• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以三(4-咪唑基苯基)胺為配體的鎘配合物的合成、晶體結(jié)構(gòu)和熒光性質(zhì)

    2018-03-14 06:36:11劉光祥
    無機化學學報 2018年3期
    關(guān)鍵詞:曉莊晶體結(jié)構(gòu)苯基

    李 健 喻 敏 劉光祥

    (南京曉莊學院環(huán)境科學學院,新型功能材料南京市重點實驗室,南京 211171)

    As an emerging multifunctional solid crystalline materials over the last two decades,metal-organic frameworks (MOFs)have been a hotspot not only for the diversity of architectures and fascinating topol-ogies but also for potential applications in gas storage and separation,heterogeneous catalysis,fluorescence,chemical sensing,magnetism,electrical energy storage,and so forth[1-7].Although much progress has been achieved in this field over the past years,it is still a challenge for us to fabricate the desired MOFs with expected structures and properties,because there are varied factors that can affect the structure and property of MOFs[8-12].From the previously reported studies,it has been demonstrated that organic ligands are crucial in determining the formation of definite MOFs[13-15].Among various organic ligands,the N-donor ligands as good candidates for the construction of coordination polymers,have aroused a good deal of interests from chemists because of their diversities in coordination modes and conformations[16-17].It should be noted that,to date,the imidazole-containing N-donor ligands such as 1,4-di(1H-imidazol-1-yl)benzene,4,4′-di(1H-imidazol-1-yl)biphenyl,1,3,5-tri(1H-imidazol-1-yl)benzene,3,3′,5,5′-tetra (1H-imidazol-1-yl)biphenyl and 1,3-di(1H-imidazol-1-yl)benzene,have been widely used in the construction of various coordination polymers[18-22].However,the coordination polymers constructed by tri(imidazole)ligands are still in its infancy,although some intriguing examples have been reported[23-27].Tris(4-imidazolylphenyl)amine (TIPA),as a tridentate bridging ligand,is rarely used in the construction of coordination networks.The TIPA ligand possesses three Ph-imidazole (Ph=phenyl)arms with conformational and geometrical flexibility.The Ph-imidazole arms can rotate freely and adjust itself sterically around the central N moiety when coordinating to the metals[28-32].

    In recent years,a number of coordination polymers with various structural types and topological features have been documented[33-35].In this regard,entangled architectures,including interweaving,polyknotting,polythreading,interdigitation and polycatenation,have been deliberately designed and extensively discussed in several comprehensive reviews[36-37].Generally,the topological architectures of the coordination polymers can be controlled by the deliberate design and judicious choice ofthe organic ligands and coordination geometries of the metals[38-39].In this aspect,the structural features of the organic ligands,such as shape,functionality, flexibility, symmetry, length, and substituent group,can influence structure types of the coordination polymers directly[40-44].In this work,two coordination p olymers,[CdI(TIPA)(CDC)0.5]n(1)and{[Cd(TIPA)(MPDA)]·H2O}n(2),have been synthesized by using TIPA ligand and different carboxylate anions,where H2CDC=1,4-cyclohexanedicarboxylic acid and H2MPDA=5-methylisophthalicacid.Theeffectsof anions on their complex structures are unraveled in detail.Further,the photoluminescent properties of two complexes have also been studied.

    1 Experimental

    1.1 Materials and general methods

    All chemicals and solvents were of reagent grade and used as received without further purification.The TIPA ligand was synthesized according to the reported method[30].Elemental analyses (C,H and N)were performed on a Vario ELⅢelemental analyzer.Infrared spectra were recorded on KBr discs using a Nicolet Avatar 360 spectrophotometer in the range of 4000 ~400 cm-1.Thermogravimetric analyses (TGA)were performed on a Netzsch STA-409PC instrument in flowing N2with a heating rate of 10℃·min-1.The luminescent spectra for the powdered solid samples were measured at room temperature on a Horiba FluoroMax-4P-TCSPC fluorescence spectrophotometer with a xenon arc lamp as the light source.In the measurements of emission and excitation spectra the pass width is 5 nm.All the measurements were carried out under the same experimental conditions.

    1.2 Synthesis of[CdI(TIPA)(CDC)0.5]n(1)

    A mixture containing CdI2(36.6 mg,0.1 mmol),H2CDC (17.2 mg,0.1 mmol),and TIPA (44.3 mg,0.1 mmol)in DMF/H2O (1∶1,V/V)solvent (10 mL)was sealed in a Teflon-lined stainless steel container and heated at 120℃for 3 days.After being cooled down to room temperature,colorless block crystals of 1 were obtained in 57%yield based on TIPA.Anal.Calcd.for C31H25IN7O2Cd (%):C,48.55;H,3.29;N,12.79.Found(%):C,48.47;H,3.31;N,12.77.IR (KBr,cm-1):3 601 (m),3 089 (w),1 581 (s),1 519 (s),1 364 (s),1 307 (m),1087 (m),1 015 (w),966 (w),811 (m),746(m),697 (w),657 (w),543 (w).

    1.3 Synthesis of{[Cd(TIPA)(MPDA)]·H2O}n(2)

    Complex 2 was prepared by a process similar to that yielding complex 1 at 120 ℃ by using CdI2(36.6 mg,0.1 mmol),H2MPDA (17.2 mg,0.1 mmol),and TIPA (44.3 mg,0.1 mmol)in DMF/H2O (1∶1,V/V)solvent (10 mL).Colorless block crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 53%based on TIPA ligand.Anal.Calcd.for C36H29N7O5Cd (%):C,57.49;H,3.89;N,13.04.Found (%):C,57.44;H,3.91;N,13.01.IR (KBr,cm-1):3 416 (m),3 091 (m),1 623 (m),1 553 (m),1519 (s),1 431 (m),1 381 (s),1 271 (m),1 032 (m),913 (m),828 (w),734 (s),654(m),542 (w).

    1.4 X-ray crystallography

    Two block single crystals with dimensions of 0.27 mm×0.25 mm×0.22 mm for 1 and 0.25 mm×0.22 mm×0.19 mm for 2 were mounted on glass fibers for measurement,respectively.X-ray diffraction intensity data werecollectedonaBrukerAPEXⅡCCD diffractometer equipped with a graphite-monochromatic Mo Kα radiation (λ=0.071 073 nm)using the φω scan mode at 293(2)K.The diffraction data were integrated by using the SAINT program[45],which was also used for the intensity corrections for the Lorentz and polarization effects.Semi-empirical absorption corrections were applied using the SADABS program[46].The structures were solved by direct methods using SHELXS-2014[47]and all the non-hydrogen atoms were refined anisotropically on F2by the full-matrix leastsquares technique with the SHELXL-2014[48]crystallographic software package.The hydrogen atoms,except those of water molecules,were generated geometrically and refined isotropically using the riding model.The pertinent crystallographic data collection and structure refinement parameters are presented in Table 1 and selected bond lengths and angles are listed in Table 2.

    CCDC:1557335,1;1557336,2.

    Table 1 Crystal data and structure refinement for 1 and 2

    Table 2 Selected bond lengths(nm)and angles(°)for 1 and 2

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that complex 1 crystallizes in the monoclinic space group C2/c.The asymmetric unit of complex 1 contains one crystallography independent Cd(Ⅱ)ion,one unique TIPA ligand,one iodide ion and a half CDC2-anion which locates at an inversion center as illustrated in Fig.1.The Cd(Ⅱ)ion is five-coordinated by three nitrogen atoms from three TIPA ligands,one iodide ion and one oxygen atom in a distorted square pyramidal geometry with a τ value of 0.479[49].The Cd-N bond lengths vary from 0.229 6(3)to 0.236 9(4)nm,and N-Cd-N angles range from 88.79(13)°to 168.09(14)°.

    Fig.1 Coordination environments of the Cd(Ⅱ)ion in 1 with the ellipsoids drawn at the 30%probability level

    Fig.2 View of a single sheet formed the TIPA ligands and Cd(Ⅱ)ions in 1

    Each TIPA ligand bridges three Cd(Ⅱ)ions to generate a highly undulant 2D sheet with a thickness of ca.1.13 nm (Fig.2).From a topological viewpoint,the sheet can be considered as a 3-connected network with a Schlfli symbol of (4.82).There are two kinds of large windows of Cd2(TIPA)2and Cd4(TIPA)4in the resulting layers.The Cd2(TIPA)2window is built up by two Cd(Ⅱ)ions and four Ph-imidazole arms of two different TIPA ligands with the dimension of 1.202 nm×1.529 nm,while the Cd4(TIPA)4unit is built up by four Cd(Ⅱ)ions and eight Ph-imidazole arms of four ligands with the dimension of 1.126 nm×3.335 nm.It is noteworthy that each Cd4(TIPA)4unit is divided into two Cd2(TIPA)2(CDC)subunit by CDC anion linking two Cd(Ⅱ)ions to give an undulate 2D layer.Topologically,the TIPA ligand can be considered as a 3-connected node,the CDC anions can be considered as linkers,and Cd(Ⅱ) ions can be regarded as 4-connected nodes.Therefore,the 2D layer of 1 is a(3,4)-connected topology with Schl?fli symbol of (4.52)(4.53.72)(Fig.3).

    The most fascinating structural feature of 1 is that two such layers are interlaced each other in a parallel fashion to give a 2D→2D polyrotaxane network (Fig.4).The Cd2TIPA2windows of each layer are passed by CDC anions of adjacent layer,and each Cd2(TIPA)2(CDC)unit of each layer is threaded through by one armed rod of the TIPA ligand from adjacent layers. More interestingly, the neighboring 2D polyrotaxane sheets are parallel with each other.

    Fig.3 Undulate layer and schematic representation of the (3,4)-connected framework with (4.52)(4.53.72)topology of 1

    Fig.4 2D→2D polyrotaxane network in 1

    When the ligand H2MPDA was used instead of H2CDC to react with Cd(Ⅱ)salts under hydrothermal conditions,complex 2 was isolated.Complex 2 crystallizes in the monoclinic space group P21/c.The asymmetric unit consists of one Cd(Ⅱ)ion,one TIPA ligand,and one lattice water molecule.The local coordination geometry around the Cd(Ⅱ)ion is depicted in Fig.5.The Cd(Ⅱ)ion adopts a distorted octahedral coordination sphere that is defined by three oxygen atoms from two distinct MPDA2-anions and three nitrogen atoms from three different TIPA ligands;thus,the Cd(Ⅱ)ions can be considered as 5-connecting nodes.Each TIPA links three Cd(Ⅱ)ions,acting as a 3-connecting node to form a 1D ladder-like chain.Two carboxylate groups of the MPDA2-anions adopting monodentate and bidentate chelate coordination modes bridge two Cd(Ⅱ)ions,and MPDA2-joins adjacent parallel chains as a pillar connector to form a 2D grid like (4,4)bilayer(Fig.6).The Schl?fli symbol for this binodal net is (42·67·8)(42·6).Viewed from the b axis,there exist rectangular channels with a cross section of approximately 2.04 nm×1.09 nm (excluding van der Waals radii).The channel is so large that the two other equivalent bilayers can be accommodated in that channel.This may be the mainly reason to form the 2D→3D parallel entangled structure.Upon interpenetration,complex 2 just contains a small solvent accessible void space of 2.8%of the total crystal volume,according to a calculation performed using PLATON[50].

    Fig.5 Coordination environments of the Cd(Ⅱ)ion in 2 with the ellipsoids drawn at the 30%probability level

    Fig.6 View of the ladder-like chain (a)and perspective view of the 2D grid-like (4,4)bilayer(b)in 2

    The topological feature of complex 2 is most unusual because it is a rarely observed bilayer motif which is parallel-parallel catenated with two other equivalent adjacent ones to form a 3D supramolecular structure (Fig.7).Toourknowledge,this (3,5)-connected bilayer is yet to be reported.Compared to 2D→3D polycatenation systems in parallel-parallel inclined fashion or parallel-parallel highly undulating fashion,fewer examples of 2D→3D parallel entangled structures have been observed[51-52].

    Fig.7 Perspective view of the 2D→3D parallel entangled structures in 2

    2.2 FT-IR spectra

    The IR spectra of 1 and 2 show the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group,which indicates that the complete deprotonation of H2CDC and H2MPDA ligands upon reaction with Cd(Ⅱ)ion.The presence of vibrational bands of 1 650~1 550 cm-1are characteristic of the asymmetric stretching of the deprotonated carboxylic groups of CDC2-and MPDA2-anions.The difference between asymmetric and symmetric carbonyl stretching frequencies (Δν=νasymνsym)was used to fetch information on the metalcarboxylate binding modes.Complex 1 showed a pairs of νasymand νsymfrequencies at 1 584,1 354 cm-1corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric monodentate coordination mode (Δν=230 cm-1).Complex 2 shows two pairs of νasymand νsymfrequencies at 1 623,1 431 cm-1(Δν=192 cm-1)and 1 553,1 381 cm-1(Δν=172 cm-1)for the carbonyl functionality indicating two coordination modes as observed in the crystal structure.OH stretching broad bands at 3 416 cm-1for 2 are attributable to the lattice water.The bands in the region of 640~1 250 cm-1are attributed to the-CH-in-plane or out-of-plane bend,ring breathing,and ring deformation absorptions of benzene ring,respectively.The IR spectra exhibit the characteristic peaks of imidazole groups at ca.1 520 cm-1[53].

    2.3 Thermal stability

    The thermal behaviors of complexes 1 and 2 were measured under a dry N2atmosphere at a heating rate of 10℃·min-1from 25 to 800℃ and the TG curves are presented in Fig.8.The TGA curve of 1 reveals that no obvious weight loss is observed until the temperature reaches 340℃.The anhydrous compound decomposes from 340 to 800℃,indicating the release of organic components.For 2,the first weight loss of 2.61% (Calcd.2.39%)occurs in the range of 60~150℃,indicating the loss of one free water molecules.Then,the framework of 2 decomposes gradually above 270℃.

    Fig.8 TGA curves of complexes 1 and 2

    2.4 Photoluminescent properties

    Photoluminescence properties of Cd(Ⅱ)complexes have attracted intense interest due to their potential applications in photochemistry,chemical sensors,and electroluminescent display[54-55].The photoluminescent properties of 1,2 and TIPA ligand were investigated in solid state at room temperature (Fig.9).The TIPA ligand exhibits emission band with a maximum at 422 nm upon excitation at 365 nm,which may be assigned to π*→n or π*→π transitions of the ligands[56-57].

    Fig.9 Solid-state photoluminescent spectra of complexes 1~2 and TIPA ligand

    The emission peaks of complexes occur at 429 nm (λex=370 nm)for 1,482 nm (λex=380 nm)for 2.Under the same experimental conditions,the emission intensities of free H2CDC and H2MPDA are weaker than that of TIPA ligand,so it is considered that it has no significant contribution to the fluorescent emission of the complexes with the presence of TIPA ligand.The emission of 1 can be essentially ascribed to the intraligand fluorescent emission.The red-shift of the emission can be attributed to the ligand coordination to the metal center,which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay.However,the intense blue emission peak at 481 nm (λex=380 nm)for 2 is highly red-shifted with respect to the free TIPA ligands.The intense fluorescence of 2 indicates that a strong interaction exists between the ligand and the Cd(Ⅱ)ion[58-60].

    [1]Gamage N D H,McDonald K A,Matzger A J.Angew.Chem.,Int.Ed.,2016,55:12099-12103

    [2]Noh T H,Jung O S.Acc.Chem.Res.,2016,49:1835-1843

    [3]Maza W A,Padilla R,Morris A J.J.Am.Chem.Soc.,2015,137:8161-8168

    [4]Manna P,Das S K.Cryst.Growth Des.,2015,15:1407-1421

    [5]He H M,Song Y,Sun F X,et al.Cryst.Growth Des.,2015,15:2033-2038

    [6]Li S L,Xu Q.Energy Environ.Sci.,2013,6:1656-1683

    [7]Zheng J,Wu M Y,Jiang F L,et al.Chem.Sci.,2015,6:3466-3470

    [8]Long L S.CrystEngComm,2010,12:1354-1365

    [9]Tan Y X,He Y P,Zhang Y,et al.CrystEngComm,2013,15:6009-6014

    [10]Huang S Y,Li J Y,Li J Q,et al.Dalton Trans.,2014,43:5260-5264

    [11]Zhang J W,Kan X M,Liu B Q,et al.Chem.Eur.J.,2015,21:16219-16228

    [12]Zhao X L,Sun W Y.CrystEngComm,2014,16:3247-3258

    [13]WU Qi(吳琪),SU Zhi(蘇 志),WANG Hong-Yan(王 紅 艷),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(10):1889-1895

    [14]Han L J,Yan W,Chen S G,et al.Inorg.Chem.,2017,56:2936-2940

    [15]He Y F,Chen D M,Xu H,et al.CrystEngComm,2015,17:2471-2478

    [16]Huang Y Q,Chen H Y,Li Z G,et al.Inorg.Chim.Acta,2017,466:71-77

    [17]Dong X Y,Si C D,Fan Y,et al.Cryst.Growth Des.,2016,16:2062-2073

    [18]Ke C H,Lin G R,Kuo B C,et al.Cryst.Growth Des.,2012,12:3758-3765

    [19]Wang F,Ke X H,Zhao J B,et al.Dalton Trans.,2011,40:11856-11865

    [20]Su Z,Fan J,Okamura T A,et al.Cryst.Growth Des.,2010,10:1911-1922

    [21]Luo L,Wang P,Xu G C,et al.Cryst.Growth Des.,2012,12:2634-2645

    [22]Schlechte L,Bon V,Grunker R,et al.Polyhedron,2012,44:179-186

    [23]Su Z,Xu J,Fan J,et al.Cryst.Growth Des.,2009,9:2801-2811

    [24]Fan J,Sun W Y,Okamura T A,et al.Inorg.Chem.,2003,42:3168-3175

    [25]Fan J,Gan L,Kawaguchi H,et al.Chem.Eur.J.,2003,9:3965-3973

    [26]Liu H K,Sun W Y,Ma D J,et al.Chem.Commun.,2000:591-592

    [27]Liu F H,Chen W Z,You X Z.J.Solid State Chem.,2002,169:199-207

    [28]Wu H,Liu H Y,Liu Y Y,et al.Chem.Commun.,2011,47:1818-1820

    [29]Yao X Q,Cao D P,Hu J S,et al.Cryst.Growth Des.,2011,11:231-239

    [30]Wu H,Liu H Y,Liu B,et al.CrystEngComm,2011,13:3402-3407

    [31]Wu H,Liu H Y,Yang J,et al.Cryst.Growth Des.,2011,11:2317-2324

    [32]Wu H,Liu B,Yang J,et al.CrystEngComm,2011,13:3661-3664

    [33]Alezi D,Spanopoulos I,Tsangarakis C,et al.J.Am.Chem.Soc.,2016,138:12767-12770

    [34]Gu J Z,Liang X X,Cai Y,et al.Dalton Trans.,2017,46:10908-10925

    [35]Duan J G,Higuchi M,Kitagawa S.Inorg.Chem.,2015,54:1645-1649

    [36]Batten S R.CrystEngComm,2001,3:67-72

    [37]Carlucci L,Ciani G,Proserpio D M.Coord.Chem.Rev.,2003,246:247-289

    [38]Dinca M,Yu A F,Long J R.J.Am.Chem.Soc.,2006,128:8904-8913

    [39]Zhang L P,Ma J F,Yang J,et al.Inorg.Chem.,2010,49:1535-1550

    [40]Reger D L,Wright T D,Semeniuc R F,et al.Inorg.Chem.,2001,40:6212-6219

    [41]Zaman M B,Smith M D,zur Loye H C.Chem.Commun.,2001:2256-2257

    [42]Kitaura R,Seki K,Akiyama G,et al.Angew.Chem.,Int.Ed.,2003,42:428-431

    [43]Kitaura R,Fujimoto K,Noro S,et al.Angew.Chem.,Int.Ed.,2002,41:133-135

    [44]Qi Y,Luo F,Che Y X,et al.Cryst.Growth Des.,2008,8:606-611

    [45]SMART and SAINT,Program for Data Extraction and Reduction,Bruker AXS,Inc.,Madison,Wisconsin,USA,2002.

    [46]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen,Germany,2003.

    [47]Sheldrick G M.SHELXS-2014,Program for Crystal Structure Solution,University of G?ttingen,Germany,2014.

    [48]Sheldrick G M.SHELXL-2014,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,2014.

    [49]Addison A W,Rao T N.J.Chem.Soc.Dalton Trans.,1984:1349-1356

    [50]Spek A L.J.Appl.Crystallogr.,2003,36:7-13

    [51]Zhang J,Chew E,Chen S,et al.Inorg.Chem.,2008,47:3495-3497

    [52]Wu H,Ma J F,Liu Y Y,et al.CrystEngComm,2011,13:7121-7128

    [53]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordinated Compounds.5th Ed.New York:John Wiley&Sons,1997.

    [54]Thirumurugan A,Natarajan S.Dalton Trans.,2004:2923-2928

    [55]McGarrah J E,Kim Y J,Hissler M,et al.Inorg.Chem.,2001,40:4510-4511

    [56]Wen L L,Lu Z D,Lin J G,et al.Cryst.Growth Des.,2007,7:93-99

    [57]Lin J G,Zang S Q,Tian Z F,et al.CrystEngComm,2007,9:915-921

    [58]Liu H J,Tao X T,Yang J X,et al.Cryst.Growth Des.,2008,8:259-264

    [59]Klessinger J M,Michl J.Excited States and Photochemistry of Organic Molecules.New York:VCH,1995.

    [60]XU Han(徐 涵).Chinese J.Inorg.Chem.(無 機 化 學 學 報),2016,32(8):1481-1486

    猜你喜歡
    曉莊晶體結(jié)構(gòu)苯基
    南京曉莊學院美術(shù)學院作品選登
    南京曉莊學院美術(shù)學院作品選登
    南京曉莊學院美術(shù)學院作品選登
    南京曉莊學院手繪作品選登
    化學軟件在晶體結(jié)構(gòu)中的應(yīng)用
    1-[(2-甲氧基-4-乙氧基)-苯基]-3-(3-(4-氧香豆素基)苯基)硫脲的合成
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學研究
    3-(3,4-亞甲基二氧苯基)-5-苯基異噁唑啉的合成
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    火炸藥學報(2014年3期)2014-03-20 13:17:39
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    亚洲成人精品中文字幕电影| avwww免费| 一级黄色大片毛片| av福利片在线观看| 欧美+亚洲+日韩+国产| 成人特级黄色片久久久久久久| 亚洲,欧美,日韩| 91在线观看av| 欧美不卡视频在线免费观看| 久久精品国产亚洲av香蕉五月| 男女之事视频高清在线观看| 一本一本综合久久| 国产成人啪精品午夜网站| 国产精品99久久久久久久久| 亚洲av成人不卡在线观看播放网| 国产一区二区激情短视频| 国产精品嫩草影院av在线观看 | xxxwww97欧美| x7x7x7水蜜桃| 成年免费大片在线观看| 成熟少妇高潮喷水视频| 91在线精品国自产拍蜜月| 美女大奶头视频| 午夜福利高清视频| 日本黄色视频三级网站网址| 两个人的视频大全免费| 香蕉av资源在线| 听说在线观看完整版免费高清| 午夜免费激情av| 人妻久久中文字幕网| 人人妻人人看人人澡| 一级黄色大片毛片| 国产探花极品一区二区| 色哟哟哟哟哟哟| 午夜福利欧美成人| 一级毛片久久久久久久久女| 精品熟女少妇八av免费久了| 一本精品99久久精品77| 中文字幕av在线有码专区| 在线天堂最新版资源| 夜夜看夜夜爽夜夜摸| 国产午夜福利久久久久久| 中文字幕av成人在线电影| 精品久久久久久久久亚洲 | 国产精品电影一区二区三区| 国产精品久久久久久人妻精品电影| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放| 99久久无色码亚洲精品果冻| 国产成人影院久久av| 日韩亚洲欧美综合| 性欧美人与动物交配| 日本三级黄在线观看| 亚洲美女搞黄在线观看 | 人人妻,人人澡人人爽秒播| 久久精品91蜜桃| 身体一侧抽搐| 亚洲国产高清在线一区二区三| 精品不卡国产一区二区三区| 亚洲中文字幕日韩| 亚洲色图av天堂| .国产精品久久| 麻豆成人av在线观看| 成年版毛片免费区| 国产老妇女一区| 国产乱人视频| 亚洲激情在线av| 成年女人永久免费观看视频| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| aaaaa片日本免费| 欧美另类亚洲清纯唯美| 精品国内亚洲2022精品成人| 99久久精品一区二区三区| a级一级毛片免费在线观看| 伦理电影大哥的女人| 国产极品精品免费视频能看的| 国产爱豆传媒在线观看| 又粗又爽又猛毛片免费看| 亚洲精品粉嫩美女一区| 亚洲五月天丁香| 色尼玛亚洲综合影院| 久久国产精品影院| 女生性感内裤真人,穿戴方法视频| 一级作爱视频免费观看| 日日摸夜夜添夜夜添av毛片 | 日本精品一区二区三区蜜桃| 亚洲人成伊人成综合网2020| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 十八禁人妻一区二区| av在线老鸭窝| 国产三级中文精品| 日韩欧美免费精品| 亚洲av不卡在线观看| 黄色日韩在线| 亚洲精品粉嫩美女一区| 色av中文字幕| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| xxxwww97欧美| 欧美最新免费一区二区三区 | 亚洲av不卡在线观看| 婷婷精品国产亚洲av| 久久精品国产清高在天天线| 别揉我奶头~嗯~啊~动态视频| 中文字幕av在线有码专区| 亚洲美女黄片视频| 一区二区三区免费毛片| 99精品在免费线老司机午夜| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 中出人妻视频一区二区| 午夜福利在线观看免费完整高清在 | 亚洲av熟女| www.熟女人妻精品国产| 国产三级中文精品| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 99在线人妻在线中文字幕| bbb黄色大片| 精品久久久久久久人妻蜜臀av| 三级男女做爰猛烈吃奶摸视频| 不卡一级毛片| 久久精品国产亚洲av天美| av专区在线播放| 国产精品乱码一区二三区的特点| 一区二区三区高清视频在线| 久久国产乱子免费精品| a级毛片免费高清观看在线播放| 亚洲欧美清纯卡通| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 在线观看免费视频日本深夜| 日本黄大片高清| 亚洲精品日韩av片在线观看| 少妇的逼好多水| 午夜福利在线观看吧| 色视频www国产| 少妇的逼水好多| 国产极品精品免费视频能看的| 亚洲av日韩精品久久久久久密| 成年女人毛片免费观看观看9| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 在线看三级毛片| 黄色配什么色好看| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 久久国产精品影院| 超碰av人人做人人爽久久| 99热这里只有精品一区| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 十八禁人妻一区二区| a级一级毛片免费在线观看| 丁香欧美五月| 国产淫片久久久久久久久 | 国产三级在线视频| 亚洲最大成人手机在线| 欧美一区二区精品小视频在线| 少妇的逼好多水| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 我要搜黄色片| 午夜精品一区二区三区免费看| 99国产极品粉嫩在线观看| 久久亚洲真实| 色综合婷婷激情| 男人舔女人下体高潮全视频| 51国产日韩欧美| 天天一区二区日本电影三级| 少妇的逼好多水| 中出人妻视频一区二区| 日本黄大片高清| 欧美日韩乱码在线| 国产欧美日韩精品一区二区| 黄色女人牲交| 性欧美人与动物交配| 久久香蕉精品热| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 亚洲国产色片| 久久国产精品影院| 亚洲av第一区精品v没综合| 九色国产91popny在线| 国产精品影院久久| 亚洲成av人片免费观看| 成年版毛片免费区| 免费大片18禁| 亚洲av中文字字幕乱码综合| 国产精品一及| 精品午夜福利视频在线观看一区| 精品人妻偷拍中文字幕| 一个人观看的视频www高清免费观看| 亚洲三级黄色毛片| www.色视频.com| 热99re8久久精品国产| 一个人看的www免费观看视频| 亚洲国产欧美人成| 观看免费一级毛片| 亚洲精品日韩av片在线观看| 热99re8久久精品国产| 免费av不卡在线播放| 丰满乱子伦码专区| 国产在线精品亚洲第一网站| 欧美又色又爽又黄视频| 99riav亚洲国产免费| 亚洲国产日韩欧美精品在线观看| 亚洲综合色惰| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 在线a可以看的网站| 最近视频中文字幕2019在线8| 乱码一卡2卡4卡精品| 2021天堂中文幕一二区在线观| 国产成人影院久久av| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 亚洲久久久久久中文字幕| 国产爱豆传媒在线观看| 成年人黄色毛片网站| 亚洲最大成人中文| 亚洲最大成人av| 国产综合懂色| 国产伦精品一区二区三区视频9| 国产淫片久久久久久久久 | 中文字幕熟女人妻在线| 成人美女网站在线观看视频| 久久久久久久久大av| 在线看三级毛片| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 成人欧美大片| 精品乱码久久久久久99久播| 日本三级黄在线观看| 最好的美女福利视频网| 午夜激情欧美在线| 一区二区三区高清视频在线| 久久九九热精品免费| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 日韩欧美国产在线观看| 热99在线观看视频| 极品教师在线视频| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 伦理电影大哥的女人| 舔av片在线| 亚洲在线自拍视频| 久久久久久久久大av| 国产精品伦人一区二区| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 成人国产综合亚洲| 欧美成人性av电影在线观看| 99久久99久久久精品蜜桃| 97超视频在线观看视频| 在线播放国产精品三级| 无遮挡黄片免费观看| 一级作爱视频免费观看| 三级国产精品欧美在线观看| 男插女下体视频免费在线播放| 国产毛片a区久久久久| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 高清日韩中文字幕在线| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 日本黄色片子视频| 国产乱人视频| 麻豆国产av国片精品| 久久国产精品影院| 国产精品久久视频播放| 亚洲最大成人中文| 狠狠狠狠99中文字幕| 午夜日韩欧美国产| 亚洲国产欧美人成| 日日摸夜夜添夜夜添小说| 99热只有精品国产| 国产又黄又爽又无遮挡在线| 国产精品一及| 日韩欧美国产在线观看| 亚洲av.av天堂| 色av中文字幕| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| 成人av一区二区三区在线看| 亚洲国产色片| 国产精品综合久久久久久久免费| 99精品久久久久人妻精品| 欧美日韩综合久久久久久 | 久9热在线精品视频| 欧美区成人在线视频| 亚洲国产精品成人综合色| 色5月婷婷丁香| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看| 免费av毛片视频| 免费黄网站久久成人精品 | 国产 一区 欧美 日韩| 少妇被粗大猛烈的视频| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 日本与韩国留学比较| 午夜激情欧美在线| 午夜免费成人在线视频| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 能在线免费观看的黄片| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 在线观看av片永久免费下载| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 毛片女人毛片| 亚洲成人久久性| 久久午夜亚洲精品久久| 亚洲成人久久性| 男人和女人高潮做爰伦理| 一区二区三区激情视频| 久久午夜亚洲精品久久| 国产高潮美女av| 精品欧美国产一区二区三| 国产视频一区二区在线看| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 69av精品久久久久久| 亚洲国产精品合色在线| 久久久久久久精品吃奶| 亚洲专区国产一区二区| 18禁裸乳无遮挡免费网站照片| 欧美最新免费一区二区三区 | 99国产精品一区二区三区| 免费大片18禁| 免费一级毛片在线播放高清视频| 在线观看一区二区三区| 午夜福利在线观看吧| 男人的好看免费观看在线视频| 久久草成人影院| 少妇熟女aⅴ在线视频| 搡女人真爽免费视频火全软件 | 亚洲av中文字字幕乱码综合| 此物有八面人人有两片| 男女视频在线观看网站免费| 怎么达到女性高潮| www日本黄色视频网| 嫁个100分男人电影在线观看| 国产毛片a区久久久久| 乱人视频在线观看| 久久久精品大字幕| 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 亚洲精品亚洲一区二区| 午夜精品在线福利| 亚洲经典国产精华液单 | 国产熟女xx| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 欧美日韩乱码在线| 国产在线男女| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 一本一本综合久久| 精品福利观看| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 国产精品电影一区二区三区| 国产不卡一卡二| 一区二区三区四区激情视频 | 精品久久久久久,| 最后的刺客免费高清国语| 成人精品一区二区免费| 午夜a级毛片| 久久久国产成人精品二区| 国产av在哪里看| 国产成人aa在线观看| 身体一侧抽搐| 久久亚洲真实| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交╳xxx乱大交人| 亚洲中文日韩欧美视频| 99热只有精品国产| 精品久久久久久久久久久久久| 精品国产三级普通话版| 欧美日韩亚洲国产一区二区在线观看| 最好的美女福利视频网| 国产成人av教育| 在线观看66精品国产| 嫩草影院精品99| 少妇的逼水好多| 国产av不卡久久| 亚洲在线观看片| 91麻豆精品激情在线观看国产| 亚洲美女搞黄在线观看 | 亚洲人成网站高清观看| 国产一区二区在线观看日韩| 青草久久国产| 黄色配什么色好看| 亚洲自偷自拍三级| 日韩亚洲欧美综合| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看的www视频| 色视频www国产| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 99热6这里只有精品| .国产精品久久| 97超视频在线观看视频| 国产单亲对白刺激| 97碰自拍视频| 欧美乱妇无乱码| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 黄色丝袜av网址大全| 丁香欧美五月| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 69人妻影院| 欧美高清成人免费视频www| 久久人人爽人人爽人人片va | 不卡一级毛片| 免费观看的影片在线观看| 免费av不卡在线播放| 丝袜美腿在线中文| 在线观看舔阴道视频| 麻豆国产97在线/欧美| 国产成人a区在线观看| 久久精品国产清高在天天线| 校园春色视频在线观看| 亚洲色图av天堂| 国产爱豆传媒在线观看| 老鸭窝网址在线观看| 少妇高潮的动态图| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添小说| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 永久网站在线| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 午夜a级毛片| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 国内精品美女久久久久久| 97热精品久久久久久| 成年版毛片免费区| 久久久久久大精品| 婷婷色综合大香蕉| 人人妻人人澡欧美一区二区| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 自拍偷自拍亚洲精品老妇| 51国产日韩欧美| 亚洲 国产 在线| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 18美女黄网站色大片免费观看| 免费看光身美女| 美女xxoo啪啪120秒动态图 | 国产高清激情床上av| 亚洲avbb在线观看| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| 最新中文字幕久久久久| 一卡2卡三卡四卡精品乱码亚洲| 91av网一区二区| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 久久国产乱子免费精品| 99久国产av精品| 婷婷色综合大香蕉| 国产精品久久久久久久久免 | 一个人免费在线观看电影| 中文资源天堂在线| 国产伦人伦偷精品视频| 日本熟妇午夜| 丝袜美腿在线中文| .国产精品久久| 国产成人影院久久av| 欧美三级亚洲精品| 麻豆国产av国片精品| 我的老师免费观看完整版| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| x7x7x7水蜜桃| 亚洲自拍偷在线| 国产视频内射| 无遮挡黄片免费观看| 女人被狂操c到高潮| 美女免费视频网站| 日本在线视频免费播放| 久久中文看片网| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| 亚洲 国产 在线| 两人在一起打扑克的视频| 欧美日本亚洲视频在线播放| 一级av片app| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 色av中文字幕| 精品久久久久久久久亚洲 | 亚洲成a人片在线一区二区| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看 | 久久99热6这里只有精品| 3wmmmm亚洲av在线观看| 国产精品永久免费网站| 亚洲av美国av| 可以在线观看毛片的网站| 亚洲最大成人av| 搡老熟女国产l中国老女人| 日本免费a在线| 国产熟女xx| 最近中文字幕高清免费大全6 | 欧美日本视频| 一区二区三区四区激情视频 | 亚洲18禁久久av| 窝窝影院91人妻| 国产主播在线观看一区二区| 一个人观看的视频www高清免费观看| 99在线人妻在线中文字幕| av黄色大香蕉| 男女床上黄色一级片免费看| 99久久精品一区二区三区| 偷拍熟女少妇极品色| 国产黄片美女视频| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 欧美又色又爽又黄视频| 老司机午夜十八禁免费视频| 丁香欧美五月| 国产综合懂色| 有码 亚洲区| 国产免费男女视频| 搡老妇女老女人老熟妇| 成年版毛片免费区| 桃红色精品国产亚洲av| av在线蜜桃| 无人区码免费观看不卡| 色在线成人网| 人妻久久中文字幕网| 91av网一区二区| 国产精品久久电影中文字幕| 亚洲,欧美精品.| 脱女人内裤的视频| 综合色av麻豆| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| 亚洲精华国产精华精| 永久网站在线| 国模一区二区三区四区视频| 一区二区三区高清视频在线| 成人鲁丝片一二三区免费| 精品一区二区免费观看| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 又黄又爽又免费观看的视频| 嫩草影院入口| 欧美激情国产日韩精品一区| 99国产精品一区二区三区| 亚洲国产欧美人成| 国产伦在线观看视频一区| 男女视频在线观看网站免费| 日本成人三级电影网站| 国产精品一及| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 美女被艹到高潮喷水动态| 国产精品一及| 中文字幕久久专区| 制服丝袜大香蕉在线| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 日本 av在线| 波多野结衣巨乳人妻| 亚洲精品影视一区二区三区av| 大型黄色视频在线免费观看| 蜜桃久久精品国产亚洲av| 精品久久国产蜜桃| 伦理电影大哥的女人| 亚洲国产色片| 国产一区二区在线观看日韩| 日本一本二区三区精品| a级毛片a级免费在线| av福利片在线观看| 国产中年淑女户外野战色|