• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface:A Numerical Study

    2018-05-02 01:51:49MustafaMushtaqHayatandAlsaedi
    Communications in Theoretical Physics 2018年4期

    M.Mustafa,A.Mushtaq,T.Hayat,and A.Alsaedi

    1School of Natural Sciences(SNS),National University of Sciences and Technology(NUST),Islamabad 44000,Pakistan

    2Research Centre for Modeling and Simulation(RCMS),National University of Sciences and Technology(NUST),Islamabad 44000,Pakistan

    3Department of Mathematics,Quaid-I-Azam University 45320,Islamabad 44000,Pakistan

    4Department of Mathematics,Faculty of Science,King Abdulaziz University,P.O.Box 80257,Jeddah 21589,Saudi Arabia

    1 Introduction

    Fluid flow problems in rotating frame have been proven fascinating as well as challenging and these are met in numerous engineering applications such as rotor-stator systems,atmospheric and oceanic circulations,rotatingdisk systems,transport engineering(automobile breaks),geothermal extraction and many others.Viscous flow in rotating frame developed by linearly stretched plate was firstly explored by Wang.[1]He derived series solutions for velocity pro files by using perturbation in rotation-strength parameter.Rajeswari and Nath[2]examined time dependent flow past a stretchable surface in a revolving fluid.Nazar et al.[3]provided numerical approximations for unsteady flow over an impulsively stretched plate in rotatingfluid using Keller-box method.They also derived asymptotic solutions valid from large time,which were shown to be consistent with the numerical findings.Boundary layer flow of Ostwald-de-Waele(power-law)fluid in rotating frame was addressed by Kumari et al.[4]for broad range of power-law index.An analytical study for rotating flow of an electrically conducting second grade fluid past a porous shrinking sheet was presented by Hayat et al.[5]Abbas et al.[6]addressed the unsteadiness in revolving flow bounded by a stretchable wall using Keller-box method.Javed et al.[7]numerically explored the revolvingflow by an exponentially stretching sheet considering space dependent angular velocity in rotating frame.Later,Zaimi et al.[8]studied t?h′eflow induced by stretching surface in rotating Walters?aAZB liquid using a numerical scheme.Khan et al.[9]reported numerical simulations for nanofluidflow by a deformable surface in rotating frame considering two different thermal conductivity models.Recently,Mustafa et al.[10]described rotational effects on the laminar flow of Fe3O4-water ferrofluid caused by stretchable surface.In another recent article,exponentially stretchedflow of Maxwell fluid in rotating frame was modeled by Mustafa et al.[11]

    Fluids which deform non-linearly upon the application of shearing forces are frequently encountered in industrial processes.Non-Newtonian behavior manifests itself in a number of ways.Shear-thinning/thickening effect is an interesting characteristic which is frequent amongst fluids such as blood,paints,polymers,colloidal solutions etc.Power-law model is a generalized Newtonian fluid model that has been widely applied for description of shearthinning or shear-thickening phenomenon. Some well-documented boundary layer problems concerning powerlaw fluids can be stated through the studies.[12?14]Another important property of non-Newtonian liquids is the retention of fading memory upon the elimination of shearing force known as fluid elasticity.Viscoelastic behavior refers to the situation in which motion of the material element not only depends on the current stress state but also on the deformation history of the element. Suchfluids display significant deviation from the Newtonian limit in terms of both physical behavior and computational complexity.Upper-convected Maxwell model is a viscoelastic fluid model that has been consistently used by the researchers due to its simplicity.Harris[15]presented the boundary layer equations for two-dimensionalflow of upper-convected Maxwell fluid.Sadeghy et al.[16]used these equations to explore Maxwell fluid flow driven by a moving rigid plate in stationary fluid.They employed numerical and perturbation approaches to determine the velocity distribution above the plate.Finite difference approach was found to be effective here in comparison to the other employed methods as it solved the problem for Deborah number as large as 2.4.Kumari and Nath[17]analyzed the Maxwell fluid flow in a region of stagnationpoint utilizing finite difference method.It was found that viscoelastic fluid parameter gives resistance to momentum transport phenomenon.Abel et al.[18]discussed the stretched flow of viscoelastic Maxwell fluid in the existence of Lorentz force.Hayat et al.[19]analytically explored the Maxwell fluid flow in the vicinity of stagnation-point with melting effects.Shateyi[20]proposed a numerical approach for tackling the Maxwell fluid flow with mixed convection and chemical reaction.Recent material in this direction can be stated through Refs.[21–30].

    The objective of this paper is to investigate non-linear radiative heat transfer over a deformable surface placed in revolving Maxwell fluid.In many papers,the authors made use of linearized Rosseland formula to attain a linear energy equation,which brings no additional computational effort(see,for example Refs.[31–33]).Here the inclusion of non-linear flux provides strongly non-linear system,which enables one to determine the features of small/large temperature differences(see Refs.[34–37]for details).Accurate similar solutions are found for broad range of embedded parameters.Emphasis has given to the effects of viscoelasticity,rotating frame and radiative heat transfer on the solutions.

    2 Problem Formulation

    Consider a laminar flow above a stretchable surface placed in a rotating viscoelastic fluid obeying upperconvected Maxwell model.The surface lying in the plane z=0 is stretched with velocity uw=ax in which a>0 denotes the stretching rate and x stands for the distance measured from the origin.Fluid rotates about the vertical axis with uniform angular velocity ω(see Fig.1).We take into account the non-linear Rosseland formula for thermal radiation.The surface temperature Twis assumed to be greater than the ambient fluid temperature T∞.Under these assumptions,conservation equations for Maxwell fluid flow and heat transfer in rotating frame are:

    Fig.1 Physical con figuration and coordinate system.

    where ρ represents fluid density,cpdenotes the specific heat of fluid,k stands for thermal conductivity,? = [0,0,ω]the angular velocity vector and qr=?(4/3aR)grad(eb)is the heat flux due to radiation in which aR[m?1]represents the mean absorption coefficient and eb[W·m?2]the black body emissive power,which is related with the absolute temperature T by the Stefan-Boltzmann law as eb= σ?T4,with σ?=5.7 × 10?5W ·m?2·K?4as Stefan-Boltzmann constant.In Eq.(2),the term(2?×V)is due to the coriolis acceleration while the expression(? × (? × r))= ??(ω2r2/2)embodies centrifugal acceleration,which balances with the pressure gradient??p.The extra stress tensor S in Maxwell fluid obeys the following relation:

    in which λ1is the fluid relaxation time,A1=(?V)+(?V)tthe first Rivlin-Ericksen tensor and D/Dt the upper-convected time derivative.Thus,component forms of Eqs.(1)–(3)under usual boundary layer approximations are given below:

    The boundary conditions in the present problem are as below:

    Introducing the following dimensionless variables

    Equation(5)is identically satis fied and Eqs.(6)–(9)become

    with transformed boundary conditions

    in which λ = ω/a is rotation-strength parameter,β = λ1a denotes the Deborah number,Pr= ν/α represents the Prandlt number,Rd=16σ?T3∞/3kaRstands for thermal radiation parameter and θw=Tw/T∞measures wall to ambient temperature ratio.When λ=0,the differential system(11)–(14)correspond to the case of non-rotating frame as discussed by Mushtaq et al.[18]Further,the case of Newtonian fluid is achieved by setting β=0. As pointed out in Ref.[29],present model reduces to linear radiation case when Rd is sufficiently small and θwapproaches unity.We define the local Nusselt number Nuxwith an aid of Fourier law as follows:

    where qwis the wall heat flux at the surface due to both convection and radiation effects.It is given by:

    Now using(16)in Eq.(15)and then invoking the transformations Eq.(10),we get

    where Rex=uwx/ν is the local Reynolds number.

    3 Numerical Results and Discussion

    We employ the standard shooting technique to treat the coupled non-linear differential system comprising of Eqs.(11)–(14)numerically.The values of missing slopes f′′(0),g′(0),and θ|prime(0)are iteratively estimated through Newton-Raphson method.The validity of numerical scheme is ascertained by comparing the values of f′′(0)and g′(0)with those of already published papers in viscous fluid case(see Table 1).Table 1 shows that current computations almost match exactly with the results of previous studies at all values of rotation-strength parameter λ.Computational results of local Nusselt number Re?1/2xNux,which is related with the heat flux from the surface,are obtained for different values of λ,θwand β in Table 2.It is clear that the wall heat flux is reduced due to the inclusion of viscoelastic effects.We also observe a significant growth in heat transfer coefficient as the difference(Tw?T∞)enlarges.Moreover,like the viscoelasticity,fluid rotation also adversely affects the heat transfer from the plate.

    The curve of f′related with the u-velocity component is computed for a variety of Deborah numbers in Fig.2.By definition,Deborah number signifies the ratio of fluid memory duration(relaxation time)to its characteristic time scale.It is encouraging that computational treatment proposed in this work can furnish convergent results up to Deborah number 1.8.It is evident that curve f′begins from unity at η =0 and tends to zero as η → ∞.Another noticeable behavior is that the velocity u approaches to zero at smaller distance from the sheet when β becomes large.In other words,hydrodynamic boundary layer shrinks as the stress relaxation duration enlarges.This result is consistent with the findings of previously published articles(see Abel et al.,[18]Shateyi,[20]Hsiao[21]etc.for details).In accordance with Ref.[21],an increasing trend in surface velocity gradient f′′(0)is apparent for growing values of Deborah number β.This follows from the fact that increasing values of parameter β implies slower recovery process,which in turn slows down the development of boundary layer.

    Figure 3 predicts the influence of rotation-strength parameter λ on the function f′.The parameter λ compares the rotation and stretching rates.It is realized that velocity field f′decreases exponentially with an increase in η in non-monotonic fashion when larger values of λ are employed.More precisely,we observe oscillatory pro file of f′for large value of λ.Further,the pro files shift towards the stretching boundary when λ enlarges indicating that boundary layer thickness is reduced due to the consideration of rotating frame.

    In Fig.4,velocity pro file is plotted at different values of Deborah number β for a specified value of rotationstrength parameter λ.The velocity component g(η)is non-zero and it has a negative value signaling that fluidflows in negative y-direction only.This outcome is anticipated due to the inclusion of rotational effect.It is also clear that function g(η)has an oscillatory decaying pro file for any non-zero value of λ.The envelope of oscillations grows further as the angular velocity is enhanced.A cross over is apparent in the pro files of g(η)illustrating that velocity in y-direction increases near the wall and decreases far from the wall as parameter β enlarges.This outcome is different from the effect of viscoelastic parameter of second grade fluid.

    In Fig.5,the change in velocity pro file g(η)with the variation in λ is observed.This figure shows that the function g(η)has pro file analogous to the function ?ηexp(?η)for smaller values of λ while it decays oscillatory when larger values of λ are considered.This outcome has also be noticed by Nazar et al.[3]and Zaimi et al.[8]

    Table 1 Comparison of results for f′′(0)and g′(0)with those of Wang[1]and Zaimi et al.[8]for various values of λ when β =0.

    Table 2 Computational results of local Nusselt number Nur= ?[1+Rdθ3w]θ′(0)for different values of λ, β,and θwwhen Rd=0.5 and Pr=7.

    Fig.2 Curves of velocity field f′(η)for different values of β.

    Fig.3 Curves of velocity field f ′(η)for different values of λ.

    Fig.4 Curves of velocity field g(η)for different values of β.

    Fig.5 Curves of velocity field g(η)for different values of λ.

    Fig.6 Pro files of temperature θ(η)for different values of λ.

    Fig.7 Pro files of temperature θ(η)for different values of β.

    Figure 6 portrays temperature pro file θ at various values of rotation-strength parameter λ.There is a significant rise in temperature θ when rotation-strength parameter is varied from λ =0 to λ =10.The resistance to the fluid motion o ff ered by the rotating frame enhances the temperature.As demonstrated in Wang,[1]the entrainment velocity decreases for increasing values of λ.Thus intensity of cold fluid drawn towards the stretching surface reduces with increasing λ.As a consequence,thermal boundary layer expands when larger values of λ are accounted.

    On the other hand,temperature θ slightly rises and penetration depth grows when Deborah number β is incremented(see Fig.7).Moreover,slope of temperature pro file near the wall appears to decrease upon increasing β.This behavior is described as follows.Our computations revealed that vertical velocity is inversely proportional to the Deborah number β.It is therefore anticipated that amount of cold drawn in the vertical direction will reduce when parameter β enlarges.This in turn leads to the thickening of thermal boundary layer and enhancement in surface heat transfer rate.

    Fig.8 Pro files of temperature θ(η)for different values of θw.

    Figure 8 elucidates the behavior of temperature ratio parameter θwon the temperature pro file.As θwenlarges,that is,the parameter related with the ratio of wall temperature to the ambient temperature increases,the temperature pro file increases. From Eq.(10),it can be noticed that effective thermal diffusivity αeff=(α +16σ?T3/3ρCpk?)is temperature dependent due to the inclusion of non-linear heat flux.As also observed in Refs.[34-36],temperature distribution has S-shaped pattern against the similarity variable in the limiting case as θw→ ∞.Thus governing system(13)–(16)correspond to the adiabatic case(θ′(0)=0)when ratio(Tw/T∞)tends to in finity.

    Figure 9 shows the temperature pro files for varying radiation parameter Rd.Temperature pro files become thicker and temperature gradient at the surface enlarges when Rd is incremented.Similar behavior of radiation parameter was also figured out by Hsiao.[32?33]In linear radiation situation,temperature distribution approaches a constant finite value as Rd→0.However,such effect is not preserved in non-linear radiation model.

    Fig.9 Pro files of temperature θ(η)for different values of Rd.

    Fig.10 Pro files of local Nusselt number ?θ′(0)for different values of λ.

    In Fig.10,we plot wall temperature gradient θ′(0)as a function of Prandtl number Pr at different values of λ.Larger Prandtl number fluids are effective in heat convection compared to pure conduction.Due to this reason θ′(0)shows an increasing trend when Pr is increased and it tends to zero for vanishing Pr.Furthermore,there is a decrease in θ′(0)as β increases from β =0 to β =0.5.Interestingly,this change becomes pronounced when rotation rate becomes larger in comparison to the stretching rate.

    4 Conclusion

    In this study,Maxwell fluid flow in rotating frame is discussed in the existence of non-linear thermal radiation.Similarity solutions are found for a broad range of thermal radiation parameter.The key aspects of this work are summarized below:

    (i)Present numerical results are consistent with the previously published results for all values of rotationstrength parameter λ when β =0.

    (ii)An increase in rotation-strength parameter leads to an enhancement in the heat penetration depth.

    (iii)Dissimilar to the non-rotating frame,the decay in f′(η)with η is exponentially non-montonic.Indeed,there is an oscillatory pattern in the pro files of f′and g for non-zero values of λ.

    (iv)As wall and ambient temperature difference becomes,a decrease in wall heat transfer coefficient and an increase in heat penetration depth occurs.Also,temperature distribution becomes S-shaped or θ′(0) → 0 as θw→∞.

    (v)Fluid velocity in z-direction far from the stretching wall is reduced when rotation-strength parameter is increased.

    (vi)The amount of cold fluid drawn in the vertical direction towards the stretching surface reduces for increasing values of β.This in turn leads to a reduction in heat transfer rate.

    [1]C.Y.Wang,Zeitschrift fur Angewandte Mathematik and Physik 39(1988)177.

    [2]V.Rajeswari and G.Nath,Int.J.Eng.Sci.30(1992)747.

    [3]R.Nazar,N.Amin,and I.Pop,Mech.Res.Commun.31(2004)121.

    [4]M.Kumari,T.Grosan,and I.Pop,Tech.Mech.1(2006)11.

    [5]T.Hayat,T.Javed,and M.Sajid,Phys.Lett.A 372(2008)3264.

    [6]Z.Abbas,T.Javed,M.Sajid,and N.Ali,J.Taiwan Inst.Chem.Eng.41(2010)644.

    [7]T.Javed,Z.Abbas,M.Sajid,and N.Ali,Int.J.Numer.Meth.Heat and Fluid Flow 21(2011)903.

    [8]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.-Engl.Ed.34(2013)945.

    [9]J.A.Khan,M.Mustafa,and A.Mushtaq,Int.J.Heat Mass Transf.94(2016)49.

    [10]M. Mustafa, A. Mushtaq, T. Hayat, and A. Alsaedi, PLoS ONE 11 (2016) e0149304,doi:10.1371/journal.pone.0149304.

    [11]M.Mustafa,R.Ahmad,T.Hayat,and A.Alsaedi,Neural Comput.&Appl.29(2018)493.

    [12]Y.Lin,L.Zheng,and X.Zhang,Int.J.Heat Mass Transf.77(2014)708.

    [13]Y.Lin,L.Zheng,X.Zhang,et al.,Int.J.Heat Mass Transf.84(2015)903.

    [14]S.Xun,J.Zhao,L.Zheng,et al.,Int.J.Heat Mass Transf.103(2016)1214.

    [15]J.Harris,Rheology and Non-Newtonian Flow,Longman Publishing Group(1977).

    [16]K.Sadeghy,A.H.Naja fi,and M.Saffaripour,Int.J.Nonlinear Mech.40(2005)1220.

    [17]M.Kumari and G.Nath,Int.J.Non-linear Mech.44(2009)1048.

    [18]M.S.Abel,J.V.Tawade,and M.M.Nandeppanavar,Meccanica 47(2012)385.

    [19]T.Hayat,M.Mustafa,S.A.Shehzad,and S.Obaidat,Int.J.Numer.Meth.Fluids 68(2012)233.

    [21]K.L.Hsiao,Arabian J.Sci.Eng.39(2014)4325.

    [22]A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, J. Aerosp. Eng. 27 (2014) doi:org/10.1060/(ASCE)AS.1943-5525.0000361.

    [23]J.A.Khan,M.Mustafa,T.Hayat,and A.Alsaedi,PLoS ONE 9(2015)doi:10.1371/journal.pone.0137363.

    [24]M.Awais,N.Muhammad,T.Hayat,and A.Alsaedi,Int.J.Non-linear Sci.Numer.Simul.16(2015)123.

    [25]M.Mustafa,J.A.Khan,T.Hayat,and A.Alsaedi,AIP Advances 5(2015)doi:10.1063/1.4916364.

    [26]T.Salahuddin,M.Y.Malik,A.Hussain,et al.,J.Mag.Magnet.Mater.401(2016)991.

    [27]A.Mushtaq,S.Abbasbandy,M.Mustafa,et al.,AIP Advances 6(2016)doi:10.1063/1.4940133.

    [29]K.L.Hsiao,Appl.Therm.Eng.112(2017)1281.

    [30]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Non-linear Mech.79(2016)83.

    [31]L.Zheng,C.Zhang,X.Zhang,and J.Zhang,J.Franklin Inst.350(2013)990.

    [32]K.L.Hsiao,Energy 59(2013)494.

    [33]K.L.Hsiao,Comp.Fluids 104(2014)1.

    [34]A.Pantokratoras and T.Fang,Meccanica 49(2014)1539.

    [35]M.Mustafa,A.Mushtaq,T.Hayat,and B.Ahmad,PLoS ONE 9(2014)doi:10.1371/journal.pone.0103946.

    [36]M.Mustafa,A.Mushtaq,T.Hayat,and A.Alsaedi,J.Taiwan Inst.Chem.Eng.47(2015)43.

    [37]A.Mushtaq,M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Numer.Meth.Heat Fluid Flow 26(2016)1617.

    国产老妇伦熟女老妇高清| 午夜激情久久久久久久| 亚洲精品一二三| 亚洲欧美色中文字幕在线| 久久精品国产a三级三级三级| 亚洲四区av| 高清欧美精品videossex| 天堂8中文在线网| 国产精品免费大片| 一本色道久久久久久精品综合| 91午夜精品亚洲一区二区三区| 国产毛片在线视频| 精品亚洲成a人片在线观看| 久久久久久久大尺度免费视频| 曰老女人黄片| 一本久久精品| 亚洲精品久久午夜乱码| 国产一区二区 视频在线| 大码成人一级视频| 街头女战士在线观看网站| 伊人亚洲综合成人网| 一区二区三区精品91| 国产男女超爽视频在线观看| 久久久欧美国产精品| 在线观看免费视频网站a站| 免费看av在线观看网站| 成人二区视频| 欧美成人午夜精品| 国产成人免费无遮挡视频| 中国国产av一级| 在线观看国产h片| 大片电影免费在线观看免费| 国产一区二区在线观看av| av免费观看日本| 免费人妻精品一区二区三区视频| 日韩人妻精品一区2区三区| 久久女婷五月综合色啪小说| 在线精品无人区一区二区三| 国产精品国产av在线观看| 日本91视频免费播放| 天堂俺去俺来也www色官网| 美国免费a级毛片| 人人妻人人添人人爽欧美一区卜| 国产亚洲最大av| 亚洲精品乱久久久久久| 亚洲欧美成人综合另类久久久| 亚洲第一区二区三区不卡| 成人免费观看视频高清| 亚洲人成网站在线观看播放| 午夜影院在线不卡| 晚上一个人看的免费电影| 黄色视频在线播放观看不卡| 久久97久久精品| 丰满饥渴人妻一区二区三| 91精品伊人久久大香线蕉| 久久青草综合色| 在线观看国产h片| 亚洲欧洲日产国产| 精品一区二区三区四区五区乱码 | 99国产精品免费福利视频| 秋霞伦理黄片| 亚洲国产成人一精品久久久| 一级a爱视频在线免费观看| 高清欧美精品videossex| 精品久久久精品久久久| 综合色丁香网| 欧美国产精品一级二级三级| 18禁裸乳无遮挡动漫免费视频| 亚洲成国产人片在线观看| 久久热在线av| 超碰成人久久| 一本大道久久a久久精品| 一区二区三区乱码不卡18| 免费观看性生交大片5| 看免费av毛片| 国精品久久久久久国模美| 制服人妻中文乱码| 一边亲一边摸免费视频| 日韩伦理黄色片| 精品久久久久久电影网| 免费播放大片免费观看视频在线观看| 中文欧美无线码| 国产 一区精品| 国产精品一国产av| 波多野结衣一区麻豆| 亚洲美女黄色视频免费看| 18在线观看网站| 亚洲精品自拍成人| 日本av免费视频播放| 国产精品偷伦视频观看了| 国产极品天堂在线| 天天躁夜夜躁狠狠久久av| 国产成人精品久久二区二区91 | 亚洲一区中文字幕在线| 免费在线观看视频国产中文字幕亚洲 | 欧美激情极品国产一区二区三区| 国产毛片在线视频| 久久毛片免费看一区二区三区| 赤兔流量卡办理| 亚洲精品久久成人aⅴ小说| 国产免费又黄又爽又色| 精品一区二区三卡| 日本欧美视频一区| 男女无遮挡免费网站观看| 久久国产精品男人的天堂亚洲| 国产一区有黄有色的免费视频| 97在线人人人人妻| 丰满饥渴人妻一区二区三| 欧美成人精品欧美一级黄| 伊人久久大香线蕉亚洲五| 黑人巨大精品欧美一区二区蜜桃| 精品亚洲成a人片在线观看| 丁香六月天网| 成年女人在线观看亚洲视频| 99国产精品免费福利视频| 免费高清在线观看日韩| 欧美xxⅹ黑人| 日韩av在线免费看完整版不卡| 成人毛片a级毛片在线播放| 亚洲av日韩在线播放| 国产女主播在线喷水免费视频网站| av.在线天堂| 欧美xxⅹ黑人| 欧美激情高清一区二区三区 | 亚洲精品久久成人aⅴ小说| 免费少妇av软件| 欧美精品高潮呻吟av久久| 国产xxxxx性猛交| 成人午夜精彩视频在线观看| 美女午夜性视频免费| 一区福利在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 国产xxxxx性猛交| 欧美在线黄色| 秋霞伦理黄片| 欧美老熟妇乱子伦牲交| 高清视频免费观看一区二区| 欧美人与善性xxx| 久久久久久久久久久免费av| 亚洲久久久国产精品| 伦理电影大哥的女人| 老司机影院毛片| 中文字幕另类日韩欧美亚洲嫩草| 日韩 亚洲 欧美在线| 黄片播放在线免费| 亚洲,一卡二卡三卡| 久久精品国产综合久久久| 午夜日韩欧美国产| 成年人午夜在线观看视频| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品古装| 中文字幕制服av| 久久久久久久国产电影| 狠狠精品人妻久久久久久综合| 男人舔女人的私密视频| 日韩电影二区| 黄片小视频在线播放| 亚洲在久久综合| 久久精品人人爽人人爽视色| 最新的欧美精品一区二区| 亚洲人成电影观看| 日韩不卡一区二区三区视频在线| 成年女人毛片免费观看观看9 | 制服丝袜香蕉在线| 母亲3免费完整高清在线观看 | 丰满乱子伦码专区| 好男人视频免费观看在线| 中文乱码字字幕精品一区二区三区| 国产乱来视频区| 亚洲图色成人| 亚洲国产毛片av蜜桃av| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 午夜日本视频在线| 美女高潮到喷水免费观看| 成人毛片60女人毛片免费| 只有这里有精品99| 最黄视频免费看| 国产一区二区三区av在线| 桃花免费在线播放| 高清av免费在线| 国精品久久久久久国模美| 国产精品熟女久久久久浪| 亚洲精品中文字幕在线视频| 国产在线一区二区三区精| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 亚洲欧美精品自产自拍| 永久免费av网站大全| 国产黄色免费在线视频| 69精品国产乱码久久久| 国产男人的电影天堂91| 亚洲欧美一区二区三区久久| 少妇人妻精品综合一区二区| 亚洲国产毛片av蜜桃av| 91精品三级在线观看| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区91 | 高清在线视频一区二区三区| 精品一区二区三卡| 伦精品一区二区三区| 日韩精品免费视频一区二区三区| 丁香六月天网| 80岁老熟妇乱子伦牲交| 伊人久久大香线蕉亚洲五| 最近2019中文字幕mv第一页| 亚洲精品日本国产第一区| 日韩欧美精品免费久久| 侵犯人妻中文字幕一二三四区| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 亚洲精品美女久久av网站| 男的添女的下面高潮视频| 婷婷色综合大香蕉| 亚洲一级一片aⅴ在线观看| 国产一区二区 视频在线| 人妻人人澡人人爽人人| 国产老妇伦熟女老妇高清| 国产亚洲一区二区精品| 欧美精品高潮呻吟av久久| 欧美黄色片欧美黄色片| 中文天堂在线官网| 精品一区二区免费观看| 91久久精品国产一区二区三区| 一二三四中文在线观看免费高清| 日本欧美国产在线视频| 国产无遮挡羞羞视频在线观看| 国产又爽黄色视频| 国产探花极品一区二区| 高清黄色对白视频在线免费看| 视频区图区小说| 熟女少妇亚洲综合色aaa.| 丝袜美足系列| 韩国av在线不卡| 国产又爽黄色视频| 久久久久久久久久人人人人人人| 国产黄色免费在线视频| 18禁裸乳无遮挡动漫免费视频| 搡老乐熟女国产| 精品少妇内射三级| 亚洲精品成人av观看孕妇| 免费黄频网站在线观看国产| 国产成人免费观看mmmm| 久久午夜综合久久蜜桃| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 欧美黄色片欧美黄色片| av.在线天堂| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| 国产精品免费视频内射| www.自偷自拍.com| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 亚洲美女视频黄频| 黄片播放在线免费| 成年人午夜在线观看视频| 国产精品蜜桃在线观看| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 国产成人精品无人区| 一区二区av电影网| 欧美日韩亚洲国产一区二区在线观看 | 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 欧美日韩一级在线毛片| 色哟哟·www| 国产成人a∨麻豆精品| 最近的中文字幕免费完整| 熟妇人妻不卡中文字幕| 18禁国产床啪视频网站| 满18在线观看网站| 国产精品秋霞免费鲁丝片| 国产高清国产精品国产三级| 欧美人与性动交α欧美软件| 精品99又大又爽又粗少妇毛片| 18禁国产床啪视频网站| 天堂中文最新版在线下载| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 好男人视频免费观看在线| 超碰97精品在线观看| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 婷婷色综合大香蕉| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| 欧美av亚洲av综合av国产av | 日韩在线高清观看一区二区三区| 天堂中文最新版在线下载| 亚洲美女视频黄频| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 免费黄频网站在线观看国产| 久久99精品国语久久久| 最近手机中文字幕大全| 18+在线观看网站| 精品一区二区三区四区五区乱码 | 男女下面插进去视频免费观看| 中文字幕最新亚洲高清| 97在线人人人人妻| 亚洲精品aⅴ在线观看| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 人体艺术视频欧美日本| 国产成人91sexporn| 亚洲欧美清纯卡通| 亚洲人成网站在线观看播放| 国产极品粉嫩免费观看在线| 亚洲四区av| kizo精华| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 久久精品aⅴ一区二区三区四区 | 国产亚洲午夜精品一区二区久久| 美女国产高潮福利片在线看| 成年动漫av网址| 黄频高清免费视频| 日韩一卡2卡3卡4卡2021年| 日本av手机在线免费观看| 少妇熟女欧美另类| 男女无遮挡免费网站观看| 中文字幕另类日韩欧美亚洲嫩草| 国产男人的电影天堂91| 久久久久精品性色| 日韩电影二区| 欧美日韩一区二区视频在线观看视频在线| 菩萨蛮人人尽说江南好唐韦庄| 高清不卡的av网站| 亚洲成人一二三区av| 考比视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲综合色网址| 亚洲欧美清纯卡通| 亚洲少妇的诱惑av| 伦理电影大哥的女人| 国产精品一国产av| 在线观看国产h片| 欧美日韩av久久| 国产精品香港三级国产av潘金莲 | 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 丝袜人妻中文字幕| 国产人伦9x9x在线观看 | 午夜福利在线免费观看网站| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 精品亚洲成国产av| 寂寞人妻少妇视频99o| www.精华液| 精品卡一卡二卡四卡免费| 自线自在国产av| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 亚洲精品国产av成人精品| av在线老鸭窝| 国产福利在线免费观看视频| 日韩三级伦理在线观看| 我要看黄色一级片免费的| 国产色婷婷99| 大香蕉久久成人网| 国产老妇伦熟女老妇高清| 国产精品二区激情视频| 日韩中文字幕视频在线看片| 日韩免费高清中文字幕av| 久久久a久久爽久久v久久| a级毛片在线看网站| 黄色毛片三级朝国网站| 在线观看人妻少妇| 人成视频在线观看免费观看| 午夜激情久久久久久久| 亚洲五月色婷婷综合| 不卡视频在线观看欧美| 精品一区二区三区四区五区乱码 | 看非洲黑人一级黄片| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 性高湖久久久久久久久免费观看| 亚洲综合色惰| 99久久精品国产国产毛片| 18+在线观看网站| 久久99精品国语久久久| 啦啦啦在线免费观看视频4| 在线观看人妻少妇| 男女下面插进去视频免费观看| 国产日韩一区二区三区精品不卡| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 一区二区三区激情视频| 精品酒店卫生间| xxx大片免费视频| 少妇熟女欧美另类| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 一本久久精品| 午夜福利一区二区在线看| 五月伊人婷婷丁香| 超碰成人久久| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 午夜av观看不卡| 日韩免费高清中文字幕av| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| av卡一久久| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 一级毛片我不卡| 日韩一区二区视频免费看| 亚洲色图 男人天堂 中文字幕| 热re99久久国产66热| 天天影视国产精品| 2022亚洲国产成人精品| 美国免费a级毛片| 国产精品国产av在线观看| 精品国产一区二区久久| 成年人午夜在线观看视频| 黄片小视频在线播放| 亚洲av男天堂| 九色亚洲精品在线播放| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 九色亚洲精品在线播放| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 美女中出高潮动态图| 亚洲伊人久久精品综合| 性色avwww在线观看| 在线精品无人区一区二区三| 国产97色在线日韩免费| 亚洲一区中文字幕在线| 黑丝袜美女国产一区| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 亚洲精品自拍成人| av卡一久久| 秋霞伦理黄片| 美女国产视频在线观看| 婷婷色综合www| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| 宅男免费午夜| 成人国产av品久久久| 国产日韩一区二区三区精品不卡| 97在线人人人人妻| 99精国产麻豆久久婷婷| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 亚洲成av片中文字幕在线观看 | 在线观看国产h片| 国产深夜福利视频在线观看| 电影成人av| 国产精品久久久久久av不卡| 日韩精品免费视频一区二区三区| 国产精品一国产av| 日韩免费高清中文字幕av| 天天操日日干夜夜撸| 国产人伦9x9x在线观看 | 亚洲av中文av极速乱| 久久午夜福利片| 久久精品aⅴ一区二区三区四区 | www.熟女人妻精品国产| 老熟女久久久| 午夜日本视频在线| 精品久久久精品久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av福利一区| 中文字幕亚洲精品专区| 国产精品 国内视频| 久久精品国产综合久久久| 欧美激情 高清一区二区三区| av免费在线看不卡| 精品国产超薄肉色丝袜足j| 免费女性裸体啪啪无遮挡网站| 久久久久久久精品精品| 80岁老熟妇乱子伦牲交| 日日撸夜夜添| 国产精品一二三区在线看| 免费观看在线日韩| 一二三四中文在线观看免费高清| 成年动漫av网址| 亚洲国产av新网站| 国产精品一二三区在线看| 亚洲一码二码三码区别大吗| 春色校园在线视频观看| 美女脱内裤让男人舔精品视频| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| 成人影院久久| 亚洲欧美色中文字幕在线| av福利片在线| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 一区二区三区四区激情视频| 一区福利在线观看| 亚洲av男天堂| 999精品在线视频| 交换朋友夫妻互换小说| 高清不卡的av网站| 1024香蕉在线观看| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 国产在视频线精品| 黄色配什么色好看| 国产片内射在线| 在线观看一区二区三区激情| 欧美bdsm另类| 日韩中文字幕欧美一区二区 | 国产免费一区二区三区四区乱码| 亚洲国产精品999| 有码 亚洲区| 少妇精品久久久久久久| 久久这里只有精品19| 三级国产精品片| 母亲3免费完整高清在线观看 | 免费黄网站久久成人精品| 一区二区三区精品91| 国产成人aa在线观看| 免费女性裸体啪啪无遮挡网站| 午夜福利视频精品| 欧美黄色片欧美黄色片| √禁漫天堂资源中文www| 国产又爽黄色视频| 亚洲综合色惰| 成年av动漫网址| 欧美日韩视频精品一区| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中国国产av一级| 一区二区日韩欧美中文字幕| 精品午夜福利在线看| 男女午夜视频在线观看| 26uuu在线亚洲综合色| 欧美亚洲日本最大视频资源| 欧美日韩成人在线一区二区| 最近2019中文字幕mv第一页| 国产成人精品久久二区二区91 | 欧美日韩精品成人综合77777| 黄网站色视频无遮挡免费观看| 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 久久久久久久精品精品| 亚洲国产精品999| 国产视频首页在线观看| 免费看不卡的av| 一级毛片电影观看| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 精品亚洲乱码少妇综合久久| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 在线观看国产h片| 18+在线观看网站| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 国产精品一区二区在线观看99| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 久久午夜福利片| 亚洲av电影在线进入| 午夜日韩欧美国产| 久久久久久久久久人人人人人人| 国产免费一区二区三区四区乱码| 国产精品一区二区在线观看99| 嫩草影院入口| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 久久国产精品大桥未久av| 99久久综合免费| 人体艺术视频欧美日本| 春色校园在线视频观看| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久免费av| 91精品国产国语对白视频| 成人免费观看视频高清| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 亚洲成人av在线免费| 午夜老司机福利剧场| 成年美女黄网站色视频大全免费| 亚洲四区av| 老鸭窝网址在线观看| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 久久精品久久久久久久性| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 性少妇av在线| 丁香六月天网| 高清av免费在线|