• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    中心金屬離子改變誘導MOFs結(jié)構(gòu)和光催化性能的改變

    2018-03-14 06:36:01李慧軍何亞玲李晴晴徐周慶
    無機化學學報 2018年3期
    關(guān)鍵詞:徐睿化工學院光催化

    李慧軍 何亞玲 張 寧 李晴晴 徐周慶 王 元

    (河南理工大學化學化工學院,焦作 454000)

    0 Introduction

    Recently,the rational design and construction of microporous metal-organic frameworks (MOFs)have obtained extensiveattention on accountoftheir fascinating topologies and potential applications in optical,gas storage and separation,biomimetic materials,catalysis and so on[1-4].In particular,the assembly of MOFs showing topological complexity,aesthetic beauty,and structural integrity,especially of those with undiscovered intriguing topologies has been appealing to more and more chemists[5-8].The controllable syntheses of MOFs are still difficult in the most of metal-organic ligands systems due to the fact that the assembly processes are complicated and influenced by many inner and outer factors[9-11].Generally,the resulting framework of the MOFs depends on the structural characteristics of organic ligands,the coordination modes of metal center ions,experiment condition and the reaction pathways and so on[12-16].In many case,metal ions can regulated the structure dramatically,which give rise to some ion-directed coordination systems.The selection of metal centers can tune the structure through their various coordination geometries[17-20].

    In additional,dyes removal from contaminated waterattracts the interests ofthe majority of researchers[21-24].However,quickly removing the dyes from waste-water is still a challenge.Compared with absorption method,photocatalysis is one of the most effective chemical methods to alleviate the environment issue by converting inexhaustible solar energy into clean chemical substances[25-27].Thus,the design strategy and improvement approaches for MOF-based photocatalytic activities are commendable[29-30].It has reported that the feasible strategy of photocatalytic process is to facilitate the generation of free radical as electron acceptors to the photocatalytic reaction[31-32].In this regard,unsaturated metal sites which could reduce charge carrier recombination probability may accelerate the generation of free radical and further degrade dye quickly.In the current study,a functional ligand with multiple coordination modes has been used as organic ligand to constructed two novel MOFs.Interestingly,theirstructuraldiversity is largely dependent on the changes of metal ions.And the two MOFs both exhibit good photocatalytic efficiency.

    Scheme 1 Structure of the ligand

    1 Experimental

    1.1 Materials and measurements

    Allchemicalswere commercially purchased.Elemental analyses for carbon,hydrogen and nitrogen were performed on a Thermo Science Flash 2000 element analyzer.FT-IR spectra were obtained in KBr disks on a PerkinElmer Spectrum One FTIR spectrophotometer in 4 000~450 cm-1spectral range.The powderX-ray diffraction (PXRD)studies were performed with a Bruker AXS D8 Discover instrument(Cu Kα radiation,λ=0.154 184 nm,U=40 kV,I=40 mA)over the 2θ range of 5°~60°at room temperature.Thermogravimetric analysis (TGA)was recorded on a Netzsch STA 449C thermal analyzer between 30 and 800℃and a heating rate of 10℃·min-1in atmosphere.Cyclic voltammetry (CV)measurements were performed on a CHI760D electrochemical workstation(Chenhua Instrument Company,ShangHai,China).

    1.2 Preparations of the complexes

    Synthesis of[Cu (PPCA)(H2O)]·H2O (HPU-7):a mixture of H2PPCA (0.05 mmol,10.15 mg),CuCl2·2H2O (0.10 mmol,17.048 mg),absolute ethanol(2 mL)and H2O (8 mL)was placed in a Teflon-lined stainless steel vessel(25 mL),heated to 160 ℃ for 3 days,and then cooled to room temperature at a rate of 5℃·h-1.Purple block crystals of HPU-7 were obtained and picked out,washed with distilled water and dried in air.Elemental analysis Calcd.for C8H8CuN4O4(%):C 33.40,H 2.80,N 19.47.Found(%):C 33.27,H 2.87,N 20.18.IR (KBr,cm-1):3 449s,1 611s,1 420m,1 279 m,1 146m,1 054m,972w,888m,797m.

    Synthesis of{[Co(PPCA)(H2O)]·H2O}n(HPU-8):a mixture of H2PPCA (0.05 mmol,11.2 mg),Co(NO3)2·6H2O (0.10 mmol,29.1 mg),CH3CN (2 mL)and H2O(8 mL)was placed in a Teflon-lined stainless steelvessel (25 mL),heated to 160 ℃ for 3 days,and then cooled to room temperature at a rate of 5 ℃·h-1.Brown block crystals of HPU-8 were obtained and picked out,washed with distilled water and dried in air.Elemental analysis Calcd.for C8H8CoN4O4(%):C 33.94,H 2.85,N 19.79.Found(%):C 33.69,H 2.47,N 20.08.IR (KBr,cm-1):3 446s,1 611s,1 428m,1 370 w,1 295m,1 154m,1 038m,780m.

    1.3 X-ray crystallography

    X-ray Single-crystal diffraction analysis of HPU-7 and HPU-8 was carried out on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromated Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan technique at room temperature.The structures were solved via direct methods and successive Fourier difference synthesis(SHELXS-2014),and refined by the full-matrix least-squares method on F2with anisotropic thermal parameters for all non-H atoms (SHELXL-2014)[33].The empirical absorption corrections were applied by the SADABS program[34].The H-atoms of carbon were assigned with common isotropic displacement factors and included in the final refinement by the use of geometrical restraints.H-atoms of water molecules were first located by the Fourier maps,then refined by the riding mode.The crystallographic data for HPU-7 and HPU-8 are listed in Table 1.Moreover,the selected bond lengths and bond angles are listed in Table 2.

    CCDC:1575337,HPU-7;1575338,HPU-8.

    Table 1 Crystal data and structure refinement parameters for HPU-7 and HPU-8

    Table 2 Selected bond lengths(nm)and angles(°)for HPU-7 and HPU-8

    Continued Table 2

    1.4 Photocatalytic degradation of methylene blue(MB)

    The procedure was as follows:30 mg of the dissolved HPU-7 or HPU-8 was dispersed into 100 mL of MB aqueous solution (12.75 mg·L-1),followed by the addition of four drops of hydrogen peroxide solution (H2O2,30%).The suspensions were magnetically stirred in the dark for over 1 h to ensure adsorption equilibrium of MB onto the surface of samples.And a 2.6 nm xenon arc lamp was used as a light source.An optical filter in the equipment of xenon arc lamp was used to filtering out the UV emission below 400 nm.Visible light then irradiated the above solutions for every 10 min until 110 min,and the corresponding reaction solutions were filtered and the absorbance ofMB aqueous solutions was then measured by a spectrophotometer.For comparison,the contrast experiment was completed under the same conditions without any catalysts.The characteristic peak (λ=660 nm)for MB was employed to monitor the photocatalytic degradation process.

    2 Results and discussion

    2.1 Crystal structures of complexes HPU-7 and HPU-8

    Single-crystal X-ray measurement reveals that HPU-7 crystallizes in the monoclinic space group P21/c.Its asymmetric unit consists of one Cu(Ⅱ),one PPCA2-ligands and two water molecules.As shown in Fig.1a,the Cu1 ion is five-coordinated by three N atoms from two ligands,two oxygen atoms from the carboxylic group of the ligand and water molecule creating the distorted tetragonal pyramid geometry.The carboxylate group of the PPCA2-ligand adopts μ1-∶η1∶η1coordination mode.The ligand ligates with two Cu(Ⅱ) ions using its two nitrogen atoms (N1 and N2)and one oxygen atom (O1)forming a two nuclear[Cu2(PPCA)2(H2O)2]unit.In the binuclear unit,the distance of adjacent Cu atoms is 0.395 31 nm.And then the adjacent nuclear units are linked through hydrogen bonds (O3-H3…N4 and O1W-H1B…O1)(Fig.1b)resulting in a two-dimensional supramolecular architecture in Fig.1c.

    Single-crystal X-ray measurement reveals that HPU-8 crystallizes in the monoclinic space group P21/c.Its asymmetry unit includes one Co(Ⅱ),one H2PPCA ligand and two water molecules.As shown in Fig.2a,Co(Ⅱ)ion in a distorted octahedral environment is completed by four nitrogen atoms from three ligands,two oxygen atoms from a water molecule and thecarboxylicgroup ofoneligand.Theligand coordinates to three Co(Ⅱ)ions with its four nitrogen atoms and one oxygen atom (O1).Adjacent Co(Ⅱ) ions are connected by-N-N-bridges giving rise to binuclear units with the distances between Co…Co of 0.409 21 nm.It is different from the structure of HPU-7 that the N atom of pyrazine also participates in the coordination.Therefore,the binuclear units are connected together forming a two-dimensional network structure,as shown in Fig.2b.Besides,there is guest water molecules embedded in adjacent layers,which generates hydrogen bonds with other O atoms.Furthermore,the adjacentlayersareconnected togetherby these hydrogen bondsresulting in a three-dimensional supramolecular architecture in Fig.2d.

    Fig.1 (a)Coordination environment of Cu(Ⅱ) ion in HPU-7 with hydrogen atoms omitted for clarity;(b)Hydrogen bonds in HPU-7;(c)2D supramolecular architecture connected by hydrogen bonds in HPU-7

    Fig.2 (a)Coordination environment of Co(Ⅱ) ion in HPU-8;(b)2D layer of HPU-8;(c)3D architecture connected by hydrogen bonds

    2.2 PXRD patterns and thermal stability analysis

    To confirm the phase purity of the two complexes,the PXRD patterns were recorded for HPU-7 and HPU-8,and they were comparable to the corresponding simulated ones calculated from the single crystal diffraction data (Fig.3),indicating a pure phase of each bulky sample.

    Fig.3 Powder XRD patterns for HPU-7 and HPU-8

    Fig.4 TG curves of the complexes HPU-7 and HPU-8

    As shown in Fig.4,HPU-7 show the first weight loss of 12.67%corresponding to the release of both guest and coordinated two water molecules(Calcd.12.51%).Then,the framework is stable up to about 414℃.For HPU-8,the gradual weight change before 90℃is attributed to the removal of both guest and coordinated two water molecules (12.89%,Calcd.12.71%).Then,the major weight loss occurs in next step above 407℃,which may be ascribed to the decomposition of the coordination framework.

    2.3 Physical characterizations

    Fig.5 CV curves of HPU-7 and HPU-8 in 0.1 mol·L-1KOH solution

    Fig.6 Mott-Schottky plots of HPU-7 and HPU-8 in 0.1 mol·L-1KOH aqueous solution

    To study the electrochemical synthesis of HPU-7 and HPU-8,cyclic voltammetry is performed using standard electrochemical equipment within the scan rate of 20 mV·s-1and potential range of-1 to 0.36 V.The CV curves show that HPU-7 and HPU-8 have good conductivities (Fig.5).Besides,Mott-Schottky measurements were also conducted for better understanding the intrinsic electronic properties of the two complexes.As shown in Fig.6,the slope of C-2values versus potential are observed indicating that both the two complexes show n-type semiconductors.Theflat-bandspotentialofHPU-7 and HPU-8 determined from Mott-Schottky plots are-0.94 and-0.89 V,respectively,versus Hg/Hg2Cl2electrode at pH 13.0.So the redox potential of the conduction bands of HPU-7 and HPU-8 are-0.70 and-0.65 V versus normal hydrogen electrode (NHE).

    2.4 Photocatalytic experiments

    Fig.7 UV-Vis absorption of MB at different time intervals under high-pressure Hg lamp irradiation without(a)or with complexes HPU-7 (b)and HPU-8(c)as catalysts,respectively;(d)Plots of Ct/C0vs time for MB degradation without or with complexes HPU-7 and HPU-8

    Photocatalysts have attracted much attention due to their potential applications in purifying water and air by thoroughly decomposing organic compounds.To evaluate the photocatalytic performance ofthese complexes,the photocatalytic degradation ofMB aqueous solution was performed at ambient temperature.And the concentrations of MB versus reaction time of no complex and HPU-7 and HPU-8 are drawn in Fig.7.

    As shown in the Fig.7,with the gradient changes of reaction time,both of the absorbency of the solution is gradually reduced at 660 nm.The degradation rate is defined as (1-Ct/C0)×100%,where Ctand C0represent the remnant and initial concentration of MB respectively.Without addition of these complexes,the MB degradation rate was only 59.14%.After addition of HPU-7 and HPU-8,the MB degradation rates were 90.61%and 85.34%for HPU-7 and HPU-8,respectively.Therefore it was found that HPU-7 has better photocatalytic degradation efficiency.

    These results suggest that HPU-7 may be better candidate for photocatalytic degradation of MB.As mentioned in literature[35-36],the photocatalytic mechanism is clarified as below:the electrons of the complex could be excited from the valence band (VB)to the conduction band (CB).Then,the equal amount of positive vacancies is left in VB (h+).Besides,O2or hydroxyl (OH-)absorbed on the surfaces of the photocatalysts could interact with the electrons (e-)on the CB or the hole (h+)on the VB,respectively,which give rise to hydroxyl radicals (OH).As is known,the OH radical is the important factor for cleaving MB effectively in the above photocatalytic process.So the releasedifficultyofOH radicalsdeterminesthe catalytic effects.OH radicals are generated by oxygenating H2O2,which are deactivated by photocatalyst generating LMCT.Therefore,the structures of photocatalyst are the crucial issues for the faster generation speed of OH radicals.By comparison,HPU-7 owns more unsaturated metal sites which could reduce charge carrier recombination probability and generate OH radicals more easily.So HPU-7 shows better photocatalytic degradation efficiency.

    3 Conclusions

    In summary,twonew MOFsbased on a multifunctional ligand were successfully synthesized,which display diverse structures from 0D to 2D frameworks.The pyrazinyl functional groups could adjust coordination numbers ligating to different metal ions,which contribute to the formation of different structural MOFs.In addition,their electrochemical properties are also studied.The result shows that they have good conductivities.So they both show good photocatalytic efficiencies for the decomposition of MB.Besides,HPU-7 with unsaturated metal sites could reduce charge carrier recombination probability and exhibit better photocatalytic efficiency.Further research is underway to synthesize other materials with better application in decomposing other dyestuff.

    [1]Yang H,Wei Y L,Dong X Y,et al.Chem.Mater.,2015,27:1327-1331

    [2]Wei Y S,Hu X P,Han Z,et al.J.Am.Chem.Soc.,2017,139:3505-3512

    [3]WANG Qiang(王強),XU Rui(徐睿),WANG Xu-Sheng(王旭生),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(11):2038-2044

    [4]JI Qing-Yan(季卿妍),WANG Qian(王倩),LI Hong-Xin(李洪昕),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(11):2031-2037

    [5]Gao M L,Cao X M,Zhang Y Y,et al.RSC Adv.,2017,7:45029-45033

    [6]Li Z X,Liu X F,Ling Y,et al.Inorg.Chem.Commun.,2017,84:59-62

    [7]Murinzi T W,Hosten E,Watkins G M.Polyhedron,2017,137:188-196

    [8]Li S B,Zhang L,Wang J X,et al.Inorg.Chem.Commun.,2017,82:57-60

    [9]Li H J,Wang Y,Cai H X,et al.RSC Adv.,2015,5:89833-89838

    [10]Meng W,Xu S,Dai L,et al.Electrochim.Acta,2017,230:324-332

    [11]Guo X H,Li Y S,Peng Q Y,et al.Polyhedron,2017,133:238-244

    [12]Li T T,Liu Y M,Wang T,et al.Inorg.Chem.Commun.,2017,84:5-9

    [13]Cai S L,Huang Y,Gao Y,et al.Inorg.Chem.Commun.,2017,84:10-14

    [14]Wu Z F,Guo L K,Huang X Y,et al.Inorg.Chem.,2017,56:7397-7403

    [15]Park J,Oh M.Nanoscale,2017,9:12850-12854

    [16]Rajak R,Saraf M,Mohammad A,et al.J.Mater.Chem.A,2017,5:17998-18011

    [17]Hou J Y,Luan Y,Huang X B,et al.New J.Chem.,2017,41:9123-9129

    [18]Zhao H M,Xia Q S,Xing H Z,et al.ACS Sustainable Chem.Eng.,2017,5:4449-4456

    [19]Tan Y X,Zhang Y,He Y P,et al.Inorg.Chem.,2014,53:12973-12976

    [20]Dey A,Konavarapu S K,Sasmal H S,et al.Cryst.Growth Des.,2016,16:5976-5984

    [21]Meng X M,Zhang X Y,Wang X P,et al.Polyhedron,2017,137:81-88

    [22]Liu C B,Sun H Y,Li X Y,et al.Inorg.Chem.Commun.,2014,47:80-83

    [23]Liu D M,Xie Z G,Ma L Q,et al.Inorg.Chem.,2010,49:9107-9109

    [24]Ahmed A,Forster M,Jin J S,et al.ACS Appl.Mater.Interfaces,2015,7:18054-18063

    [25]Peng Y G,Huang H L,Liu D H,et al.ACS Appl.Mater.Interfaces,2016,8:8527-8535

    [26]Fan L Y,Yu K,Lv J H,et al.Dalton Trans.,2017,46:10355-10363

    [27]Bibi R,Wei L F,Shen Q H,et al.J.Chem.Eng.Data,2017,62:1615-1622

    [28]Li Q,Xue D X,Zhang Y F,et al.J.Mater.Chem.A,2017,5:14182-14189

    [29]Xia Q S,Yu X D,Zhao H M,et al.Cryst.Growth Des.,2017,17:4189-4195

    [30]He Y,Xu T,Hu J,et al.RSC Adv.,2017,7:30500-30505

    [31]Wang X L,Sun J J,Lin H Y,et al.CrystEngComm,2017,19:3167-3177

    [32]Li L J,Yang L K,Chen Z K,et al.Inorg.Chem.Commun.,2014,50:62-64

    [33]Sheldrick G M.Acta Crystallogr.Sect.C:Cryst.Struct.Commun.,2015,C71:3-8

    [34]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

    [35]Li H J,He Y L,Zhao W L,et al.Polyhedron,2017,133:412-418

    [36]Wang X L,Luan J,Sui F F,et al.Cryst.Growth Des.,2013,13:3561-3576

    猜你喜歡
    徐睿化工學院光催化
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    第一次辦生日派對
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    臭美鬼(2)
    臭美鬼
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    可見光光催化降解在有機污染防治中的應用
    一级毛片aaaaaa免费看小| 看非洲黑人一级黄片| 国产亚洲午夜精品一区二区久久 | 成人无遮挡网站| 又爽又黄无遮挡网站| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 菩萨蛮人人尽说江南好唐韦庄| 久久综合国产亚洲精品| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 嫩草影院新地址| 久久久久性生活片| 精品久久久久久久人妻蜜臀av| 精品熟女少妇av免费看| 99热网站在线观看| 91久久精品国产一区二区成人| 美女高潮的动态| 午夜视频国产福利| 成人毛片60女人毛片免费| 精品国产三级普通话版| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 91精品一卡2卡3卡4卡| 国产精品综合久久久久久久免费| 777米奇影视久久| 欧美xxxx黑人xx丫x性爽| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 日本与韩国留学比较| 久久久精品94久久精品| 精品人妻熟女av久视频| 日韩电影二区| 中文天堂在线官网| 亚洲av成人av| 大香蕉97超碰在线| 国产色爽女视频免费观看| 国产精品一区二区在线观看99 | 少妇人妻精品综合一区二区| 午夜免费观看性视频| 大话2 男鬼变身卡| 97超视频在线观看视频| 高清欧美精品videossex| 国产乱人偷精品视频| 三级经典国产精品| 热99在线观看视频| 少妇猛男粗大的猛烈进出视频 | 日韩国内少妇激情av| freevideosex欧美| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久| 亚洲精品乱码久久久v下载方式| 日韩,欧美,国产一区二区三区| 久久99蜜桃精品久久| 久久久精品94久久精品| 99热全是精品| 91精品一卡2卡3卡4卡| 久久久亚洲精品成人影院| 精品午夜福利在线看| 男插女下体视频免费在线播放| 亚洲不卡免费看| 欧美不卡视频在线免费观看| 欧美日韩精品成人综合77777| 国产视频首页在线观看| 狂野欧美白嫩少妇大欣赏| 成人欧美大片| 三级国产精品欧美在线观看| 久久久久久久久久黄片| 毛片女人毛片| 可以在线观看毛片的网站| 免费观看在线日韩| 精品午夜福利在线看| 国产黄色小视频在线观看| 一本一本综合久久| 亚洲av在线观看美女高潮| 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 国产视频内射| 国产探花极品一区二区| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 亚洲一区高清亚洲精品| 人妻制服诱惑在线中文字幕| 久久国产乱子免费精品| 色哟哟·www| 久久久久精品性色| 成人欧美大片| 蜜臀久久99精品久久宅男| 搡老乐熟女国产| 国产精品女同一区二区软件| 亚洲四区av| 国产在线一区二区三区精| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 日本av手机在线免费观看| 亚洲av电影不卡..在线观看| 看免费成人av毛片| 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻| 久久热精品热| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 熟妇人妻久久中文字幕3abv| 欧美bdsm另类| av国产久精品久网站免费入址| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| av天堂中文字幕网| 精品午夜福利在线看| 久99久视频精品免费| 国产亚洲精品av在线| 日韩欧美精品v在线| 亚洲aⅴ乱码一区二区在线播放| 欧美高清性xxxxhd video| av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 水蜜桃什么品种好| 久久久久久久久久成人| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 成人一区二区视频在线观看| 中文欧美无线码| 卡戴珊不雅视频在线播放| 老师上课跳d突然被开到最大视频| 三级男女做爰猛烈吃奶摸视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲精品久久久com| 大又大粗又爽又黄少妇毛片口| 日韩人妻高清精品专区| 欧美性感艳星| 欧美成人午夜免费资源| 亚洲欧美一区二区三区黑人 | 一个人看视频在线观看www免费| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 午夜免费观看性视频| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 亚洲av国产av综合av卡| 欧美zozozo另类| 极品少妇高潮喷水抽搐| av网站免费在线观看视频 | 精品国内亚洲2022精品成人| 免费高清在线观看视频在线观看| 国产黄色小视频在线观看| 亚洲国产精品国产精品| 一区二区三区高清视频在线| av在线天堂中文字幕| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 狂野欧美激情性xxxx在线观看| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 极品少妇高潮喷水抽搐| 边亲边吃奶的免费视频| 亚洲av一区综合| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 男女国产视频网站| 午夜福利成人在线免费观看| 永久网站在线| 乱人视频在线观看| 日日啪夜夜爽| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 日本黄大片高清| a级毛片免费高清观看在线播放| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃 | 国产美女午夜福利| 白带黄色成豆腐渣| 一边亲一边摸免费视频| 国产一级毛片在线| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 男女啪啪激烈高潮av片| 久久精品久久精品一区二区三区| 国产色婷婷99| 亚洲国产精品sss在线观看| 精品久久久精品久久久| 国产又色又爽无遮挡免| 亚洲欧美成人综合另类久久久| 在现免费观看毛片| 国产一区二区三区综合在线观看 | 欧美日韩精品成人综合77777| 午夜免费激情av| 亚洲精华国产精华液的使用体验| 又大又黄又爽视频免费| 国产精品美女特级片免费视频播放器| 大香蕉久久网| 国产黄a三级三级三级人| 超碰97精品在线观看| 欧美区成人在线视频| 成人特级av手机在线观看| 久热久热在线精品观看| 国产成人精品久久久久久| 久久久久久久午夜电影| av女优亚洲男人天堂| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 久久久久久国产a免费观看| 欧美成人精品欧美一级黄| 亚洲第一区二区三区不卡| 免费大片18禁| 国产亚洲av片在线观看秒播厂 | 午夜精品在线福利| 国产毛片a区久久久久| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 最近中文字幕高清免费大全6| 天堂网av新在线| 亚洲自拍偷在线| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 美女高潮的动态| 人人妻人人看人人澡| 日韩精品有码人妻一区| 午夜激情欧美在线| 一级毛片黄色毛片免费观看视频| a级毛片免费高清观看在线播放| 欧美成人午夜免费资源| 免费高清在线观看视频在线观看| 亚洲四区av| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 日韩欧美一区视频在线观看 | 免费少妇av软件| 精品人妻视频免费看| 日本欧美国产在线视频| 十八禁网站网址无遮挡 | 亚洲性久久影院| 黑人高潮一二区| 国产精品久久久久久久久免| 久久精品人妻少妇| 一级毛片我不卡| 国产午夜精品论理片| 亚洲av免费在线观看| 免费看日本二区| 成人毛片a级毛片在线播放| 亚洲欧美日韩卡通动漫| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 熟妇人妻不卡中文字幕| av播播在线观看一区| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 欧美精品国产亚洲| 天堂影院成人在线观看| 26uuu在线亚洲综合色| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 国产永久视频网站| 亚洲欧美清纯卡通| 看免费成人av毛片| 2018国产大陆天天弄谢| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 国产三级在线视频| 丰满少妇做爰视频| 国产成人freesex在线| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 久久精品久久久久久噜噜老黄| 人妻系列 视频| 插逼视频在线观看| 丝袜美腿在线中文| 精品少妇黑人巨大在线播放| 亚洲最大成人av| 亚洲在线自拍视频| 日本wwww免费看| 久久精品久久久久久久性| 纵有疾风起免费观看全集完整版 | 伊人久久精品亚洲午夜| 综合色av麻豆| 成年女人在线观看亚洲视频 | 男插女下体视频免费在线播放| 国产毛片a区久久久久| 乱人视频在线观看| 国产午夜精品一二区理论片| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 亚洲综合色惰| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 久99久视频精品免费| 成年女人看的毛片在线观看| 能在线免费看毛片的网站| 少妇熟女aⅴ在线视频| 亚洲av电影在线观看一区二区三区 | 午夜免费男女啪啪视频观看| 精品久久国产蜜桃| 啦啦啦韩国在线观看视频| av免费在线看不卡| av线在线观看网站| 亚洲av成人精品一二三区| 嘟嘟电影网在线观看| 日日啪夜夜撸| 亚洲精品成人av观看孕妇| 亚洲电影在线观看av| 69人妻影院| 亚洲无线观看免费| 搡老乐熟女国产| 国产伦精品一区二区三区四那| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 建设人人有责人人尽责人人享有的 | 青春草国产在线视频| 久久久久久九九精品二区国产| 婷婷色综合www| 三级男女做爰猛烈吃奶摸视频| 丝袜美腿在线中文| 少妇高潮的动态图| 在线观看免费高清a一片| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 免费av观看视频| 床上黄色一级片| 欧美一级a爱片免费观看看| 久久99热这里只有精品18| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 中文字幕免费在线视频6| 亚洲自拍偷在线| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 亚洲国产色片| 日韩欧美 国产精品| 五月天丁香电影| 天堂中文最新版在线下载 | 免费黄色在线免费观看| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 永久免费av网站大全| 亚洲最大成人手机在线| 国产免费一级a男人的天堂| 高清欧美精品videossex| 熟女电影av网| 亚洲欧美清纯卡通| 天堂中文最新版在线下载 | 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 日本色播在线视频| 如何舔出高潮| 欧美bdsm另类| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 中文字幕亚洲精品专区| 搡女人真爽免费视频火全软件| 亚洲不卡免费看| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 午夜老司机福利剧场| 国产毛片a区久久久久| 一个人免费在线观看电影| 国产成人a区在线观看| 国产不卡一卡二| 熟妇人妻不卡中文字幕| 日韩精品有码人妻一区| 极品少妇高潮喷水抽搐| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 一级片'在线观看视频| 欧美潮喷喷水| 中国国产av一级| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久久免| 成人国产麻豆网| 国产乱人偷精品视频| av免费在线看不卡| 成人一区二区视频在线观看| 日韩强制内射视频| 18+在线观看网站| 亚洲最大成人av| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 成人亚洲精品一区在线观看 | 国产 亚洲一区二区三区 | 男人狂女人下面高潮的视频| 少妇被粗大猛烈的视频| videos熟女内射| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 国产av国产精品国产| 亚洲av二区三区四区| 性色avwww在线观看| 亚洲欧美一区二区三区黑人 | 日本午夜av视频| 中文字幕制服av| 亚洲av成人精品一二三区| 午夜久久久久精精品| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频 | 天堂俺去俺来也www色官网 | 三级国产精品片| av播播在线观看一区| 亚洲国产成人一精品久久久| 国产精品一及| 成人一区二区视频在线观看| 深爱激情五月婷婷| h日本视频在线播放| 日本一二三区视频观看| ponron亚洲| 99热6这里只有精品| 深夜a级毛片| 亚洲不卡免费看| 亚洲av免费在线观看| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 伊人久久精品亚洲午夜| 精品久久久精品久久久| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 国产成人91sexporn| 欧美一级a爱片免费观看看| 成人特级av手机在线观看| 国产成人精品久久久久久| 欧美日韩国产mv在线观看视频 | .国产精品久久| 大香蕉97超碰在线| 汤姆久久久久久久影院中文字幕 | 日日啪夜夜撸| 精品久久久久久成人av| 精品午夜福利在线看| 赤兔流量卡办理| 搡老妇女老女人老熟妇| 熟女电影av网| 少妇人妻精品综合一区二区| 国产不卡一卡二| 久久久a久久爽久久v久久| 亚洲国产欧美人成| 久久鲁丝午夜福利片| 18禁裸乳无遮挡免费网站照片| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 26uuu在线亚洲综合色| 国产 一区 欧美 日韩| 2018国产大陆天天弄谢| 久久久久久久久久成人| 一级毛片我不卡| 久久热精品热| 欧美极品一区二区三区四区| xxx大片免费视频| 日韩在线高清观看一区二区三区| 在线观看免费高清a一片| 国产免费福利视频在线观看| 韩国高清视频一区二区三区| 亚洲国产精品专区欧美| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 亚洲第一区二区三区不卡| 久久人人爽人人片av| 少妇丰满av| 成人美女网站在线观看视频| 激情 狠狠 欧美| 黄色一级大片看看| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 亚洲图色成人| 国国产精品蜜臀av免费| 久久久久国产网址| 好男人在线观看高清免费视频| 国产黄频视频在线观看| 亚洲天堂国产精品一区在线| 日韩强制内射视频| 免费av不卡在线播放| 能在线免费观看的黄片| 久久精品国产自在天天线| 国产成人a区在线观看| av在线天堂中文字幕| 国产男女超爽视频在线观看| 97精品久久久久久久久久精品| 欧美bdsm另类| 成人一区二区视频在线观看| 久久97久久精品| 国产成人精品久久久久久| 欧美丝袜亚洲另类| 国产精品久久久久久精品电影| a级一级毛片免费在线观看| 久久6这里有精品| 亚洲av日韩在线播放| 成人鲁丝片一二三区免费| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 69av精品久久久久久| 两个人的视频大全免费| 亚洲av不卡在线观看| 国产成人精品婷婷| 国内精品一区二区在线观看| 精品一区二区三区视频在线| 黄片wwwwww| 欧美97在线视频| 国产黄片视频在线免费观看| 免费观看在线日韩| 成人二区视频| 国产亚洲91精品色在线| 日韩国内少妇激情av| 亚洲av免费高清在线观看| 国产精品无大码| 99热这里只有是精品50| 嫩草影院新地址| 国产成人精品久久久久久| 亚洲精品中文字幕在线视频 | 熟妇人妻不卡中文字幕| 久久久久久国产a免费观看| 欧美不卡视频在线免费观看| 能在线免费观看的黄片| 搡女人真爽免费视频火全软件| 成人午夜精彩视频在线观看| 大片免费播放器 马上看| 亚洲精品亚洲一区二区| av黄色大香蕉| 激情 狠狠 欧美| 欧美区成人在线视频| 三级国产精品片| 丰满人妻一区二区三区视频av| 国产成人一区二区在线| 国内精品宾馆在线| 日韩中字成人| 国产伦精品一区二区三区四那| 少妇猛男粗大的猛烈进出视频 | 国产 亚洲一区二区三区 | 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 国产午夜精品一二区理论片| 久久久久久久久久人人人人人人| 久久久午夜欧美精品| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 国产免费又黄又爽又色| 有码 亚洲区| 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 午夜爱爱视频在线播放| 日产精品乱码卡一卡2卡三| 亚洲久久久久久中文字幕| 中文精品一卡2卡3卡4更新| 尾随美女入室| 大片免费播放器 马上看| 日韩欧美 国产精品| 人妻系列 视频| 黄片wwwwww| 国产精品蜜桃在线观看| 亚洲成人中文字幕在线播放| 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久 | 天堂中文最新版在线下载 | 91精品伊人久久大香线蕉| 全区人妻精品视频| 成年人午夜在线观看视频 | 一级毛片我不卡| 亚洲欧美日韩无卡精品| 成人欧美大片| 97热精品久久久久久| 国产三级在线视频| 亚洲精品国产av成人精品| 亚洲自拍偷在线| 成人一区二区视频在线观看| 国产精品久久视频播放| 免费看a级黄色片| 一级爰片在线观看| 在线观看美女被高潮喷水网站| 两个人的视频大全免费| 晚上一个人看的免费电影| 久久久精品94久久精品| 欧美日韩一区二区视频在线观看视频在线 | 午夜老司机福利剧场| 少妇人妻一区二区三区视频| 国产伦精品一区二区三区四那| 性色avwww在线观看| 美女主播在线视频| 成人午夜精彩视频在线观看| 国产在视频线精品| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 日本欧美国产在线视频| 久久这里只有精品中国| kizo精华| 国产亚洲av嫩草精品影院| 日韩精品有码人妻一区| 91狼人影院| 久99久视频精品免费|