• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成LuF3∶Yb3+,Er3+微晶及其上轉(zhuǎn)換發(fā)射與溫度傳感特性

    2018-03-14 06:36:06廖金生郭江飛黃海平溫和瑞
    關(guān)鍵詞:微晶水熱理工大學(xué)

    王 祺 廖金生 郭江飛 黃海平 溫和瑞

    (江西理工大學(xué),冶金與化學(xué)工程學(xué)院,贛州 341000)

    0 Introduction

    Rare-earth (RE)ion doped luminescence upconversion (UC)materials have attracted much attention owing to their wide application prospects in solid-state lasers[1],luminescence display panels[2-3],solar cells[4-6],biological labels[7],biological imaging[8],and optical temperature sensors[9-10].Recently,applying these UC materials as temperature sensing medium has attracted great attention[11-17].In this application,the optical temperature sensors based on the fluorescence intensity ratio (FIR)technique as a noninvasive thermometry are considered to be an alternative candidate to replace traditional temperature sensors because they can be operated in some harsh environments such as electrical power stations,building fire detection,oil refineries.Furthermore,the FIR technique which takes the advantage of temperature dependence of two thermally coupled energy levels of RE ions,can reduce the dependence of measurement conditions and improve the sensitivity[18-19].

    Erbium ion (Er3+)has attracted much attention due to its unique electric energy level structures.The lifetimes of some intermediate energy levels of Er3+are long enough.Thus,Er3+ion is a promising competitor for UC luminescence center.Green UC luminescence of Er3+ion hold a pair of thermally coupled emission levels (2H11/2and4S3/2),whose emission intensity ratio would vary with environment temperature.It is well known that the2H11/2→4I15/2transition of Er3+is hypersensitive,and the temperature sensitivityofthe materials varies remarkably for Er3+ions in different hosts[8-24].Therefore,finding a host capable to provide suitable crystal field environment surrounding Er3+dopant to enhance radiative probability of the2H11/2→4I15/2hypersensitive transition is a key for obtaining high temperature sensitivity of Er3+.

    Binary rare earth fluorides (REF3)have been considered as an excellent luminescent rigid host matrix for various optically active lanthanide ions(Ln3+),because they normally possess a high refractive index and low phonon energy (<400 cm-1),which leads to the low probability of nonradiative decay and consequently the luminescence quantum yields are usually higher than in oxide hosts and in most inorganic matrixes.Recently,several chemical synthesis techniques to prepare Ln3+doped REF3phosphors are available such as thermal decomposition[25],coprecipitation reaction[26],hydrothermal method[27].Among all the methods for the synthesis of Ln3+doped REF3phosphors,hydrothermal method has been proven to be an effective and convenient wet chemistry technique.During the hydrothermal process,chemical reactions are carried out under autogenous pressure and at temperatures above the boiling point of water in the autoclave[28].Moreover,the size distribution of particles,phase compositions,and morphologies can be easily controlled by modifying the reaction conditions such as reaction temperature,pH value,and the starting materials.However,to the best of our knowledge,there is little or no investigation on the UC emission and temperature sensing performances of LuF3∶Yb3+,Er3+microcrystals prepared by hydrothermal method without any surfactant. We report here the hydrothermal synthesis of the Yb3+/Er3+co-doped LuF3microcrystals and determine how synthetic parameter can influence the textural and optical properties of the resulting UC materials.The luminescence properties of LuF3∶Yb3+,Er3+microcrystals are investigated by changing doping concentrations of Yb3+(and Er3+)ions in the host.Additionally,their thermometry behaviors have also been illustrated by FIR technique.

    1 Experimental

    1.1 Sample preparation

    All the chemicals of Lu2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),NaF (AR),HNO3and NaOH were used as the starting materials without any further purification.LuF3∶Yb3+,Er3+samples for different Yb3+doping concentration (5%~15%)with a fixed Er3+concentration (2%)and Er3+doping concentration (1%~5%)with a fixed Yb3+concentration (10%)were prepared by the hydrothermal method without employing any surfactants.A typical procedure for the LuF3∶Yb3+,Er3+(Yb10%,Er2%)sample synthesis as an example is described as follows:0.350 2 g Lu2O3,0.039 4 g Yb2O3and 0.007 6 g Er2O3were first dissolved in dilute nitric acid under heating.After the Lu2O3,Yb2O3and Er2O3were completely dissolved,the extra nitrite acid was removed by evaporation.Then deionized water was added to obtain Lu(NO3)3,Yb(NO3)3and Er(NO3)3mixed solution.Meanwhile 0.335 9 g NaF (nRE(NO3)3∶nNaF=1∶4)was dissolved in deionzed water while stirring.Second,the obtained NaF solution was slowly added into the above solution with magnetic stirring.Afterward the pH value of the solution was adjusted via using nitric acid or NaOH.The resultant milky colloidal suspension was transferred into a 100 mL Teflon-lined stainless-steel autoclave,sealed and heated to 180℃for 21 h.Finally,the autoclave was cooled to room temperature naturally,and the products were deposited at the bottom of vessel.The precipitate was separated by centrifugation and washed three times with absolute alcohol.After being dried in air at 80℃for 12 h,the final powder products were obtained.Other phosphor samples were prepared by the same procedure,except for changing Ln(NO3)3and the pH value.

    1.2 Characterization

    X-ray diffractometer (XRD)patterns of samples were examined on a X′Pert PRO (PANalytical)powder diffractometer with Cu Kα (λ=0.150 465 nm,40 kV,40 mA)radiation to identify the crystal phase.The XRD data within the range from 10°to 80°were recorded in a scanning mode with a step size of 0.02°and a step scanning time of 8 s for Rietveld refinement.The morphology of the samples was characterized by a JSM6700F scanning electron microscope (SEM)operated at 10 kV and a JEOL-2010 transmission electron microscope (TEM)equipped with the energy dispersive X-ray spectrum (EDS)operated at 200 kV.In order to investigate the temperature dependence of theUC emission,thesamplewasplaced in a temperature-controlled copper cylinder, and its temperature was increased from 293 to 573 K.The UC spectra of sample at various temperatures were obtained using a Fluorolog-3 double monochromator equipped with a Hamamatsu R928 Photomultiplier under the excitation of a 980 nm diode laser with 150 mW (the power density is about 3 W·cm-2).

    2 Results and discussion

    2.1 Effect of the pH for solution on the crystal structure

    Fig.1 XRD patterns for as-obtained sample with different pH values;Standard data for LuF3(PDF No.32-0612)is also presented in the figure

    The crystallinity and phase purity of the asprepared samples are examined with XRD.Fig.1 shows XRD patterns of the as-obtained samples at 180℃for 21 h with different pH values in comparison to the standard card.As shown in Fig.1,it is obvious that all diffraction peaks of the product obtained at the mixed solution of pH=1 could be clearly indexed to the pure orthorhombic phase LuF3(PDF No.32-0612).When the pH value of the mixed solution is 3,it is clearly seen that other impurity phase(hexagonal NaLuF4PDF No.27-0726)emerged.With the pH value of the mixed solution continuing to increase to 7,it is clearly seen that NaLuF4is the main phase.With the pH value of the mixed solution increasing until 13,it is clearly seen that the diffraction peaks of the product matched well with the standard data of monoclinic LuO(OH)(PDF No.01-072-0928).The above-stated results indicate that the pH value is very important for preparing the pure orthorhombic phase LuF3.

    Fig.2 XRD refinement result for the LuF3∶10%Yb,2%Er sample,showing the Bragg reflection positions,the observed and calculated XRD profiles,and the difference between the observed and calculated patterns

    Rietveld refinement is an effective method to analyze the position of atoms in a primitive cell.In order to evaluate the structural parameters of LuF3∶10%Yb3+,2%Er3+,structural refinement was carried out by the TOPAS (total pattern analysis solutions)program using the Rietveld method.Fig.2 gives the experimental and refined XRD patterns of the LuF3∶10%Yb3+,2%Er3+sample.The black crosses and red solid line represent the experimental and calculated patterns,respectively.The pink vertical lines show the positions of the simulated diffraction patterns.The difference between the experimental and calculated results is plotted by the blue line at the bottom.By comparing the calculated data with the experimental data,we find that each peak is in good agreement.There is no impurity phase found in the samples,which reveals that it is a good single phase.The Rietveld refinement analysis indicates the values(Rp=5.28%and Rwp=6.77%,where Rpis the residual obtained by directly calculating the XRD spectrum calculated from the model structure and the experimental data and Rwpis the weight to specific position,which are within the accepted error range,indicating that the refinement results and the above assumption are reliable.According to the literature,the Yb3+and Er3+ions occupy the site of Lu3+ions.In order to further evaluate the occupying sites of the doping ions of Yb3+and Er3+,structural refinement was also carried out on LuF3∶10%Yb3+,2%Er3+,as shown in Fig.2.The resulting crystallographic data of LuF3∶10%Yb3+,2%Er3+are summarized in Table 1.The atomic coordinates and site occupancy fraction (SOF)are presented in Table 2.

    Table 1 Crystal structural data and lattice parameters for LuF3∶10%Yb,2%Er

    A low-magnification SEM image (Fig.3a)of the LuF3∶10%Yb3+,2%Er3+sample shows that the morphology is octahedral-like structure with good uniformity and dispersity.Fig.3b a high magnification SEM image of the prepared powders.As can be seen in these images,the LuF3∶10%Yb3+,2%Er3+sample show smooth and the particle size is about 4.5 μm.Morphological observation by transmission electron microscopy (TEM)is also shown in Fig.3c.The TEM image of the Yb3+/Er3+co-doped LuF3sample indicates the particle size is 4.5 μm,which accords well with the result of SEM.Combining with the high resolutionTEM image (HRTEM)(Fig.3d),it can be clearly seen that the lattice fringes show the imaging characteristics in which the orthorhombic structure LuF3crystal where the interplanar spacing of 0.338 4 nm corresponds to the distance of the (020)plane.The EDS was used to further characterize the chemical composition of the as-prepared product,and the results shown in Fig.3e confirm that element ratios consist with the chemical formula of Yb3+/Er3+codoped LuF3sample for 10%Yb3+and 2%Er3+,with nYb∶nEr∶nLu=5∶1∶44.The results confirm that Yb3+and Er3+ions have been effectively incorporated into the LuF3host lattice,agreeing with the XRD analysis above.The above results indicate that the LuF3∶Yb3+,Er3+micorcrystals can be successfully obtained by one-step hydrothermal method.

    Table 2 Atomic coordinates and site occupancy fraction(SOF)for LuF3∶10%Yb,2%Er

    Fig.3 Low- (a)and high-magnification (b)SEM images of LuF3∶10%Yb3+,2%Er3+sample;(c)TEM image of LuF3:10%Yb3+,2%Er3+sample;(d)HRTEM image of LuF3∶10%Yb3+,2%Er3+sample;(e)EDS data taken from a single particle

    2.2 UC luminescence studies

    To investigate influence of the synthesis parameter (pH value)on UC emission of as-obtained samples,the UC emission spectra of the as-obtained samples with different pH values are shown in Fig.4a.It is obvious that green and red UC emissions of the product obtained at the mixed solution of pH=1 is strongest among those of all pH values.When the pH value of the mixed solution is 3,it is clearly seen that UC emission obviously decrease and the relative intensity of green and red light is opposite compared with that of pH=1,which is due to other impurity phase (NaLuF4)emerged.The other impurity phase leads to luminescence quenching.With the increase of the pH value of the mixed solution,UC emissions of the products continually decrease.The increase of the concentration of the other impurity will further lead to luminescence quenching.The above-stated results indicate that the pH value as synthesis parameter is very important for obtaining strong UC emission.

    Fig.4 UC emission spectra of the LuF3∶Yb3+,Er3+samples for(a)different pH values,(b)different Yb3+concentrations with a fixed 2%Er3+and different Er3+concentrations with a fixed 10%Yb3+ (c)under 980 nm excitation

    In order to investigate concentration quenching of Yb3+/Er3+co-doped LuF3,Fig.4b and 4c show the dependence of the UC luminescence spectra of the Yb3+/Er3+co-doped LuF3phosphors on the sensitizer(Yb3+)and activator (Er3+)concentrations,respectively.Intense green emission at 523 and 539 nm (2H11/2→4I15/2and4S3/2→4I15/2transitions of Er3+)and weak red emission at 660 nm (4F9/2→4I15/2transition of Er3+)are observed in the emission spectra.As the concentrations of Er3+are fixed at 2%,the green emission intensity becomes stronger with the increasing of Yb3+content and reaches a maximum at 10%in the range of 5%~15%,which is shown in Fig.4b.The concentration quenching effect appears in this system and results in intensity decreasing as the concentration of Yb3+over 10%.This is believed to be due to the onset of the quenching effect that transfers the excitation of Er3+back to Yb3+and self-quenching in high-Yb3+doping concentration[29-31].As the concentrations of Yb3+are fixed at 10%,the green emission intensity becomes stronger with the increasing of Er3+content and reaches a maximum at 2%in the range of 1%~5% (Fig.4c).The concentration quenching effect is caused by the cross-relaxation process among Er3+ions.The concentration quenching will not occur at low concentration,because the distance between identical Er3+ions is so large that the energy migration is hampered[32].With the increase of the Er3+concentration,the average distance between Er3+ions become shorter and the energy transferbecome convenient.The critical distance of which can prevent the energy transfer happening can be calculated by the following formula[33]:Rc=2[3V/(4πNXc)]1/3,where V is the volume of the unit cell,Xcis the critical concentration and N is the number of available crystallographic sites occupied by the activator ions in the unit cell.The values of V and N for the crystalline LuF3(orthorhombic system,a=0.614 97 nm,b=0.677 08 nm,c=0.448 13 nm,Z=4,V=abc,N=Z)are 0.186 595 nm3and 4,respectively.Considering the above optimum concentration as the critical concentration Xc,the Rcfor Er3+is 1.645 4 nm in the LuF3∶10%Yb3+,2%Er3+phosphors.

    In order to investigate the UC mechanism,pump power-dependence of green and red UC emission spectra in LuF3∶Yb3+,Er3+micorcrystals was measured and displayed in a logarithmic scale (Fig.5).The emission intensity Iemdepends on the excitation power IPfollowing to the relationship of Iem∝IPn,where n is the number of the pumping laser photons required to excite RE ions from the ground state to the emitting excited state.The slopes (n)of the linear fittings are 1.75 for green emission (2H11/2→4I15/2and4S3/2→4I15/2)and 1.90 for red emission (4F9/2→4I15/2),indicating that twophoton processes are required to populate the2H11/2,4S3/2and4F9/2emitting levels,respectively.

    Fig.5 (a) UC spectra of LuF3∶Yb3+,Er3+phosphors for different laser powers of 980 nm excitation;(b)Dependences of the UC intensities(Iem)of green (2H11/2,4S3/2)→4I15/2and red4F9/2→4I15/2 transitions on the 980 nm pumping laser power(Ip)for LuF3∶Yb3+,Er3+phosphors

    Fig.6 displays the energy levels of Yb3+and Er3+ions in LuF3∶Yb3+,Er3+micorcrystals aswell as the proposed UC mechanisms.As for Yb3+/Er3+codoped system under 980 nm excitation,the 980 nm laser photon excites the Yb3+ion from the2F7/2ground state to the2F5/2excited state.And the excited Yb3+ion in the2F5/2state transfers it excitation energy to one nearby Er3+ion.The Er3+ion at the ground4I15/2state is excited to the upper4F7/2state via two energy transfer (ET1and ET2)processes[34].Subsequently,the non-radiative relaxation process of4F7/2state populates two lower energy levels (2H11/2and4S3/2),resulting in the green (2H11/2→4I15/2and4S3/2→4I15/2)UC emissions.The weak red UC emission centered at 660 nm is originated from4F9/2→4I15/2transition.There exist two main possible pumping mechanisms for red emission.The first pumping mechanism is the nonradiative relaxation from the populated4S3/2state to the4F9/2state through multphonon interaction.In the second pumping mechanism,Er3+ion can be relaxed from4I11/2level to4I13/2level,and then excited to4F9/2state via ET3process.

    Fig.6 Energy level diagrams of Yb3+and Er3+ions and UC emission mechanism in LuF3∶Yb3+,Er3+phosphors

    2.3 Effect of temperature on UC emission and temperature-sensing behavior

    As already mentioned,UC bands centered at 523 and 539 nm arise from2H11/2→4I15/2and4S3/2→4I15/2transitions.The energy gap between the levels2H11/2and4S3/2of Er3+is around 568 cm-1,the state of2H11/2may also be populated from4S3/2by thermal excitation and the UC emission intensity ratio of emission band at 523 to 539 nm could change with the variable temperature,therefore it is could be used as optically temperature sensor for the present UC phosphors.In order to investigate the temperature sensing properties of as-prepared phosphors,the green UC emission spectra for LuF3∶10%Yb3+,2%Er3+phosphor at various temperature (from 293 to 573 K)are presented in Fig.7,in which the spectra are normalized to the emission peak at 539 nm.It is found that no remarkable shift in emission wavelength for the sample while the fluorescence intensity ratio (FIR)of UC emission from2H11/2→4I15/2to4S3/2→4I15/2increases with the rise of temperature.The relative population of the thermally coupled energy levels follows the Boltzmann distribution and the FIR of two emissions can be written as follows[35]:

    Fig.7 Temperature dependence of the green UC luminescence spectra of LuF3∶Yb3+,Er3+phosphor under 980 nm excitation

    where IHand ISare intensities (the integrated areas below the emission curves)for the upper (2H11/2→4I15/2)and lower (4S3/2→4I15/2)thermally coupled levels transitions,respectively.In general,N,g,ω,δ represent the number of ions,the degeneracy,the angular frequency,the emission cross section of fluorescence transitions from excited state (2H11/2and4S3/2)to the ground state(4I15/2),respectively. ΔE is the energy gap between the2H11/2and4S3/2levels,k is the Boltzmann constant,and T is the absolute temperature.B is the pre-exponential factor.

    The fluorescent intensity ratio (FIR)of these two UC emissions shows a remarkable dependence on the temperature (Fig.8a).According to the expression of the FIR,the value of Ln(FIR)versus the inverse absolute temperature (1/T)is plotted in Fig.8b.The linear fitting of the experimental data gave slope and intercept equal to 980.69 and 1.02,respectively.As a consequence,the energy gap ΔE and the pre-exponential constant are evaluated to be about 680 cm-1and 2.77,respectively.These two parameters are vital factors for the sensitivity (S)of temperature detection,as defined by the following equation[35]:

    where the term FIR is the symbol used for fluorescence intensity ratio.The calculated values of sensor sensitivity were plotted as a function of absolute temperature (Fig.8c)and found to be maximum about 15.3×10-4K-1at 490 K.The temperature sensitivity of LuF3∶Yb3+,Er3+phosphor is comparable to that (15.7×10-4K-1at 386 K)of LaF3∶Yb3+/Er3+phosphor[36].Therefore,the Yb3+/Er3+co-doped LuF3micorcrystals can be used as an efficient optical temperature sensor.

    Fig.8 Upconversion-based temperature-sensing behaviour of LuF3∶Yb3+,Er3+phosphor:(a)FIR relative to the temperature;(b)Monolog plot of the FIR as a function of the inverse absolute temperature;(c)Sensor sensitivity as a function of temperature

    3 Conclusions

    In summary,the LuF3∶Yb3+,Er3+microcrystals have been prepared by one-step hydrothermal method at 180℃for 21 h under pH=1.The intense visible UC luminescence of sample is clearly observed under 980 nm excitation.The mechanisms of UC lumine-scence and the changes of the emission intensity with Yb3+concentration or Er3+concentration are discussed.The transition mechanisms of the UC luminescence can be ascribed to a two-photon absorption process.The best doping concentration of LuF3for UC emission is about 10%Yb3+and 2%Er3+.The green UC emission bands observed around 523 (2H11/2→4I15/2)and 539 nm (4S3/2→4I15/2)have been utilized for optical thermometry via the fluorescence intensity ratio technique.The dependence of FIR for the sample LuF3∶10%Yb3+,2%Er3+with optimal composition on temperature were measured in the range of 293~573 K,and the sensitivities of sample reach the maximum 15.3×10-4K-1at 490 K.All these results suggest that Yb3+/Er3+co-doped LuF3phosphor materials can be explored UC fluorescence imaging and temperature measurements with high sensitivity.

    Acknowledgements:This work was financially supported by the National Natural Science Foundation of China(Grant No.51162012),the Science Program of the Education Office,Jiangxi Province (Grant No.GJJ160597)and the Major Project of Natural Science Foundation of Jiangxi Province (Grant No.20165ABC28010).

    [1]Auzel F.Chem.Rev.,2004,104:139-173

    [2]Downing E,Hesselink L,Ralston J,et al.Science,1996,273:1185-1189

    [3]Binnemans K.Chem.Rev.,2007,107:2592-2614

    [4]Cheng Y Y,Nattestad A,Schulze T F,et al.Chem.Sci.,2016,7:559-568

    [5]LI Shu-Quan(李樹全),LIN Jian-Ming(林建明),WU Ji-Huai(吳 季 懷),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào)),2009,25:60-64

    [6]LIAO Jin-Sheng(廖金生),SU Zhen-Yu(蘇振欲),ZHOU Dan(周單),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29:2351-2356

    [7]Chen Z G,Chen H L,Hu H.J.Am.Chem.Soc.,2008,130:3023-3029

    [8]Shang L,Dong S J,Nienhaus G U.Nano Today,2011,6:401-418

    [9]DU Xin-Chao(杜新超),HE Zhen-Quan(賀正 權(quán)),LIN Xiao(林 霄 ),et al.Acta Photonica Sin.(光 子 學(xué) 報(bào) ),2015,44:406003-406009

    [10]Zuo Q H,Luo L H,Yao Y J.J.Alloys Compd.,2015,632:711-716

    [11]Bao Y N,Xu X S,Wu J L,et al.Ceram.Int.,2016,42:12525-12530

    [12]Li X P,Wang X,Zhong H,et al.Ceram.Int.,2016,42:14710-14715

    [13]Marciniak L,Waszniewska K,Bednarkiewicz A,et al.J.Phys.Chem.C,2016,120:8877-8882

    [14]Ananias D,Paz F,Yufit D,et al.J.Am.Chem.Soc.,2015,137:3051-3058

    [15]Marciniak L,Prorok K,Francés-Soriano L,et al.Nanoscale,2016,8:5037-5042

    [16]Marciniak L,Bednarkiewicz A,Hreniak D,et al.J.Mater.Chem.C,2016,4:11284-11290

    [17]Vetrone F,Naccache R,Zamarron A,et al.ACS Nano,2010,4:3254-3258

    [18]Soni A K,Rai V K,Kumar S.Sens.Actuators B,2016,229:476-482

    [19]Yang X X,Fu Z L,Yang Y M,et al.J.Am.Ceram.Soc.,2015,98:2595-2600

    [20]Dong B,Cao B S,Feng Z Q,et al.Sens.Actuators,B,2012,165:34-37

    [21]Singh S K,Kumar K,Rai S B.Sens.Actuators,A,2009,149:16-20

    [22]Singh A K,Shahi P K,Rai S B,et al.RSC Adv.,2015,5:16067-16073

    [23]Ding M Y,Chen D Q,Lu C H,et al.Mater.Lett.,2017,189:5-8

    [24]Suo H,Zhao X Q,Zhang Z Y,et al.Chem.Eng.J.,2017,313:65-73

    [25]Sun X,Zhang Y W,Du Y P,et al.Chem.Eur.J.,2007,13:2320-2332

    [26]Singh A K,Kumar K,Pandey A C,et al.Spectrochim.Acta,Part A,2013,106:236-241

    [27]Wang X,Zhuang J,Peng Q,et al.Inorg.Chem.,2006,45:6661-6665

    [28]Yan B,Wu J H.J.Mater.Res.,2009,24:3050-3056

    [29]Hinojosa S,Meneses-Nava M A,Barbosa-Garcia O,et al.J.Lumin.,2003,102:694-698

    [30]Auzel F,Baldacchini G,Laversenne L,et al.Opt.Mater.,2003,24:103-109

    [31]Zhu H Y,Lin M,Jin G R,et al.J.Lumin.,2017,851:292-297

    [32]Guo C F,Ding X,Seoc H J,et al.J.Alloys Compd.,2011,509:4871-4874

    [33]Blasse G.Philips Res.Rep.,1969,24:131-44

    [34]Shi L S,Shen Q Y,Qiu Z Z.J.Lumin.,2014,148:94-97

    [35]Dong B,Cao B S,He Y Y.Adv.Mater.,2012,24:1987-1993

    [36]Cheng X R,Ma X C,Zhang H J,et al.Physica B,2017,521:270-274

    猜你喜歡
    微晶水熱理工大學(xué)
    昆明理工大學(xué)
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    水熱還是空氣熱?
    Li2O加入量對(duì)Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無(wú)模板水熱合成
    国产精品av视频在线免费观看| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 黄色视频,在线免费观看| 午夜福利视频1000在线观看| 国产91av在线免费观看| 伦精品一区二区三区| 12—13女人毛片做爰片一| 日韩制服骚丝袜av| 少妇裸体淫交视频免费看高清| 国产老妇伦熟女老妇高清| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美在线乱码| 久久热精品热| 色哟哟·www| 性色avwww在线观看| 麻豆av噜噜一区二区三区| 国产又黄又爽又无遮挡在线| av福利片在线观看| 看非洲黑人一级黄片| 国产精品爽爽va在线观看网站| 亚洲四区av| 日本在线视频免费播放| 久久鲁丝午夜福利片| 午夜福利在线在线| 国产成人福利小说| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 白带黄色成豆腐渣| 久久精品久久久久久噜噜老黄 | 久久精品影院6| 久久韩国三级中文字幕| 午夜精品国产一区二区电影 | 国产蜜桃级精品一区二区三区| 综合色丁香网| 国产精品久久久久久久久免| 久久久久久久久久成人| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| 麻豆成人午夜福利视频| 99热精品在线国产| 日本黄色视频三级网站网址| 亚洲av免费在线观看| 亚洲五月天丁香| 国产精品蜜桃在线观看 | 亚州av有码| 亚洲婷婷狠狠爱综合网| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 国内揄拍国产精品人妻在线| 国产精品久久视频播放| 中文在线观看免费www的网站| 亚洲av二区三区四区| 美女大奶头视频| 黄色视频,在线免费观看| 热99re8久久精品国产| 青春草视频在线免费观看| 美女脱内裤让男人舔精品视频 | 成年免费大片在线观看| 伦精品一区二区三区| 日日啪夜夜撸| 欧美性感艳星| 如何舔出高潮| 婷婷精品国产亚洲av| 一区福利在线观看| 日日摸夜夜添夜夜爱| 国产一级毛片在线| www.av在线官网国产| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 国产精品蜜桃在线观看 | 久久精品综合一区二区三区| 青春草国产在线视频 | 高清日韩中文字幕在线| 国模一区二区三区四区视频| 国产成人a区在线观看| 精品不卡国产一区二区三区| 国产一区亚洲一区在线观看| 午夜精品在线福利| 国产激情偷乱视频一区二区| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 青春草国产在线视频 | 床上黄色一级片| 精品欧美国产一区二区三| 又黄又爽又刺激的免费视频.| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区 | 日本免费a在线| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 亚洲精品乱码久久久久久按摩| 色综合站精品国产| 亚洲一区高清亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩在线观看h| 国产精品女同一区二区软件| 国产91av在线免费观看| 国产精品一区二区在线观看99 | 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 欧美在线一区亚洲| 又黄又爽又刺激的免费视频.| 你懂的网址亚洲精品在线观看 | 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 舔av片在线| av在线播放精品| 天美传媒精品一区二区| 亚洲av不卡在线观看| 精品免费久久久久久久清纯| 青青草视频在线视频观看| 国产精品久久视频播放| 99热6这里只有精品| 国产精品蜜桃在线观看 | 国产午夜精品论理片| 天堂影院成人在线观看| 国产在视频线在精品| 欧美日韩国产亚洲二区| 少妇丰满av| 最近中文字幕高清免费大全6| 国产一级毛片在线| 精品不卡国产一区二区三区| 国产成人福利小说| 免费看日本二区| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 国产成人影院久久av| 男女那种视频在线观看| 波多野结衣高清无吗| 亚洲最大成人av| 亚洲成a人片在线一区二区| 色5月婷婷丁香| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 观看免费一级毛片| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 日韩视频在线欧美| 久久人人精品亚洲av| 黄色视频,在线免费观看| 亚洲精品456在线播放app| 国产精品一区二区三区四区免费观看| 在线免费观看的www视频| 国内精品宾馆在线| 国产成人一区二区在线| 国产精品综合久久久久久久免费| 亚洲国产精品合色在线| 看免费成人av毛片| 亚洲人成网站在线播| 午夜爱爱视频在线播放| 久久精品综合一区二区三区| 有码 亚洲区| 偷拍熟女少妇极品色| 夜夜爽天天搞| 日本欧美国产在线视频| 精品一区二区三区视频在线| 欧美色欧美亚洲另类二区| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一区久久| 久久久久免费精品人妻一区二区| 99久久九九国产精品国产免费| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 成人三级黄色视频| 一本久久中文字幕| 97超碰精品成人国产| av免费观看日本| 国产成人a∨麻豆精品| 国产一区二区三区av在线 | 欧美高清成人免费视频www| 国产 一区精品| 18禁在线无遮挡免费观看视频| 老师上课跳d突然被开到最大视频| 成人毛片60女人毛片免费| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 亚洲精品色激情综合| 能在线免费观看的黄片| 久久精品国产亚洲av涩爱 | 国产在视频线在精品| 亚洲中文字幕一区二区三区有码在线看| 深夜精品福利| 特大巨黑吊av在线直播| 免费av不卡在线播放| 国产男人的电影天堂91| 亚洲欧美精品综合久久99| 级片在线观看| 国产女主播在线喷水免费视频网站 | 最后的刺客免费高清国语| 国内精品宾馆在线| 亚洲欧美清纯卡通| 99国产极品粉嫩在线观看| 日韩精品青青久久久久久| 日韩一本色道免费dvd| 亚洲欧美日韩无卡精品| 免费电影在线观看免费观看| 99热只有精品国产| 国产高清视频在线观看网站| 亚洲内射少妇av| 亚洲精品国产成人久久av| 我要看日韩黄色一级片| 免费搜索国产男女视频| 搡老妇女老女人老熟妇| 国产高清激情床上av| 最近的中文字幕免费完整| 亚洲无线在线观看| 精品人妻视频免费看| 男的添女的下面高潮视频| 在线a可以看的网站| 色综合色国产| 国产高清三级在线| a级一级毛片免费在线观看| 麻豆一二三区av精品| 特级一级黄色大片| 亚洲国产高清在线一区二区三| 你懂的网址亚洲精品在线观看 | 婷婷亚洲欧美| 国产精品一区二区性色av| 99国产极品粉嫩在线观看| 最好的美女福利视频网| 色噜噜av男人的天堂激情| 亚洲18禁久久av| 我要搜黄色片| 99riav亚洲国产免费| 少妇的逼好多水| 有码 亚洲区| 在线观看美女被高潮喷水网站| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 桃色一区二区三区在线观看| 直男gayav资源| 国内精品久久久久精免费| 成人永久免费在线观看视频| 小说图片视频综合网站| 久久精品人妻少妇| 日本色播在线视频| 变态另类丝袜制服| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 51国产日韩欧美| 特级一级黄色大片| 亚洲欧洲日产国产| 乱码一卡2卡4卡精品| 国产极品天堂在线| 午夜福利视频1000在线观看| 久久鲁丝午夜福利片| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 99久久久亚洲精品蜜臀av| av在线播放精品| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 一级黄色大片毛片| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 色视频www国产| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 日韩一区二区视频免费看| av免费观看日本| 乱系列少妇在线播放| 老熟妇乱子伦视频在线观看| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 亚洲自拍偷在线| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 99九九线精品视频在线观看视频| 午夜福利在线观看吧| 午夜福利在线观看吧| 亚洲欧美成人综合另类久久久 | 不卡一级毛片| 久久久成人免费电影| 日本免费a在线| 亚洲av免费高清在线观看| 麻豆精品久久久久久蜜桃| 欧美潮喷喷水| 国产午夜福利久久久久久| 免费av不卡在线播放| 日产精品乱码卡一卡2卡三| 国产成人精品婷婷| 成人午夜高清在线视频| 国产视频内射| 日本三级黄在线观看| 日本三级黄在线观看| 国产精品一二三区在线看| 韩国av在线不卡| 国产在视频线在精品| 99久久精品一区二区三区| 欧美+日韩+精品| 国产精品一区二区在线观看99 | 久久精品国产亚洲av香蕉五月| or卡值多少钱| 久久久国产成人免费| 在线播放国产精品三级| 亚洲欧美日韩东京热| 亚洲精品日韩在线中文字幕 | 桃色一区二区三区在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av熟女| 18+在线观看网站| 日韩三级伦理在线观看| 老师上课跳d突然被开到最大视频| 精品人妻视频免费看| 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 中文精品一卡2卡3卡4更新| 日韩高清综合在线| a级毛色黄片| 日韩一区二区视频免费看| 久久久久国产网址| 不卡视频在线观看欧美| 亚洲精品日韩在线中文字幕 | 欧美另类亚洲清纯唯美| 午夜免费男女啪啪视频观看| 波野结衣二区三区在线| 中文欧美无线码| 又粗又硬又长又爽又黄的视频 | 午夜久久久久精精品| 看十八女毛片水多多多| 国产一区二区在线观看日韩| 免费观看人在逋| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| av天堂中文字幕网| 在线观看一区二区三区| 一夜夜www| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 国产高清激情床上av| 97热精品久久久久久| 高清在线视频一区二区三区 | 一本精品99久久精品77| 欧美潮喷喷水| 久久久欧美国产精品| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 偷拍熟女少妇极品色| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 欧美区成人在线视频| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 亚洲人成网站高清观看| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 国产精品人妻久久久影院| 好男人视频免费观看在线| 亚洲精品国产成人久久av| 岛国在线免费视频观看| 91久久精品国产一区二区成人| 乱人视频在线观看| 久久这里只有精品中国| 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 少妇人妻一区二区三区视频| 少妇人妻一区二区三区视频| 日产精品乱码卡一卡2卡三| 99热这里只有是精品50| 日韩欧美国产在线观看| 欧美激情久久久久久爽电影| 国产极品天堂在线| 国产一区二区在线av高清观看| 寂寞人妻少妇视频99o| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 性插视频无遮挡在线免费观看| 国产美女午夜福利| 中文字幕制服av| 亚洲在线自拍视频| 男的添女的下面高潮视频| 亚洲欧美日韩无卡精品| 99久国产av精品国产电影| 日本撒尿小便嘘嘘汇集6| 免费观看在线日韩| 亚洲内射少妇av| 亚洲美女搞黄在线观看| 日韩,欧美,国产一区二区三区 | 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 国产av不卡久久| 成人综合一区亚洲| 色综合站精品国产| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 国产亚洲精品av在线| 日韩强制内射视频| 一进一出抽搐动态| 欧美3d第一页| 三级经典国产精品| 国产亚洲91精品色在线| 日韩一区二区三区影片| 欧美三级亚洲精品| 成人漫画全彩无遮挡| 日韩视频在线欧美| 日本免费一区二区三区高清不卡| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区成人| 男人狂女人下面高潮的视频| 亚洲国产精品合色在线| 身体一侧抽搐| 国产一区二区激情短视频| 99热这里只有精品一区| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 免费观看的影片在线观看| 99精品在免费线老司机午夜| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 国产精品,欧美在线| 亚洲国产欧美人成| 别揉我奶头 嗯啊视频| 国产极品精品免费视频能看的| 天美传媒精品一区二区| 别揉我奶头 嗯啊视频| 久久精品夜夜夜夜夜久久蜜豆| 高清在线视频一区二区三区 | 久久精品国产亚洲av涩爱 | 亚洲三级黄色毛片| 九九热线精品视视频播放| 91精品国产九色| 久久这里只有精品中国| 亚洲欧美日韩高清在线视频| 精品久久久久久久久亚洲| 成年av动漫网址| 日日撸夜夜添| 成熟少妇高潮喷水视频| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品| 99热网站在线观看| 中文在线观看免费www的网站| 国产高清视频在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲av.av天堂| 精品久久久久久久久久免费视频| 亚洲欧美成人综合另类久久久 | 亚洲av成人精品一区久久| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 国产一区二区激情短视频| 亚洲无线观看免费| 亚洲高清免费不卡视频| 亚洲性久久影院| 两个人视频免费观看高清| 欧美日韩综合久久久久久| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜 | 男女那种视频在线观看| 少妇的逼好多水| 亚洲天堂国产精品一区在线| 色综合站精品国产| 大香蕉久久网| 久久中文看片网| 99热精品在线国产| 日本av手机在线免费观看| 国产黄片美女视频| av视频在线观看入口| 国产熟女欧美一区二区| 简卡轻食公司| 国产乱人视频| 午夜福利成人在线免费观看| 久久中文看片网| 欧美成人精品欧美一级黄| 成人三级黄色视频| 十八禁国产超污无遮挡网站| 久久久久久大精品| 精品久久久噜噜| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 国产一区二区激情短视频| 欧美潮喷喷水| 一区二区三区四区激情视频 | 国产一区二区亚洲精品在线观看| 尾随美女入室| 少妇猛男粗大的猛烈进出视频 | 国产成人91sexporn| 日韩大尺度精品在线看网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av专区在线播放| 最好的美女福利视频网| 成人亚洲精品av一区二区| www.色视频.com| 日韩视频在线欧美| 免费av毛片视频| 联通29元200g的流量卡| 69人妻影院| 插逼视频在线观看| 免费人成视频x8x8入口观看| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 国产精品国产高清国产av| 久久久色成人| 哪个播放器可以免费观看大片| 尤物成人国产欧美一区二区三区| av免费在线看不卡| 日韩成人伦理影院| 亚洲高清免费不卡视频| 久久精品人妻少妇| 欧洲精品卡2卡3卡4卡5卡区| 国产国拍精品亚洲av在线观看| 亚洲图色成人| 综合色av麻豆| 在线a可以看的网站| 最近的中文字幕免费完整| 久久精品久久久久久噜噜老黄 | 成年版毛片免费区| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 亚洲国产精品久久男人天堂| 久久精品综合一区二区三区| 三级经典国产精品| 欧美xxxx性猛交bbbb| 听说在线观看完整版免费高清| 青春草视频在线免费观看| 看十八女毛片水多多多| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 少妇的逼好多水| 国产av麻豆久久久久久久| 久久久久久久久大av| 亚洲精品456在线播放app| 欧美日韩精品成人综合77777| 美女xxoo啪啪120秒动态图| 狂野欧美激情性xxxx在线观看| 国产片特级美女逼逼视频| 天堂影院成人在线观看| 国产精品不卡视频一区二区| 你懂的网址亚洲精品在线观看 | 男人舔女人下体高潮全视频| 国产精品久久久久久精品电影小说 | 久久鲁丝午夜福利片| 欧美zozozo另类| 亚洲av二区三区四区| 亚洲自拍偷在线| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 欧美色欧美亚洲另类二区| 日本五十路高清| 在线免费观看的www视频| 日本一二三区视频观看| 全区人妻精品视频| 人妻夜夜爽99麻豆av| 国产黄片视频在线免费观看| 在现免费观看毛片| 精品久久久久久久人妻蜜臀av| 长腿黑丝高跟| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 一级黄片播放器| 国产免费一级a男人的天堂| 精品人妻熟女av久视频| 最好的美女福利视频网| 午夜爱爱视频在线播放| av在线观看视频网站免费| a级毛色黄片| 日本免费一区二区三区高清不卡| 免费在线观看成人毛片| 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| av在线老鸭窝| 亚洲成人中文字幕在线播放| 欧美成人免费av一区二区三区| av天堂在线播放| 国产精品一区www在线观看| 国内精品一区二区在线观看| 黄片无遮挡物在线观看| 成人二区视频| 2021天堂中文幕一二区在线观| 国产精品蜜桃在线观看 | 精品无人区乱码1区二区| 亚洲精品久久久久久婷婷小说 | 成年版毛片免费区| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 91av网一区二区| 麻豆国产av国片精品| av.在线天堂| 1024手机看黄色片| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 国产男人的电影天堂91| 国产午夜精品论理片| 亚洲av第一区精品v没综合| 日韩人妻高清精品专区| 欧美色欧美亚洲另类二区| 99热只有精品国产| 国产精品电影一区二区三区| 天天躁日日操中文字幕| 在线a可以看的网站| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看| 99热全是精品| 亚洲精品久久久久久婷婷小说 | 丰满乱子伦码专区| 在线a可以看的网站| 亚洲欧美精品综合久久99|