楊麗娜,楊宇琦,楊 恭,陳亞萍
1.復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院婦產(chǎn)科,上海 200240;2.復(fù)旦大學(xué)附屬腫瘤醫(yī)院腫瘤研究所,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032;3.復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院中心實(shí)驗(yàn)室,上海 200240
化療耐藥是卵巢癌臨床治療的一大難題,研究細(xì)胞耐藥機(jī)制并開發(fā)靶向藥物可明顯提升腫瘤的治療效果。極光激酶A(Aurora A kinase,Aurora A)屬于絲/蘇氨酸蛋白激酶家族中的一員,參與調(diào)控細(xì)胞有絲分裂過程。Aurora A擴(kuò)增導(dǎo)致多極紡錘體和非整倍體細(xì)胞的形成,誘導(dǎo)基因不穩(wěn)定性從而促進(jìn)腫瘤發(fā)生[1]。有研究表明,Aurora A可通過調(diào)控DNA損傷修復(fù)、抑制細(xì)胞凋亡及抑制自噬等多種途徑促進(jìn)細(xì)胞對(duì)化療藥物(如順鉑、紫杉醇及依托泊苷)的耐藥[2-4]。
活性氧(reactive oxygen species,ROS)主要由含氧自由基和易于形成自由基的過氧化物組成。ROS作為信號(hào)分子,可調(diào)節(jié)細(xì)胞增殖、分化及免疫反應(yīng)等[5]。腫瘤細(xì)胞內(nèi)ROS水平高于正常細(xì)胞,因此,誘導(dǎo)ROS升高的分子可用于腫瘤的靶向治療[6]。在順鉑、紫杉醇和多柔比星耐藥的卵巢癌細(xì)胞株中,ROS清除酶谷胱甘肽過氧化物酶3(glutathione peroxidase 3,GPX3)上調(diào),氧化應(yīng)激誘導(dǎo)基因UDP-葡萄糖醛酸轉(zhuǎn)移酶家族1成員A6(UDP glucuronosyltransferase family 1 member A6,UGT1A6)下調(diào)[7],提示耐藥細(xì)胞株中ROS水平低于敏感細(xì)胞株。
在骨肉瘤中,Aurora A抑制劑MLN8237促進(jìn)細(xì)胞凋亡和自噬,同時(shí)MLN8237誘導(dǎo)ROS生成[8];在慢性粒細(xì)胞性白血病中,Aurora A抑制劑AKI603通過誘導(dǎo)衰老從而逆轉(zhuǎn)細(xì)胞的耐藥性,此過程伴隨ROS的升高[9],表明Aurora A抑制劑可誘導(dǎo)ROS產(chǎn)生。但Aurora A蛋白對(duì)細(xì)胞內(nèi)ROS的調(diào)控及ROS在Aurora A介導(dǎo)的化療耐藥中的作用仍不明確。
本研究利用慢病毒感染的方式在人卵巢癌細(xì)胞中分別導(dǎo)入Aurora A cDNA和shRNA,構(gòu)建Aurora A過表達(dá)和沉默的穩(wěn)轉(zhuǎn)細(xì)胞系,利用二氯二氫熒光素-乙酰乙酸酯(2’, 7’-dichlorofluorescin diacetate,DCFH-DA)、四甲基偶氮唑藍(lán)(methyl thiazolyl tetrazolium,MTT)和蛋白[質(zhì)]印跡法(Western blot)等探討ROS在Aurora A介導(dǎo)的化療耐藥中的作用,為卵巢癌的臨床用藥提供參考。
人卵巢癌細(xì)胞株HEY、OVCA429、A2780和OVCA420購自美國模式培養(yǎng)物保藏所(American Type Culture Collection,ATCC),A2780順鉑耐藥株A2780/CDDP為課題組自備。病毒包裝細(xì)胞HEK293T購自ATCC。RPMI-1640培養(yǎng)基和DMEM培養(yǎng)基購自美國Sigma公司,胎牛血清(fetal bovine serum,F(xiàn)BS)購自美國Gibco公司,Aurora A抗體、CDK6抗體、p-AMPKα(Thr172)抗體和AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)抗體購自美國CST公司,GAPDH抗體購自美國Santa Cruz公司,β-actin抗體購自美國Sigma公司,二抗購自美國Sigma公司,DCFH-DA染液購自北京普利萊基因技術(shù)有限公司,MTT和順鉑購自美國Sigma公司,N-乙酰-L-半胱氨酸(N-acetyl-L-cysteine,NAC)購自生工生物工程((上海)股份有限公司,ECL發(fā)光液購自美國Millipore公司。
1.2.1細(xì)胞培養(yǎng)
卵巢癌細(xì)胞株的培養(yǎng)選用含10%FBS的RPMI-1640培養(yǎng)基,HEK293T的培養(yǎng)選用含10%FBS的DMEM培養(yǎng)基,細(xì)胞置于37 ℃、CO2體積分?jǐn)?shù)為5%的飽和濕度的細(xì)胞培養(yǎng)箱中培養(yǎng)。
1.2.2構(gòu)建穩(wěn)定轉(zhuǎn)染細(xì)胞系
構(gòu)建穩(wěn)定轉(zhuǎn)染細(xì)胞系的方法參照參考文獻(xiàn)[2]。shAurora A靶向序列為:5’-GUCUUGUGUCCUUCAAAUU-3’。分別構(gòu)建Aurora A過表達(dá)細(xì)胞株OVCA420 Aurora A及對(duì)照細(xì)胞株OVCA420 Vector,Aurora A沉默細(xì)胞株OVCA429 shAurora A及對(duì)照細(xì)胞株OVCA429 shGFP。
1.2.3采用Western blot檢測(cè)蛋白水平
接種等量細(xì)胞于6 cm培養(yǎng)皿中,培養(yǎng)48 h后收集細(xì)胞。用RIPA裂解液(含蛋白酶抑制劑)裂解得到全細(xì)胞蛋白,經(jīng)蛋白定量后加入上樣緩沖液配成相同濃度的蛋白樣品,100 ℃,煮樣5 min。取30 μg蛋白樣品進(jìn)行Western blot檢測(cè)。經(jīng)轉(zhuǎn)膜、封閉后加入一抗溫育過夜。洗滌后,加入二抗,室溫溫育1 h,洗滌去除非特異結(jié)合后,利用ECL發(fā)光液進(jìn)行顯影。顯影儀器為FlourChem E。
1.2.4采用DCFH-DA法檢測(cè)細(xì)胞內(nèi)ROS含量
接種等量細(xì)胞于12孔板中,培養(yǎng)過夜后,加入10 μmol/L DCFH-DA染液,37 ℃避光溫育30 min。用1×PBS清洗細(xì)胞,并在熒光顯微鏡下拍照記錄。
接種等量細(xì)胞于酶標(biāo)板中,培養(yǎng)過夜后,加入10 μmol/L DCFH-DA染液,37 ℃避光溫育30 min。用1×PBS清洗細(xì)胞,并在多功能酶標(biāo)儀中讀取熒光值,激發(fā)波長502 nm,發(fā)射波長530 nm。
1.2.5采用MTT法檢測(cè)順鉑的IC50
取對(duì)數(shù)生長期細(xì)胞,按1×104個(gè)細(xì)胞/孔接種于96孔板中,培養(yǎng)過夜。按指定濃度加入順鉑和NAC,溫育48 h后小心棄上清,每孔加入180 μL培養(yǎng)基和20 μL MTT(5 mg/mL),溫育4 h后,棄上清,加入150 μL二甲基亞砜(dimethyl sulfoxide,DMSO),溫育10 min,利用酶標(biāo)儀檢測(cè)490 nm波長下各孔的吸光度(D)值,并利用Graphpad Prism計(jì)算半數(shù)抑制濃度(50% inhibitory concentration,IC50)。
1.2.6培養(yǎng)基pH值測(cè)定
接種等量細(xì)胞于6 cm的細(xì)胞培養(yǎng)皿中,分別在培養(yǎng)24和48 h時(shí)收集細(xì)胞培養(yǎng)基于15 mL離心管中,利用pH計(jì)測(cè)定培養(yǎng)基的pH值[10]。
采用Graphpad Prism進(jìn)行數(shù)據(jù)統(tǒng)計(jì)及作圖,結(jié)果以x±s的形式表示,兩組間比較采用獨(dú)立t檢驗(yàn),多組間比較采用單因素方差分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
利用細(xì)胞內(nèi)ROS特異性染液DCFH-DA檢測(cè),發(fā)現(xiàn)與卵巢癌細(xì)胞株A2780相比,順鉑耐藥株(A2780/CDDP)的細(xì)胞內(nèi)ROS水平降低(圖1A、B),提示在卵巢癌中順鉑耐藥與ROS的降低有關(guān)。在A2780和A2780/CDDP中加入ROS清除劑NAC(5 mmol/L),降低細(xì)胞內(nèi)ROS含量后,利用MTT法檢測(cè)順鉑的IC50,發(fā)現(xiàn)NAC促進(jìn)細(xì)胞對(duì)順鉑的耐藥(圖1C、D),說明降低細(xì)胞內(nèi)ROS促進(jìn)細(xì)胞對(duì)順鉑耐藥。
Western blot檢測(cè)Aurora A在4種常見卵巢癌細(xì)胞株HEY、OVCA420、A2780和OVCA429中的水平,發(fā)現(xiàn)Aurora A在HEY和OVCA429中高表達(dá),而在OVCA420和A2780中低表達(dá)(圖2A)。因此,在OVCA420中導(dǎo)入Aurora A cDNA,構(gòu)建Aurora A過表達(dá)細(xì)胞株,即OVCA420 Aurora A,對(duì)照組細(xì)胞導(dǎo)入空載體,即OVCA420 Vector;在OVCA429中導(dǎo)入Aurora A shRNA,構(gòu)建Aurora A沉默細(xì)胞株,即OVCA429 shAurora A,對(duì)照細(xì)胞組導(dǎo)入靶向GFP的shRNA,即OVCA429 shGFP。Western blot檢測(cè)Aurora A及Aurora A下游蛋白細(xì)胞周期蛋白依賴性激酶6(cyclin-dependent kinase 6,CDK6)的表達(dá),發(fā)現(xiàn)導(dǎo)入Aurora A cDNA后,Aurora A和CDK6的表達(dá)明顯升高,而導(dǎo)入Aurora A shRNA降低了Aurora A和CDK6的表達(dá)(圖2B),說明Aurora A過表達(dá)和沉默細(xì)胞株構(gòu)建成功,可用于下一步實(shí)驗(yàn)。
DCFH-DA法檢測(cè)穩(wěn)轉(zhuǎn)細(xì)胞的細(xì)胞內(nèi)ROS,發(fā)現(xiàn)與對(duì)照組相比,Aurora A 過表達(dá),ROS降低;而Aurora A沉默后,ROS升高(圖3A、B),說明Aurora A可調(diào)節(jié)細(xì)胞內(nèi)ROS的變化。
圖1 A2780和順鉑耐藥株A2780/CDDP的ROS含量和順鉑的IC50Fig. 1 ROS and IC50 of cisplatin in A2780 and A2780/CDDPA: ROS levels were observed under a fluorescent microscope; B: ROS levels were examined by a multimode reader; C: IC50 values of cisplatin were detected by MTT; D: Statistical analysis of IC50; *: P<0.05; **: P<0.01; ***: P<0.000 1
圖2 Aurora A的表達(dá)及Aurora A過表達(dá)/沉默細(xì)胞系的鑒定Fig. 2 Expression of Aurora A in ovarian cancer cells and validation of Aurora A in established cell linesA: Detection of the basal level of Aurora A in ovarian cancer cell lines; B: Validation of Aurora A in established overexpresson or knockdown cell lines
Aurora A過表達(dá),ROS降低,細(xì)胞對(duì)順鉑耐藥,加入NAC進(jìn)一步降低ROS后,增強(qiáng)細(xì)胞對(duì)順鉑的耐藥性(圖4A、B);Aurora A沉默,ROS升高,細(xì)胞對(duì)順鉑敏感,加入NAC降低ROS后,促進(jìn)了細(xì)胞對(duì)順鉑耐藥(圖4C、D)。表明ROS參與Aurora A調(diào)控的順鉑耐藥。
信號(hào)轉(zhuǎn)導(dǎo)通路檢測(cè)發(fā)現(xiàn),Aurora A過表達(dá)促進(jìn)AMPK第172位蘇氨酸(Thr172)的磷酸化,而Aurora A沉默后,AMPK磷酸化水平降低(圖5A)。AMPK磷酸化可增強(qiáng)細(xì)胞對(duì)葡萄糖的攝入,促進(jìn)糖酵解,抑制ROS生成[11],提示過表達(dá)Aurora A可能促進(jìn)糖酵解過程。進(jìn)一步檢測(cè)發(fā)現(xiàn),糖酵解關(guān)鍵酶類甘油醛-3-磷酸脫氫酶(Glyceraldehyde-3-phosphate dehydrogenase,GAPDH)受Aurora A調(diào)控,Aurora A過表達(dá),GAPDH表達(dá)升高(圖5A)。糖酵解過程中葡萄糖被代謝生成乳酸,而細(xì)胞培養(yǎng)基中酚紅可指示培養(yǎng)基的酸堿度變化,發(fā)現(xiàn)細(xì)胞培養(yǎng)過程中Aurora A過表達(dá)導(dǎo)致細(xì)胞培養(yǎng)液由紅色轉(zhuǎn)變?yōu)辄S色(圖5B)。分別收集24和48 h的細(xì)胞培養(yǎng)液進(jìn)行檢測(cè),結(jié)果顯示,Aurora A過表達(dá),培養(yǎng)液酸度增強(qiáng)(pH明顯降低),而Aurora A沉默,酸度減弱(圖5B、C)。上述結(jié)果表明,Aurora A促進(jìn)糖酵解過程,抑制ROS。
圖3 Aurora A過表達(dá)/沉默細(xì)胞中ROS水平Fig. 3 ROS levels in Aurora A overexpression or knockdown cell linesA: ROS levels were observed under a fluorescent microscope; B: ROS levels were examined by a multimode reader; **: P<0.01; ***: P<0.000 1
圖4 抑制ROS促進(jìn)細(xì)胞對(duì)順鉑的耐藥性Fig. 4 Inhibition of ROS promotes chemo-resistanceA: IC50 cisplatin values of cisplatin in OVCA420 cell lines detected by MTT; B: Statistical analysis of IC50 values in OVCA420 cell lines; C: IC50 values of cisplatin in OVCA429 cell lines detected by MTT; D: Statistical analysis of IC50 values in OVCA429 cell lines; *: P<0.05; **: P<0.01; ***:P<0.000 1
圖5 Aurora A促進(jìn)AMPK磷酸化及糖酵解Fig. 5 Aurora A promotes phosphorylation of AMPK and stimulates glycolysisA: Aurora A activates AMPK and upregulates GAPDH; B. pH changes of cell culture supernatants after incubation for 48 h; C: Statistical analysis of pH after incubation for 24 and 48 h
卵巢癌是致死率最高的婦科惡性腫瘤,在治療過程中容易產(chǎn)生化療耐藥,導(dǎo)致腫瘤復(fù)發(fā)。腫瘤細(xì)胞內(nèi)的ROS水平高于正常細(xì)胞,因此,誘導(dǎo)ROS升高可作為腫瘤治療的候選策略[6]。有研究表明,耐藥細(xì)胞株中ROS水平較其對(duì)照細(xì)胞株明顯降低[12]。檢測(cè)卵巢癌順鉑耐藥株A2780/CDDP和對(duì)照組細(xì)胞A2780中的ROS,發(fā)現(xiàn)順鉑耐藥株中ROS降低,提示ROS在卵巢癌的順鉑耐藥中發(fā)揮重要作用。
以往研究發(fā)現(xiàn),Aurora A抑制劑可誘導(dǎo)細(xì)胞內(nèi)ROS升高,但Aurora A蛋白對(duì)ROS的調(diào)控目前并不清楚。本研究利用病毒感染的方式外源性導(dǎo)入Aurora A cDNA和shRNA,構(gòu)建Aurora A過表達(dá)/沉默細(xì)胞株,檢測(cè)Aurora A對(duì)細(xì)胞內(nèi)ROS的影響。結(jié)果表明,Aurora A過表達(dá),ROS降低;Aurora A沉默,ROS升高。加入ROS清除劑NAC后,細(xì)胞內(nèi)ROS下降,順鉑的IC50增大,表明抑制ROS可促進(jìn)細(xì)胞對(duì)順鉑的耐藥。
AMPK受細(xì)胞內(nèi)三磷酸腺苷(adenosine triphosphate,ATP)含量調(diào)控,當(dāng)AMP與ATP的比值升高時(shí),AMPK發(fā)生磷酸化活化,增強(qiáng)細(xì)胞的葡萄糖攝取及加速糖酵解代謝[13]。此外,AMPK還可通過調(diào)控FOXO轉(zhuǎn)錄因子,促進(jìn)抗氧化酶類如SOD、CAT,從而降低ROS水平[14]。有研究發(fā)現(xiàn),在肝癌細(xì)胞中導(dǎo)入Aurora A shRNA,細(xì)胞內(nèi)ATP含量降低,糖酵解相關(guān)基因ALDOC、GLUT1、GLS、PDK1、PFK1、PFKM和RPL23 mRNA顯著降低[15],提示Aurora A沉默后,糖酵解途徑也受到抑制。本研究結(jié)果表明,Aurora A激活A(yù)MPK,上調(diào)糖酵解酶類GAPDH,并導(dǎo)致細(xì)胞培養(yǎng)液酸度增強(qiáng),說明Aurora A促進(jìn)糖酵解過程。細(xì)胞代謝向糖酵解轉(zhuǎn)變可抑制細(xì)胞內(nèi)ROS的生成[16],提示Aurora A抑制ROS可能與AuroraA促進(jìn)糖酵解有關(guān)。此外,AMPK介導(dǎo)的抗氧化機(jī)制在Aurora A抑制ROS的過程中是否發(fā)揮作用仍需進(jìn)一步實(shí)驗(yàn)驗(yàn)證。
綜上所述,在卵巢癌中過表達(dá)Aurora A降低了細(xì)胞內(nèi)ROS水平;Aurora A沉默,升高細(xì)胞內(nèi)ROS;并且ROS的降低促進(jìn)了卵巢癌對(duì)順鉑的耐藥性。而Aurora A抑制ROS與AMPK介導(dǎo)的能量代謝方式的轉(zhuǎn)變有關(guān)。
[參考文獻(xiàn)]
[1] YANG G, CHANG B, YANG F, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2 [J]. Clin Cancer Res, 2010, 16(12):3171-3181.
[2] SUN H, WANG Y, WANG Z, et al. Aurora-A controls cancer cell radio- and chemoresistance via ATM/Chk2-mediated DNA repair networks [J]. Biochim Biophys Acta, 2014, 1843(5):934-944.
[3] SUN J M, YANG L N, XU H, et al. Inhibition of Aurora A promotes chemosensitivity via inducing cell cycle arrest and apoptosis in cervical cancer cells [J]. Am J Cancer Res,2015, 5(3): 1133-1145.
[4] ZOU Z, YUAN Z, ZHANG Q, et al. Aurora kinase A inhibitioninduced autophagy triggers drug resistance in breast cancer cells[J]. Autophagy, 2012, 8(12): 1798-1810.
[5] RAY P D, HUANG B W, TSUJI Y. Reactive oxygen species(ROS) homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5): 981-990.
[6] DHARMARAJA A T. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria [J]. J Med Chem, 2017, 60(8): 3221-3240.
[7] SHERMAN-BAUST C A, BECKER K G, WOOD LII W H, et al. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin[J]. J Ovarian Res, 2011, 4(1): 21.
[8] NIU N K, WANG Z L, PAN S T, et al. Pro-apoptotic and proautophagic effects of the Aurora kinase A inhibitor alisertib(MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway[J]. Drug Des Devel Ther, 2015, 9: 1555-1584.
[9] WANG L X, WANG J D, CHEN J J, et al. Aurora A kinase inhibitor AKI603 induces cellular senescence in chronic myeloid leukemia cells harboring T315I mutation [J]. Sci Rep, 2016, 6: 35533.
[10] SONVEAUX P, VEGRAN F, SCHROEDER T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice [J]. J Clin Invest, 2008, 118(12): 3930-3942.
[11] JEON S M. Regulation and function of AMPK in physiology and diseases [J]. Exp Mol Med, 2016, 48(7): e245.
[12] OLIVA C R, MOELLERING D R, GILLESPIE G Y, et al.Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production [J]. Plos One, 2011, 6(9): e24665.
[13] HARDIE D G, SCHAFFER B E and BRUNET A. AMPK: an energy-sensing pathway with multiple inputs and outputs [J].Trends Cell Biol, 2016, 26(3): 190-201.
[14] YUN H, PARK S, KIM M J, et al. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1 [J]. FEBS J, 2014, 281(19):4421-4438.
[15] LU L, HAN H, TIAN Y, et al. Aurora kinase A mediates c-Myc’s oncogenic effects in hepatocellular carcinoma [J]. Mol Carcinog, 2015, 54(11): 1467-1479.
[16] ZHENG J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review) [J]. Oncol Lett, 2012,4(6): 1151-1157.