition through a porous medium.He solved his problem after making simplification with the help of lubrication theory.Recently Javed et al.[23]solved the peristaltic problem using finite element method in a porous medium.They found that their obtained results using finite element technique are in accordance with that of Jaffrin.[13]They conclude that the trapping bolus increases by increasing the heat generation parameter.Sajid et al.[24]investigated the mixed convective heat transfer on stretching sheet for an Oldroyd-B fluid.Barletta et al.[25]studied the heating and convection effects with a rapid variation of magnetic effects in a vertical annulus.Peristaltic flow under the influence of radially varying magnetic effects in a tube for Jeffrey fluid was studied by Abd-Alla et al.[26]Afsar et al.[27]presented the effect of variable viscosity in a porous medium for peristaltic transportation of Jefferyfluid.Recently Ahmed et al.[28]studied mixed convective peristaltic flow with heat generation in vertical channel and concluded that increase in heat generation resists the velocity in the central region while improves velocity in the vicinity of the peristaltic wall.

    Most of the available studies on peristaltic flow are based on the assumptions of long wavelength and low Reynolds number,small amplitude ratio,and wave number.However,all such studies are developed in connection with the function of organs of the human body and there the Reynolds number associated with the flow is very low.[29?30]But this is not the case in the flows related to engineering field such as transport of blood,slurries and corrosive fluids by means of peristaltic pumps.In such flows there arise a need to analyze peristaltic flow at moderate Reynolds number.[31?32]The objective of the present study is to investigate numerical solution of mixed convective heat transfer in peristaltic flow passing through a vertical tube for non-zero Reynolds and wave numbers in presence of heat generation.Firstly,we derive the governing equations and convert them in dimensionless form by using appropriate dimensionless quantities.Secondly,by introducing the stream function,we convert the system of equations in stream-vorticity form and then expose to Galerkin’s finite element method,which allows computation of vorticity directly instead of being obtained by differentiation of the velocity field.The solution obtained by this formalism is utilized to illustrate the effects of moderate Reynolds number and wave number on various features of peristaltic motion.

    2 Mathematical Modeling

    Consider the motion of the Newtonian fluid through a vertical tube having inner width size 2d.The flow is assumed in such a way that the propagation of waves is along the z-axis with velocity c and r is normal to the tube.The peristaltic wall of the channel are assumed at temperature T1and obey the sinusoidal wave shape given by

    Fig.1 Geometry of the peristaltic flow in the tube.

    where a represents mean distance of wall from central axis,λ is wavelength and b corresponds to wave amplitude.The schematic flow diagram is presented in Fig.1.The partial differential equations correspond to considered model of peristaltic flow in a fixed frame are

    in whichμ is viscosity,ρ is density,g is acceleration due to gravity,βTcoefficient of thermal expansion,κ?is thermal conductivity and Q0is the constant heat generation within the flow domain.The boundary conditions of the problem are

    The conversion between lab frame and wave frame are presented as follows

    where z?and r?are component of velocity in axial and radial directions in moving frame of reference and(Z,R)is the corresponding velocity vector in laboratory frame.The following boundary condition are used to flow the moving frame

    where ψ?denotes stream function.The flow rate in wave frame is related to time-mean flow in lab frame by the expression q?=Q??cH2.Inserting following dimensionless variables to the system,

    After eliminating the pressure gradient term from governing equations of momentum,the combined momentum equation with temperature and vorticity equation in stream function(by introducing u= ?(α/r)?ψ/?z and w=(1/r)?ψ/?r)becomes

    where

    and modified Laplacian D2is define as

    The boundary conditions for considered flow field become

    3 Numerical Analysis

    In this section,we presented a numerical solution of Eqs.(11)to(13)under the constraints of boundary conditions given in Eq.(14).By neglecting the assumption of long wavelength and low Reynolds number,we arrive ourself to a system of nonlinear partial differential equations equipped with the complex geometry of peristaltic tube.Thus,we need an efficient and rapid convergent technique to control such type of complicated problem.So the method based on Galerkin’s weighted residual based finite element technique is implemented by discretizing the domain in a subdomain of six nodal quadratic triangular elements to get the highly convergent results with a tolerance of 10?14which is achieved in a maximum 4-6 number of iterations.The stream function,vorticity and temperature approximated as

    where ψk,ωk,and θkare approximation of ψ,ω,and θ respectively.The Galerkin’s based finite element is applied to Eqs.(11)to(12)gives as

    where w1,w2,and w3are weight functions and d?=2πrdrdz.Simplifying Eqs.(16)to(18),we get

    where dΓ=πrdrdz.Introducing Eq.(15)into Eqs.(19)to(21)and considering the discretized domain,we have

    where

    The global system of elements in matrix form is

    in which

    Pressure rise per wavelength plays a vital role in the peristaltic flow.In order to determine the pressure within a tube,it is sufficient to determine it at the middle portion of the wave.Rise in pressure per wavelength is given by

    wheredP/dzisdirectly determined through nondimensional Naiver-Stokes equation.

    4 Results and Discussion

    For the moderate finite values of Reynolds number,a theoretical analysis of the peristaltic flow is extremely difficult because of the nonlinearity in the modeled equations,which occurs by the interaction of moving wall and the flow field. The effects of Reynolds number along with other interesting parameters involved in the modeled equation are studied by plotting the velocity distribution,temperature pro file,and pressure rise per wavelength.The contours of streamlines and vorticity are plotted with the detailed discussion is provided.

    4.1 Validation

    This section is dedicated for authentication of our own build MATLAB code of finite element method,which gives the numerical solution of a modeled system of nonlinear partial differential equations.Mekheimer and Abd elmaboud[29]gave results of heat transfer on peristaltic transport in the vertical tube by using assumptions of lubrication theory.These results are purely analytical and hence considered to be a benchmark solution in this comparison.The obtained results of pressure distribution are compared with the results of Mekheimer and Abd elmaboud[28]in limiting case by showing both results in Fig.2(a).

    Fig.2(a)Comparison of pressure distribution for present numerical results with analytical results of Mekheimer and Abd elmaboud;[33](b)Comparison of longitudinal velocity for present numerical results with analytical results of Hameed,et al.[34]

    The graphs presented in Fig.2(a)exhibits good agreement with our results under assumptions of long wavelength and low Reynolds number(for Re=0,α=0)with corresponding results of Mekheimer and Abd elmaboud.[29]The graphs of longitudinal velocity are also plotted in limiting case of obtained results to compare with the results of Hameed et al.[30]in Fig.2(b).Figure 2(b)shows good agreement with obtained numerical results with results that of Hameed et al.[30]with long wavelength and low Reynolds number assumption.

    4.2 Velocity Pro file

    To analyze the behavior of the velocity,longitudinal velocity is plotted at cross-section z=0 for various values of participated parameters such as Reynolds number Re,wave number α,Grashof number Gr,Prandtl number Pr,heat generation parameter β,and volume flow rate Q.In Fig.3,we presented the effect of Reynolds number Re on velocity distribution.We see that near the center of the tube,increase in Re causes a decrease in velocity while an opposite behavior is observed at the wall.It predicts that dominant inertial effects to viscous forces in the center of the tube causes decrease in velocity of the fluid,while near the wall,increase in inertial forces enhances the velocity.The same but clearer trend is observed by the velocity by varying the wave number at fixed values of other parameters as shown in Fig.4.It is also observed that for large values of wave number,the velocity attains its maximum value before entering in the region of r=0.It is also interesting to note that longitudinal velocity is less sensitive to the values of Reynolds number in the range 0.2≤ r≤ 0.4.Similarly,longitudinal velocity varies slowly with wave number in this range and after its rapid change is observed.In Fig.5,we observed that the velocity increases in the vicinity of the peristaltic wall by enhancing Grashof number and drops near the center of the tube.It is noted from Figs.6 to 8 that velocity pro file becomes concave shape for Reynold number,Prandtl number,and Grashof number.It is also observed that for Grashof number,change in velocity behavior is much faster in comparison with that of Reynold number and Prandtl number.It concludes that due to increase in the temperature,the velocity of the fluid decreases and consequently more resistance appears in the flow field.We observe that when time-mean flow rate Q≤1,the velocity pro file becomes negative and fluid particle at r=0 moves to opposite direction of the flow field.When time-mean flow rate Q>1,theflow becomes positive and fluid particle moves in the direction of the flow field.It concludes that the particle moves along the direction of the flow field when Q>1.

    Fig.3 Longitudinal velocity for various values of Reynolds number Re.

    Fig.4 Longitudinal velocity for various values of wave numbers α.

    Fig.5 Longitudinal velocity for various values of Grashof number Gr.

    Fig.6 Longitudinal velocity for various values of Prandtl number Pr.

    Fig.7 Longitudinal velocity for various values of heat generation parameter β.

    Fig.8 Longitudinal velocity for various values of time-mean lf ow rate Q.

    4.3 Temperature Distribution

    Figures 9 to 14 are sketched to present and study the physical effects of all embedded parameters on temperature pro file.The first time in the literature,the effects of Reynolds number Re are presented for temperature distribution in Fig.9,as long wavelength and low Reynolds number theory is not able to predict such non-linear effect.It shows strong inertial induced by large values of Reynolds number in whole region of the tube.The opposite behavior for variation of wave number α are presented in Fig.10.

    Fig.9 Temperature pro file for various values of Reynolds number Re.

    Fig.10 Temperature pro file for various values of wave number α.

    Fig.11 Temperature pro file for various values of Grashof number Gr.

    Fig.12 Temperature pro file for various values of Prandtl number Pr.

    Fig.13 Temperature pro file for various values of heat generation parameter β.

    Fig.14 Temperature pro file for various values of time-mean lf ow rate Q.

    Figure 11 shows that increase in Grashof number Gr by increasing the effect buoyancy forces as compared to viscous forces has an important role in reducing the temperature of the fluid with in the tube.Figure 12 shows that temperature of the fluid can be enhanced by increasing the Prandtl number.The temperature increases when the convective heat is enhanced which is evident from Fig.13.Figure 14 shows that the increase in time-mean flow rate enhances the internal energy of the fluid and consequently increase in temperature is noted.

    4.4 Pressure Distribution

    The purpose of this subsection is to examine important phenomena of pressure rise per wavelength in peristaltic transportation.Usually,the three ranges of pumping in peristalsis are possible,?P<0 corresponds to augmented pumping region while?P=0 is the free pumping region and?P>0 is for co-pumping region.We have presented only first?P>0 which are of most interest for engineering and have vastly applicable in bio-medical sciences.Figure 15 reveals the effect of variation of Reynolds number Re on pressure rise per wavelength.It is observed that in the absence of inertial forces(for Re=0),the linearity in the graph is observed and shows non-linear trend for the non-zero inertial forces.Furthermore,it is noted that the increase in pressure rise by dominating inertial forces to the viscous forces,which are made by increasing the values of the Reynolds number.So Reynolds number exhibits the direct relation with pressure rise per wavelength.The same behavior is shown by wave number in Fig.16.This is due to the fact that by an increase in wave number,the fluid passes through the tube with increased width,which causes an increase in pressure.Figure 17 gives us an idea about ? P against Q with variation in heat generation parameter β.Due to increase in the generation of the heat,internal energy of the fluid increases and consequently enhancement in pressure rise per wavelength is noted as shown in the figure.Figure 18 is plotted to examine the dimensionless quantity Grashof number Gr defined in equation has been used in the analysis of the pressure.It is noted that most rapid and remarkable increase in pressure rise is observed with the increase in Grashof number as compared to that of increase in heat generation.

    Fig.15 Pressure rise against time-mean flow rate Q for various values of Reynolds number Re.

    Fig.16 Pressure rise against time-mean flow rate Q for various values of wave number α.

    Fig.17 Pressure rise against time-mean flow rate Q for various values of heat generation parameter β.

    Fig.18 Pressure rise against time-mean flow rate Q for various values of Grashof number Gr.

    4.5 Trapping Phenomena

    The phenomena based on the circulation of the streamlines known as trapping.Trapping is an interesting mechanism for peristaltic flows to discuss the flow properties under the influence of parameters involved in the model.We discuss this phenomenon in Figs.19 to 22.

    Fig.19 Streamlines for various values of time-mean flow rate Q with fixed values of the parameter Re=1,α =0.1,? =0.6,Pr=0.7,β=0.3,Gr=0.5.

    Fig.20 Streamlines for various values of Reynold numbers Re with fixed values of the parameter α =0.1,? =0.6,Pr=0.7,β=0.3,Gr=0.5,Q=1.4.

    Figure 19 shows the effect of different values of time mean flow rate on the fluid flow.It has been observed that augmentation in the time mean flow rate causes reduction in size of the bolus.This is due to the increase in smoothness in the movement of the fluid in the central region of the tube.Figure 20 shows that the increase in Reynolds number,the flow becomes smoother in the central region.Furthermore,increases the number of the trapped boluses is noted with a cluster of bolus shows tendency to move in the upper region of the crest.The same behavior is observed in case of wave number α as shown in Fig.21.It also reflects that we can control the smoothness of the movement of the fluid in central part of the tube.In Fig.22,we have increase the Grashof number Gr from 0.1 to 0.9(where vanishing buoyancy effects corresponds to the Newtonian case as reported by Shapiro et al.[11])It is noted that magnitude of the trapped bolus reduces and moves in region near the wall of tube.

    Fig.21 Streamline for various values of wave numbers α with fixed values of the parameter Re=1.0,? =0.6,Pr=0.7,β=0.3,Gr=0.5,Q=1.4.

    Fig.22 Streamline for various values of Grashof number Gr with fixed values of the parameter Re=1.0,α =0.1,? =0.6,Pr=0.7,β=0.3,Gr=0.5,Q=1.4.

    4.6 Isothermal Lines

    Isothermal lines are representation of the temperature distribution in a flow field.The sketches of isothermal lines for different parameters are presented in Figs.23 to 27.Figure 23 presents the isothermal lines for time-mean flow rate Q=1.2 and Q=1.8.We observe the symmetric behavior for small values of Q while large values of Q increase in concentration of the isothermal lines to the lower part of the central region of the tube.For small values of the Reynolds number Re,the strong tube as we increase the Reynolds number,concentration of temperature is reduced in the upper region of the tube which can be seen by temperature distribution have been observed in the whole wavy region of the absence of isothermal lines in that region in Fig.24.

    Fig.23 Isothermal lines for various values of time-mean flow rate Q with fixed values of the parameter Re=1,α=0.1,? =0.6,Pr=0.7,β =0.3,Gr=0.5.

    Fig.24 Isothermal lines for various values of Reynold numbers Re with fixed values of the parameter α =0.1,? =0.6,Pr=0.7,β=0.3,Gr=0.5,Q=1.4.

    Fig.25 Isothermal lines for various values of wave number α with fixed values of the parameter Re=1.0,? =0.6,Pr=0.7,β=0.3,Gr=0.5,Q=1.4.

    Fig.26 Isothermal lines for various values of Grashof number Gr with fixed values of the parameter Re=1.0,α=0.1,? =0.6,Pr=0.7,β =0.3,Gr=0.5,Q=1.4.

    The effects of the wave number α on isothermal lines are shown in Fig.25.It is observed that values of wave number creates the symmetric like trend of isothermal lines and the isothermal lines for different Grashof number Gr are shown in Fig.26,which indicates that increase in Grashof number enhances the movement of isothermal lines to the crest region of the peristaltic wall.The increase in heat capacity of the fluid flow in the peristaltic transport model increases the number of isothermal lines in the center of the tube and enhances in the narrow part of the tube as represented by the plots of isothermal lines for Prandtl number Pr in Fig.27.

    Fig.27 Isothermal lines for various values of Prandtl numbers Pr with fixed values of the parameter Re=1.0,α=0.1,? =0.6,β =0.3,Gr=0.5,Q=1.4.

    5 Conclusion

    The numerical results of streamlines and temperature distribution for mixed convective peristaltic flow passing through the vertical tube are studied and shown graphically with a suitable set of values of involved parameters by using finite element method.The key features of this study are as follows:

    (i)At the center of the tube,increasing values of Reynolds number decreases the velocity while increases the temperature but increasing wave number enhances the velocity and reduces the temperature.

    (ii)The decrease in velocity is noted at center for increasing values of Grashof number,Prandtl number and heat generation parameters,while the slight increase is also noted away from the center.

    (iii)For values of time-mean flow less than 1,velocity pro file becomes negative at z=0 cross section and for values greater than 1 it becomes positive.

    (iv)The decrease in temperature is noted for increasing values of Grashof number while Prandtl number,heat generation and time-mean flow rate supported in raising the temperature.

    (v)Pressure rise per wavelength can be enhanced by increasing the both Reynolds number and Grashof number.Also,a decrease in pressure rise is observed by increasing values of wave number and heat generation parameter.

    (vi)Increase in size and number of bolus for contours of streamlines are noted for an increase in Reynolds number and wave number while disturbance is reported for increasing Grashof number.By increasing Reynolds number,isothermal lines move along peristaltic wall and concentration in a lower part of the center of tube increases.

    (vii)The symmetry of isothermal lines are disturbed and saturation in the lower part is reported by increasing time-mean flow rate.Also,isotherms are generated on peristaltic wall and move towards the center of the tube by increasing wave number,Grashof number and Prandtl number.

    [1]T.W.Latham,Fluid Motions in a Peristaltic Pump,Diss.Massachusetts Institute of Technology(1966).

    [2]S.L.Weinberg,E.C.Eckstein,and A.H.Shapiro,J.Fluid Mech.49(1971)461.

    [3]H.S.Lew,Y.C.Fung,and C.B.Lowenstein,J.Biomech.4(1971)297.

    [4]B.V.R.Kumar and K.B.Naidu,Comput.Fluids 24(1995)161.

    [5]M.J.Manton,J.Fluid Mech.68(1975)467.

    [6]M.Y.Jaffrin,Int.J.Eng.Sci.11(1973)681.

    [7]D.Tripathi,Math.Comput.Model.57(2013)1270.

    [8]T.K.Hung and T.D.Brown,J.Fluid Mech.73(1976)77.

    [9]M.Narahari and S.Sreenadh,Int.J.Appl.Math.Mech.6(2010)41.

    [10]A.R.Rao and S.Usha,J.Fluid Mech.85(1995)298.

    [11]A.H.Shapiro,M.Y.Jaffrin,and S.L.Weinberg,J.Fluid Mech.37(1969)799.

    [12]Y.C.Fung and C.S.Yih,J.Appl.Mech.35(1968)669.

    [13]M.Y.Jaffrin,Int.J.Engin.Sci.11(1973)681.

    [14]T.F.Zein and S.A.Ostrach,J.Biomech.3(1970)63.

    [15]S.Takabatake,K.Ayukawa,and M.Sawa,Trans.JSME-An Int.J.53 (1987)1207,doi.org/10.1299-/kikaib.53.1207.

    [16]S.Takabatake,Trans.JSME-An Int.J.56(1990)3633,doi.org/10.1299/kikaib.56.3633.

    [17]Lisa J.Fauci,Comput.Fluids 21(1992)583.

    [18]Kh.S.Mekheimer,Int.J.Appl.Math.Artical ID:570825(2008),doi:10.1155/2008/570825.

    [19]K.Vajravelu,G.Radhakrishnamacharya,and V.Radhakrishnamurty,Int.J.Nonlinear Mech.42(2007)754.

    [20]Kh.S.Mekheimer and Y.Abd Elmaboud,Appl.Math.Inform.Sci.2(2008)103.

    [21]S.Srinivas,R.Gayathri,and M.Kothandapani,Commun.Nonlinear Sci.16(2011)1845.

    [22]K.Ramesh,Comput.Meth.Prog.Bio.135(2016)1.

    [23]T.Javed,B.Ahmed,N.Ali,and A.H.Hamid,J.Porous Media 20(2017)841.

    [24]M.Sajid,B.Ahmed,and Z.Abbas,J.Egypt.Math.Soc.23(2015)440.

    [25]A.Barletta,S.Lazzari,E.Magyari,and I.Pop,Int.J.Heat Mass Tran.51(2008)5777.

    [26]A.M.Abd-Alla,S.M.Abo-Dahab,and A.Kilicman,J.Magn.Magn.Mat.384(2015)79.

    [27]A.Afsar Khan,R.Ellahi,and K.Vafai,Adv.Math.Phys.2012(2012).

    [28]B.Ahmed,T.Javed,A.H.Hamid,and M.Sajid,J.Appl.Fluid Mech.20(2017)1813.

    [29]H.S.Lew,Y.C.Fung,and C.B.Lowenstein,J.Biomech.4(1971)297.

    [30]Riahi,N.Daniel,and R.Ranadhir,Appl.Appl.Math.6(2011)428.

    [31]S.Takabatake and K.Ayukawa,J.Fluid Mech.122(1982)439.

    [32]T.Hayat,Y.Wang,K.Hutter,et al.Math.Probl.Eng.4(2004)347.

    [33]Kh.S.Mekheimer and Y.Abd Elmabound,Phys.Lett.A.372(2008)1657.

    [34]M.Hameed,A.A.Khan,R.Ellahi,and M.Raza,Engineering Science and Technology,an International Journal 18(2015)496.

    日韩国内少妇激情av| av又黄又爽大尺度在线免费看| 亚洲一区二区三区欧美精品| freevideosex欧美| 身体一侧抽搐| av天堂中文字幕网| 免费看光身美女| 人人妻人人爽人人添夜夜欢视频 | 国产深夜福利视频在线观看| 伊人久久国产一区二区| 精品人妻一区二区三区麻豆| videos熟女内射| 欧美97在线视频| 80岁老熟妇乱子伦牲交| 内射极品少妇av片p| 网址你懂的国产日韩在线| av.在线天堂| 日韩欧美 国产精品| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 亚洲精品中文字幕在线视频 | 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 久久国产亚洲av麻豆专区| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 偷拍熟女少妇极品色| 亚洲精品第二区| 在线观看免费视频网站a站| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 麻豆乱淫一区二区| 久久久久久久久久成人| 又大又黄又爽视频免费| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 国产欧美亚洲国产| 国产亚洲5aaaaa淫片| 成人影院久久| 特大巨黑吊av在线直播| 久久国产精品大桥未久av | 97热精品久久久久久| 成年av动漫网址| 成人高潮视频无遮挡免费网站| 国产黄频视频在线观看| 国精品久久久久久国模美| 香蕉精品网在线| 伊人久久精品亚洲午夜| 99久久精品热视频| av卡一久久| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 高清日韩中文字幕在线| 简卡轻食公司| 亚洲性久久影院| 自拍偷自拍亚洲精品老妇| 中国国产av一级| 韩国av在线不卡| 亚洲欧美成人精品一区二区| av.在线天堂| 国产 一区精品| 日韩不卡一区二区三区视频在线| 午夜激情久久久久久久| 男男h啪啪无遮挡| 午夜老司机福利剧场| 亚洲国产色片| 高清视频免费观看一区二区| 日日啪夜夜爽| 一级毛片aaaaaa免费看小| 亚洲久久久国产精品| 赤兔流量卡办理| 国产又色又爽无遮挡免| 国产成人精品福利久久| 人妻夜夜爽99麻豆av| 只有这里有精品99| 久久精品久久久久久噜噜老黄| 亚洲综合色惰| 久久久久人妻精品一区果冻| 免费在线观看成人毛片| 免费大片黄手机在线观看| 国产一区二区在线观看日韩| 日日摸夜夜添夜夜爱| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 三级经典国产精品| 高清av免费在线| 黄色视频在线播放观看不卡| 91精品一卡2卡3卡4卡| 我的老师免费观看完整版| 视频区图区小说| 伦理电影免费视频| 欧美xxxx黑人xx丫x性爽| 国产乱来视频区| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 亚洲,一卡二卡三卡| 蜜桃久久精品国产亚洲av| av天堂中文字幕网| 欧美少妇被猛烈插入视频| 青春草国产在线视频| 欧美人与善性xxx| 99热国产这里只有精品6| 亚洲高清免费不卡视频| 久久婷婷青草| 只有这里有精品99| 一区二区三区乱码不卡18| 日本欧美视频一区| av播播在线观看一区| 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 波野结衣二区三区在线| 亚洲国产欧美人成| 午夜精品国产一区二区电影| 日本黄大片高清| 夫妻午夜视频| 久热久热在线精品观看| av在线蜜桃| 国产高清国产精品国产三级 | 草草在线视频免费看| 一本久久精品| 久久婷婷青草| 免费观看a级毛片全部| 天天躁日日操中文字幕| 久热这里只有精品99| 亚洲真实伦在线观看| 一区二区三区四区激情视频| 欧美97在线视频| 日日啪夜夜撸| 精品久久久精品久久久| 久热这里只有精品99| 国产午夜精品久久久久久一区二区三区| 免费观看性生交大片5| 高清在线视频一区二区三区| 日日啪夜夜撸| 亚洲精品国产av成人精品| 久久这里有精品视频免费| av播播在线观看一区| 男男h啪啪无遮挡| 99热这里只有是精品50| 国产午夜精品久久久久久一区二区三区| 欧美zozozo另类| 丝袜喷水一区| 亚洲一区二区三区欧美精品| videossex国产| 久久精品熟女亚洲av麻豆精品| freevideosex欧美| 午夜福利视频精品| 国产在线男女| 色婷婷av一区二区三区视频| a 毛片基地| 欧美+日韩+精品| 久久99热这里只有精品18| 在线 av 中文字幕| 三级经典国产精品| 丰满乱子伦码专区| 中文在线观看免费www的网站| 亚洲精品aⅴ在线观看| 深爱激情五月婷婷| 97在线人人人人妻| 国产真实伦视频高清在线观看| 国产精品久久久久久av不卡| 97超碰精品成人国产| 久久久久精品久久久久真实原创| 亚洲精品第二区| 日韩在线高清观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 日韩大片免费观看网站| 在线观看国产h片| 97热精品久久久久久| 午夜精品国产一区二区电影| 精品少妇黑人巨大在线播放| 久久久午夜欧美精品| 国产男女内射视频| 国产淫片久久久久久久久| 新久久久久国产一级毛片| 国产白丝娇喘喷水9色精品| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 观看免费一级毛片| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 网址你懂的国产日韩在线| 精品久久久久久久久av| 欧美 日韩 精品 国产| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频| 国产成人精品一,二区| 只有这里有精品99| 日本一二三区视频观看| 久久精品熟女亚洲av麻豆精品| 国产爱豆传媒在线观看| 中国三级夫妇交换| 高清不卡的av网站| 亚洲av不卡在线观看| 国产欧美亚洲国产| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 亚洲精品456在线播放app| 欧美+日韩+精品| av国产免费在线观看| 日本爱情动作片www.在线观看| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线观看99| 草草在线视频免费看| 国模一区二区三区四区视频| 尤物成人国产欧美一区二区三区| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 免费大片18禁| 久久久久久人妻| av在线蜜桃| 人人妻人人添人人爽欧美一区卜 | 亚洲成人中文字幕在线播放| 久久久久国产精品人妻一区二区| 永久网站在线| 美女内射精品一级片tv| 国产精品99久久久久久久久| 国产成人精品婷婷| 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 亚洲国产高清在线一区二区三| 一级二级三级毛片免费看| av在线老鸭窝| 99久久精品热视频| 18禁动态无遮挡网站| 成人毛片60女人毛片免费| 久久97久久精品| h视频一区二区三区| 99热国产这里只有精品6| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 亚洲,一卡二卡三卡| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 人妻系列 视频| 高清午夜精品一区二区三区| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| av免费在线看不卡| 欧美成人午夜免费资源| 欧美日韩视频精品一区| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99| 国产高清国产精品国产三级 | 一级二级三级毛片免费看| 国产成人精品一,二区| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 欧美日韩综合久久久久久| 视频中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 在线观看免费高清a一片| 亚洲精品一区蜜桃| 欧美日韩视频精品一区| 三级国产精品片| 男女免费视频国产| 插阴视频在线观看视频| 夫妻性生交免费视频一级片| 久久 成人 亚洲| 欧美高清成人免费视频www| 一区二区av电影网| 一级毛片我不卡| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 久久久久网色| 色网站视频免费| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 少妇的逼好多水| av黄色大香蕉| 亚洲伊人久久精品综合| 国产久久久一区二区三区| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说 | 日本免费在线观看一区| 一区二区三区免费毛片| 女性生殖器流出的白浆| 日本av手机在线免费观看| av专区在线播放| 日韩大片免费观看网站| 国产在线一区二区三区精| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 日本-黄色视频高清免费观看| 国产成人免费无遮挡视频| 中国美白少妇内射xxxbb| 国产男女内射视频| 成年女人在线观看亚洲视频| 久久久国产一区二区| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 国产视频内射| freevideosex欧美| 久久人人爽人人片av| 高清黄色对白视频在线免费看 | 国产大屁股一区二区在线视频| 欧美日韩视频精品一区| 国产精品久久久久久精品古装| av网站免费在线观看视频| 高清欧美精品videossex| 国产黄片美女视频| 最近中文字幕高清免费大全6| 在线播放无遮挡| 多毛熟女@视频| 欧美一级a爱片免费观看看| 久久久久久久久大av| 国产欧美日韩一区二区三区在线 | 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 欧美zozozo另类| 欧美激情国产日韩精品一区| 天堂8中文在线网| 91精品一卡2卡3卡4卡| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 国产男人的电影天堂91| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 99热这里只有是精品50| 777米奇影视久久| 国产亚洲av片在线观看秒播厂| 久久久久精品久久久久真实原创| 亚洲人成网站在线播| 国产一区二区三区av在线| 国产乱来视频区| 日韩一本色道免费dvd| 成年人午夜在线观看视频| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| 色网站视频免费| 嫩草影院入口| 久久女婷五月综合色啪小说| 丰满少妇做爰视频| 十八禁网站网址无遮挡 | www.色视频.com| 一本久久精品| 成年女人在线观看亚洲视频| 日本色播在线视频| 亚洲综合精品二区| 成人午夜精彩视频在线观看| 观看av在线不卡| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 妹子高潮喷水视频| 国产精品一区二区性色av| 亚洲欧美日韩卡通动漫| 精品一区二区三卡| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 欧美bdsm另类| 亚洲国产精品国产精品| 国产精品国产三级国产av玫瑰| 又爽又黄a免费视频| www.色视频.com| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 男女无遮挡免费网站观看| 一级片'在线观看视频| 免费少妇av软件| 亚洲国产欧美在线一区| 久热这里只有精品99| 色哟哟·www| 亚洲丝袜综合中文字幕| 国产亚洲最大av| 91久久精品国产一区二区三区| 久久国产精品男人的天堂亚洲 | 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 天美传媒精品一区二区| 少妇高潮的动态图| 能在线免费看毛片的网站| 国产高清不卡午夜福利| 国产亚洲精品久久久com| 亚洲欧美精品自产自拍| 国产美女午夜福利| 亚洲精品,欧美精品| 干丝袜人妻中文字幕| 亚洲天堂av无毛| 蜜桃亚洲精品一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 精品午夜福利在线看| 日韩电影二区| 久久ye,这里只有精品| 中国美白少妇内射xxxbb| 天堂8中文在线网| 伊人久久精品亚洲午夜| 精品久久久久久久末码| 国产成人精品久久久久久| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 久久精品夜色国产| 精品人妻视频免费看| 一级av片app| 99热国产这里只有精品6| av线在线观看网站| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 亚洲国产精品一区三区| 黄色配什么色好看| 国产在视频线精品| 久久久久久九九精品二区国产| 午夜激情福利司机影院| 日本午夜av视频| 亚洲精品乱码久久久v下载方式| 久久久久久久久大av| 国产一区有黄有色的免费视频| 久久人人爽人人爽人人片va| 日韩在线高清观看一区二区三区| 啦啦啦中文免费视频观看日本| 看十八女毛片水多多多| 能在线免费看毛片的网站| 国产成人精品久久久久久| 精品人妻熟女av久视频| 一区二区三区精品91| 国产精品蜜桃在线观看| 亚洲av男天堂| 成年女人在线观看亚洲视频| 深爱激情五月婷婷| 国产黄片美女视频| 老司机影院成人| 亚洲精品视频女| 婷婷色av中文字幕| 日韩精品有码人妻一区| 成人美女网站在线观看视频| 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 最黄视频免费看| 97在线人人人人妻| 有码 亚洲区| 亚洲精品一二三| 国产高清有码在线观看视频| 一级毛片黄色毛片免费观看视频| 国产美女午夜福利| 日本午夜av视频| 又爽又黄a免费视频| 国产成人精品婷婷| 伦精品一区二区三区| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 色视频www国产| 亚洲欧洲国产日韩| 夜夜爽夜夜爽视频| 欧美性感艳星| av福利片在线观看| 黄色视频在线播放观看不卡| 成人黄色视频免费在线看| 国产在线一区二区三区精| 亚洲av福利一区| 国产精品国产av在线观看| 色视频在线一区二区三区| .国产精品久久| 久久久久网色| 国产真实伦视频高清在线观看| 纯流量卡能插随身wifi吗| 丰满人妻一区二区三区视频av| 久久久精品免费免费高清| 一级毛片久久久久久久久女| 久久久久久久久久人人人人人人| 精品酒店卫生间| 少妇的逼好多水| 高清视频免费观看一区二区| 午夜老司机福利剧场| 欧美精品一区二区大全| 干丝袜人妻中文字幕| 国产成人91sexporn| 亚洲三级黄色毛片| 亚洲精品久久午夜乱码| av.在线天堂| 熟女电影av网| 亚洲欧美日韩另类电影网站 | 亚洲四区av| 精品熟女少妇av免费看| 性色avwww在线观看| 在线天堂最新版资源| 亚洲高清免费不卡视频| 亚洲最大成人中文| 日韩成人av中文字幕在线观看| 熟女av电影| 我要看日韩黄色一级片| av视频免费观看在线观看| 国产精品欧美亚洲77777| 联通29元200g的流量卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产毛片av蜜桃av| 日韩中文字幕视频在线看片 | 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 日本vs欧美在线观看视频 | 国产欧美日韩精品一区二区| 国产亚洲欧美精品永久| 一级毛片aaaaaa免费看小| 免费av中文字幕在线| 国产成人精品福利久久| 国产淫片久久久久久久久| 成人黄色视频免费在线看| av在线app专区| 亚州av有码| 联通29元200g的流量卡| 久久久精品94久久精品| 国产精品国产av在线观看| 男女国产视频网站| av视频免费观看在线观看| 男女国产视频网站| 熟女av电影| 18禁在线播放成人免费| 熟女av电影| 亚洲精品久久午夜乱码| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| 成人免费观看视频高清| 国产精品久久久久久av不卡| 一个人看的www免费观看视频| 18禁在线无遮挡免费观看视频| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看 | 免费看日本二区| 久久精品国产自在天天线| 99热这里只有精品一区| 亚洲欧美成人综合另类久久久| 亚洲精品乱码久久久v下载方式| 99热网站在线观看| 尾随美女入室| 大香蕉97超碰在线| 街头女战士在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 久久影院123| 久久国产精品大桥未久av | 国产伦理片在线播放av一区| 夜夜骑夜夜射夜夜干| 亚洲欧美精品专区久久| 国产日韩欧美在线精品| 久久97久久精品| 国产爱豆传媒在线观看| 亚洲av在线观看美女高潮| 久久ye,这里只有精品| 欧美区成人在线视频| 欧美精品国产亚洲| 大香蕉久久网| 欧美xxxx性猛交bbbb| 精品久久久久久电影网| kizo精华| 性色avwww在线观看| 国产精品成人在线| 久久国产精品男人的天堂亚洲 | 亚洲av日韩在线播放| 晚上一个人看的免费电影| 九色成人免费人妻av| 网址你懂的国产日韩在线| 在线免费观看不下载黄p国产| 久久久久久久久大av| 国产成人一区二区在线| 日韩亚洲欧美综合| 男女下面进入的视频免费午夜| 80岁老熟妇乱子伦牲交| 97热精品久久久久久| 亚洲欧美精品专区久久| 国产色婷婷99| 久久韩国三级中文字幕| 国产精品国产三级专区第一集| 免费黄频网站在线观看国产| 嫩草影院新地址| 男的添女的下面高潮视频| 直男gayav资源| 成人18禁高潮啪啪吃奶动态图 | 成年女人在线观看亚洲视频| 天天躁日日操中文字幕| 自拍偷自拍亚洲精品老妇| 夜夜爽夜夜爽视频| 国产成人a∨麻豆精品| 国产亚洲5aaaaa淫片| 成人美女网站在线观看视频| 女人十人毛片免费观看3o分钟| 亚洲精品亚洲一区二区| 一个人免费看片子| 女人十人毛片免费观看3o分钟| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 天美传媒精品一区二区| 国产永久视频网站| 精品亚洲乱码少妇综合久久| 观看美女的网站| 国产永久视频网站| 精品亚洲成国产av| 欧美zozozo另类| 亚洲精品久久久久久婷婷小说| 亚洲av成人精品一区久久| 啦啦啦中文免费视频观看日本| 久久精品人妻少妇| 少妇精品久久久久久久| 一二三四中文在线观看免费高清| 久久久午夜欧美精品| 免费少妇av软件| 六月丁香七月| 国产一区二区三区av在线| 99久久精品一区二区三区| 最后的刺客免费高清国语| 婷婷色综合大香蕉| 日韩在线高清观看一区二区三区| 在现免费观看毛片| 国产成人91sexporn|