• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成LuF3∶Yb3+,Er3+微晶及其上轉(zhuǎn)換發(fā)射與溫度傳感特性

    2018-03-14 06:36:06廖金生郭江飛黃海平溫和瑞
    關(guān)鍵詞:微晶水熱理工大學(xué)

    王 祺 廖金生 郭江飛 黃海平 溫和瑞

    (江西理工大學(xué),冶金與化學(xué)工程學(xué)院,贛州 341000)

    0 Introduction

    Rare-earth (RE)ion doped luminescence upconversion (UC)materials have attracted much attention owing to their wide application prospects in solid-state lasers[1],luminescence display panels[2-3],solar cells[4-6],biological labels[7],biological imaging[8],and optical temperature sensors[9-10].Recently,applying these UC materials as temperature sensing medium has attracted great attention[11-17].In this application,the optical temperature sensors based on the fluorescence intensity ratio (FIR)technique as a noninvasive thermometry are considered to be an alternative candidate to replace traditional temperature sensors because they can be operated in some harsh environments such as electrical power stations,building fire detection,oil refineries.Furthermore,the FIR technique which takes the advantage of temperature dependence of two thermally coupled energy levels of RE ions,can reduce the dependence of measurement conditions and improve the sensitivity[18-19].

    Erbium ion (Er3+)has attracted much attention due to its unique electric energy level structures.The lifetimes of some intermediate energy levels of Er3+are long enough.Thus,Er3+ion is a promising competitor for UC luminescence center.Green UC luminescence of Er3+ion hold a pair of thermally coupled emission levels (2H11/2and4S3/2),whose emission intensity ratio would vary with environment temperature.It is well known that the2H11/2→4I15/2transition of Er3+is hypersensitive,and the temperature sensitivityofthe materials varies remarkably for Er3+ions in different hosts[8-24].Therefore,finding a host capable to provide suitable crystal field environment surrounding Er3+dopant to enhance radiative probability of the2H11/2→4I15/2hypersensitive transition is a key for obtaining high temperature sensitivity of Er3+.

    Binary rare earth fluorides (REF3)have been considered as an excellent luminescent rigid host matrix for various optically active lanthanide ions(Ln3+),because they normally possess a high refractive index and low phonon energy (<400 cm-1),which leads to the low probability of nonradiative decay and consequently the luminescence quantum yields are usually higher than in oxide hosts and in most inorganic matrixes.Recently,several chemical synthesis techniques to prepare Ln3+doped REF3phosphors are available such as thermal decomposition[25],coprecipitation reaction[26],hydrothermal method[27].Among all the methods for the synthesis of Ln3+doped REF3phosphors,hydrothermal method has been proven to be an effective and convenient wet chemistry technique.During the hydrothermal process,chemical reactions are carried out under autogenous pressure and at temperatures above the boiling point of water in the autoclave[28].Moreover,the size distribution of particles,phase compositions,and morphologies can be easily controlled by modifying the reaction conditions such as reaction temperature,pH value,and the starting materials.However,to the best of our knowledge,there is little or no investigation on the UC emission and temperature sensing performances of LuF3∶Yb3+,Er3+microcrystals prepared by hydrothermal method without any surfactant. We report here the hydrothermal synthesis of the Yb3+/Er3+co-doped LuF3microcrystals and determine how synthetic parameter can influence the textural and optical properties of the resulting UC materials.The luminescence properties of LuF3∶Yb3+,Er3+microcrystals are investigated by changing doping concentrations of Yb3+(and Er3+)ions in the host.Additionally,their thermometry behaviors have also been illustrated by FIR technique.

    1 Experimental

    1.1 Sample preparation

    All the chemicals of Lu2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),NaF (AR),HNO3and NaOH were used as the starting materials without any further purification.LuF3∶Yb3+,Er3+samples for different Yb3+doping concentration (5%~15%)with a fixed Er3+concentration (2%)and Er3+doping concentration (1%~5%)with a fixed Yb3+concentration (10%)were prepared by the hydrothermal method without employing any surfactants.A typical procedure for the LuF3∶Yb3+,Er3+(Yb10%,Er2%)sample synthesis as an example is described as follows:0.350 2 g Lu2O3,0.039 4 g Yb2O3and 0.007 6 g Er2O3were first dissolved in dilute nitric acid under heating.After the Lu2O3,Yb2O3and Er2O3were completely dissolved,the extra nitrite acid was removed by evaporation.Then deionized water was added to obtain Lu(NO3)3,Yb(NO3)3and Er(NO3)3mixed solution.Meanwhile 0.335 9 g NaF (nRE(NO3)3∶nNaF=1∶4)was dissolved in deionzed water while stirring.Second,the obtained NaF solution was slowly added into the above solution with magnetic stirring.Afterward the pH value of the solution was adjusted via using nitric acid or NaOH.The resultant milky colloidal suspension was transferred into a 100 mL Teflon-lined stainless-steel autoclave,sealed and heated to 180℃for 21 h.Finally,the autoclave was cooled to room temperature naturally,and the products were deposited at the bottom of vessel.The precipitate was separated by centrifugation and washed three times with absolute alcohol.After being dried in air at 80℃for 12 h,the final powder products were obtained.Other phosphor samples were prepared by the same procedure,except for changing Ln(NO3)3and the pH value.

    1.2 Characterization

    X-ray diffractometer (XRD)patterns of samples were examined on a X′Pert PRO (PANalytical)powder diffractometer with Cu Kα (λ=0.150 465 nm,40 kV,40 mA)radiation to identify the crystal phase.The XRD data within the range from 10°to 80°were recorded in a scanning mode with a step size of 0.02°and a step scanning time of 8 s for Rietveld refinement.The morphology of the samples was characterized by a JSM6700F scanning electron microscope (SEM)operated at 10 kV and a JEOL-2010 transmission electron microscope (TEM)equipped with the energy dispersive X-ray spectrum (EDS)operated at 200 kV.In order to investigate the temperature dependence of theUC emission,thesamplewasplaced in a temperature-controlled copper cylinder, and its temperature was increased from 293 to 573 K.The UC spectra of sample at various temperatures were obtained using a Fluorolog-3 double monochromator equipped with a Hamamatsu R928 Photomultiplier under the excitation of a 980 nm diode laser with 150 mW (the power density is about 3 W·cm-2).

    2 Results and discussion

    2.1 Effect of the pH for solution on the crystal structure

    Fig.1 XRD patterns for as-obtained sample with different pH values;Standard data for LuF3(PDF No.32-0612)is also presented in the figure

    The crystallinity and phase purity of the asprepared samples are examined with XRD.Fig.1 shows XRD patterns of the as-obtained samples at 180℃for 21 h with different pH values in comparison to the standard card.As shown in Fig.1,it is obvious that all diffraction peaks of the product obtained at the mixed solution of pH=1 could be clearly indexed to the pure orthorhombic phase LuF3(PDF No.32-0612).When the pH value of the mixed solution is 3,it is clearly seen that other impurity phase(hexagonal NaLuF4PDF No.27-0726)emerged.With the pH value of the mixed solution continuing to increase to 7,it is clearly seen that NaLuF4is the main phase.With the pH value of the mixed solution increasing until 13,it is clearly seen that the diffraction peaks of the product matched well with the standard data of monoclinic LuO(OH)(PDF No.01-072-0928).The above-stated results indicate that the pH value is very important for preparing the pure orthorhombic phase LuF3.

    Fig.2 XRD refinement result for the LuF3∶10%Yb,2%Er sample,showing the Bragg reflection positions,the observed and calculated XRD profiles,and the difference between the observed and calculated patterns

    Rietveld refinement is an effective method to analyze the position of atoms in a primitive cell.In order to evaluate the structural parameters of LuF3∶10%Yb3+,2%Er3+,structural refinement was carried out by the TOPAS (total pattern analysis solutions)program using the Rietveld method.Fig.2 gives the experimental and refined XRD patterns of the LuF3∶10%Yb3+,2%Er3+sample.The black crosses and red solid line represent the experimental and calculated patterns,respectively.The pink vertical lines show the positions of the simulated diffraction patterns.The difference between the experimental and calculated results is plotted by the blue line at the bottom.By comparing the calculated data with the experimental data,we find that each peak is in good agreement.There is no impurity phase found in the samples,which reveals that it is a good single phase.The Rietveld refinement analysis indicates the values(Rp=5.28%and Rwp=6.77%,where Rpis the residual obtained by directly calculating the XRD spectrum calculated from the model structure and the experimental data and Rwpis the weight to specific position,which are within the accepted error range,indicating that the refinement results and the above assumption are reliable.According to the literature,the Yb3+and Er3+ions occupy the site of Lu3+ions.In order to further evaluate the occupying sites of the doping ions of Yb3+and Er3+,structural refinement was also carried out on LuF3∶10%Yb3+,2%Er3+,as shown in Fig.2.The resulting crystallographic data of LuF3∶10%Yb3+,2%Er3+are summarized in Table 1.The atomic coordinates and site occupancy fraction (SOF)are presented in Table 2.

    Table 1 Crystal structural data and lattice parameters for LuF3∶10%Yb,2%Er

    A low-magnification SEM image (Fig.3a)of the LuF3∶10%Yb3+,2%Er3+sample shows that the morphology is octahedral-like structure with good uniformity and dispersity.Fig.3b a high magnification SEM image of the prepared powders.As can be seen in these images,the LuF3∶10%Yb3+,2%Er3+sample show smooth and the particle size is about 4.5 μm.Morphological observation by transmission electron microscopy (TEM)is also shown in Fig.3c.The TEM image of the Yb3+/Er3+co-doped LuF3sample indicates the particle size is 4.5 μm,which accords well with the result of SEM.Combining with the high resolutionTEM image (HRTEM)(Fig.3d),it can be clearly seen that the lattice fringes show the imaging characteristics in which the orthorhombic structure LuF3crystal where the interplanar spacing of 0.338 4 nm corresponds to the distance of the (020)plane.The EDS was used to further characterize the chemical composition of the as-prepared product,and the results shown in Fig.3e confirm that element ratios consist with the chemical formula of Yb3+/Er3+codoped LuF3sample for 10%Yb3+and 2%Er3+,with nYb∶nEr∶nLu=5∶1∶44.The results confirm that Yb3+and Er3+ions have been effectively incorporated into the LuF3host lattice,agreeing with the XRD analysis above.The above results indicate that the LuF3∶Yb3+,Er3+micorcrystals can be successfully obtained by one-step hydrothermal method.

    Table 2 Atomic coordinates and site occupancy fraction(SOF)for LuF3∶10%Yb,2%Er

    Fig.3 Low- (a)and high-magnification (b)SEM images of LuF3∶10%Yb3+,2%Er3+sample;(c)TEM image of LuF3:10%Yb3+,2%Er3+sample;(d)HRTEM image of LuF3∶10%Yb3+,2%Er3+sample;(e)EDS data taken from a single particle

    2.2 UC luminescence studies

    To investigate influence of the synthesis parameter (pH value)on UC emission of as-obtained samples,the UC emission spectra of the as-obtained samples with different pH values are shown in Fig.4a.It is obvious that green and red UC emissions of the product obtained at the mixed solution of pH=1 is strongest among those of all pH values.When the pH value of the mixed solution is 3,it is clearly seen that UC emission obviously decrease and the relative intensity of green and red light is opposite compared with that of pH=1,which is due to other impurity phase (NaLuF4)emerged.The other impurity phase leads to luminescence quenching.With the increase of the pH value of the mixed solution,UC emissions of the products continually decrease.The increase of the concentration of the other impurity will further lead to luminescence quenching.The above-stated results indicate that the pH value as synthesis parameter is very important for obtaining strong UC emission.

    Fig.4 UC emission spectra of the LuF3∶Yb3+,Er3+samples for(a)different pH values,(b)different Yb3+concentrations with a fixed 2%Er3+and different Er3+concentrations with a fixed 10%Yb3+ (c)under 980 nm excitation

    In order to investigate concentration quenching of Yb3+/Er3+co-doped LuF3,Fig.4b and 4c show the dependence of the UC luminescence spectra of the Yb3+/Er3+co-doped LuF3phosphors on the sensitizer(Yb3+)and activator (Er3+)concentrations,respectively.Intense green emission at 523 and 539 nm (2H11/2→4I15/2and4S3/2→4I15/2transitions of Er3+)and weak red emission at 660 nm (4F9/2→4I15/2transition of Er3+)are observed in the emission spectra.As the concentrations of Er3+are fixed at 2%,the green emission intensity becomes stronger with the increasing of Yb3+content and reaches a maximum at 10%in the range of 5%~15%,which is shown in Fig.4b.The concentration quenching effect appears in this system and results in intensity decreasing as the concentration of Yb3+over 10%.This is believed to be due to the onset of the quenching effect that transfers the excitation of Er3+back to Yb3+and self-quenching in high-Yb3+doping concentration[29-31].As the concentrations of Yb3+are fixed at 10%,the green emission intensity becomes stronger with the increasing of Er3+content and reaches a maximum at 2%in the range of 1%~5% (Fig.4c).The concentration quenching effect is caused by the cross-relaxation process among Er3+ions.The concentration quenching will not occur at low concentration,because the distance between identical Er3+ions is so large that the energy migration is hampered[32].With the increase of the Er3+concentration,the average distance between Er3+ions become shorter and the energy transferbecome convenient.The critical distance of which can prevent the energy transfer happening can be calculated by the following formula[33]:Rc=2[3V/(4πNXc)]1/3,where V is the volume of the unit cell,Xcis the critical concentration and N is the number of available crystallographic sites occupied by the activator ions in the unit cell.The values of V and N for the crystalline LuF3(orthorhombic system,a=0.614 97 nm,b=0.677 08 nm,c=0.448 13 nm,Z=4,V=abc,N=Z)are 0.186 595 nm3and 4,respectively.Considering the above optimum concentration as the critical concentration Xc,the Rcfor Er3+is 1.645 4 nm in the LuF3∶10%Yb3+,2%Er3+phosphors.

    In order to investigate the UC mechanism,pump power-dependence of green and red UC emission spectra in LuF3∶Yb3+,Er3+micorcrystals was measured and displayed in a logarithmic scale (Fig.5).The emission intensity Iemdepends on the excitation power IPfollowing to the relationship of Iem∝IPn,where n is the number of the pumping laser photons required to excite RE ions from the ground state to the emitting excited state.The slopes (n)of the linear fittings are 1.75 for green emission (2H11/2→4I15/2and4S3/2→4I15/2)and 1.90 for red emission (4F9/2→4I15/2),indicating that twophoton processes are required to populate the2H11/2,4S3/2and4F9/2emitting levels,respectively.

    Fig.5 (a) UC spectra of LuF3∶Yb3+,Er3+phosphors for different laser powers of 980 nm excitation;(b)Dependences of the UC intensities(Iem)of green (2H11/2,4S3/2)→4I15/2and red4F9/2→4I15/2 transitions on the 980 nm pumping laser power(Ip)for LuF3∶Yb3+,Er3+phosphors

    Fig.6 displays the energy levels of Yb3+and Er3+ions in LuF3∶Yb3+,Er3+micorcrystals aswell as the proposed UC mechanisms.As for Yb3+/Er3+codoped system under 980 nm excitation,the 980 nm laser photon excites the Yb3+ion from the2F7/2ground state to the2F5/2excited state.And the excited Yb3+ion in the2F5/2state transfers it excitation energy to one nearby Er3+ion.The Er3+ion at the ground4I15/2state is excited to the upper4F7/2state via two energy transfer (ET1and ET2)processes[34].Subsequently,the non-radiative relaxation process of4F7/2state populates two lower energy levels (2H11/2and4S3/2),resulting in the green (2H11/2→4I15/2and4S3/2→4I15/2)UC emissions.The weak red UC emission centered at 660 nm is originated from4F9/2→4I15/2transition.There exist two main possible pumping mechanisms for red emission.The first pumping mechanism is the nonradiative relaxation from the populated4S3/2state to the4F9/2state through multphonon interaction.In the second pumping mechanism,Er3+ion can be relaxed from4I11/2level to4I13/2level,and then excited to4F9/2state via ET3process.

    Fig.6 Energy level diagrams of Yb3+and Er3+ions and UC emission mechanism in LuF3∶Yb3+,Er3+phosphors

    2.3 Effect of temperature on UC emission and temperature-sensing behavior

    As already mentioned,UC bands centered at 523 and 539 nm arise from2H11/2→4I15/2and4S3/2→4I15/2transitions.The energy gap between the levels2H11/2and4S3/2of Er3+is around 568 cm-1,the state of2H11/2may also be populated from4S3/2by thermal excitation and the UC emission intensity ratio of emission band at 523 to 539 nm could change with the variable temperature,therefore it is could be used as optically temperature sensor for the present UC phosphors.In order to investigate the temperature sensing properties of as-prepared phosphors,the green UC emission spectra for LuF3∶10%Yb3+,2%Er3+phosphor at various temperature (from 293 to 573 K)are presented in Fig.7,in which the spectra are normalized to the emission peak at 539 nm.It is found that no remarkable shift in emission wavelength for the sample while the fluorescence intensity ratio (FIR)of UC emission from2H11/2→4I15/2to4S3/2→4I15/2increases with the rise of temperature.The relative population of the thermally coupled energy levels follows the Boltzmann distribution and the FIR of two emissions can be written as follows[35]:

    Fig.7 Temperature dependence of the green UC luminescence spectra of LuF3∶Yb3+,Er3+phosphor under 980 nm excitation

    where IHand ISare intensities (the integrated areas below the emission curves)for the upper (2H11/2→4I15/2)and lower (4S3/2→4I15/2)thermally coupled levels transitions,respectively.In general,N,g,ω,δ represent the number of ions,the degeneracy,the angular frequency,the emission cross section of fluorescence transitions from excited state (2H11/2and4S3/2)to the ground state(4I15/2),respectively. ΔE is the energy gap between the2H11/2and4S3/2levels,k is the Boltzmann constant,and T is the absolute temperature.B is the pre-exponential factor.

    The fluorescent intensity ratio (FIR)of these two UC emissions shows a remarkable dependence on the temperature (Fig.8a).According to the expression of the FIR,the value of Ln(FIR)versus the inverse absolute temperature (1/T)is plotted in Fig.8b.The linear fitting of the experimental data gave slope and intercept equal to 980.69 and 1.02,respectively.As a consequence,the energy gap ΔE and the pre-exponential constant are evaluated to be about 680 cm-1and 2.77,respectively.These two parameters are vital factors for the sensitivity (S)of temperature detection,as defined by the following equation[35]:

    where the term FIR is the symbol used for fluorescence intensity ratio.The calculated values of sensor sensitivity were plotted as a function of absolute temperature (Fig.8c)and found to be maximum about 15.3×10-4K-1at 490 K.The temperature sensitivity of LuF3∶Yb3+,Er3+phosphor is comparable to that (15.7×10-4K-1at 386 K)of LaF3∶Yb3+/Er3+phosphor[36].Therefore,the Yb3+/Er3+co-doped LuF3micorcrystals can be used as an efficient optical temperature sensor.

    Fig.8 Upconversion-based temperature-sensing behaviour of LuF3∶Yb3+,Er3+phosphor:(a)FIR relative to the temperature;(b)Monolog plot of the FIR as a function of the inverse absolute temperature;(c)Sensor sensitivity as a function of temperature

    3 Conclusions

    In summary,the LuF3∶Yb3+,Er3+microcrystals have been prepared by one-step hydrothermal method at 180℃for 21 h under pH=1.The intense visible UC luminescence of sample is clearly observed under 980 nm excitation.The mechanisms of UC lumine-scence and the changes of the emission intensity with Yb3+concentration or Er3+concentration are discussed.The transition mechanisms of the UC luminescence can be ascribed to a two-photon absorption process.The best doping concentration of LuF3for UC emission is about 10%Yb3+and 2%Er3+.The green UC emission bands observed around 523 (2H11/2→4I15/2)and 539 nm (4S3/2→4I15/2)have been utilized for optical thermometry via the fluorescence intensity ratio technique.The dependence of FIR for the sample LuF3∶10%Yb3+,2%Er3+with optimal composition on temperature were measured in the range of 293~573 K,and the sensitivities of sample reach the maximum 15.3×10-4K-1at 490 K.All these results suggest that Yb3+/Er3+co-doped LuF3phosphor materials can be explored UC fluorescence imaging and temperature measurements with high sensitivity.

    Acknowledgements:This work was financially supported by the National Natural Science Foundation of China(Grant No.51162012),the Science Program of the Education Office,Jiangxi Province (Grant No.GJJ160597)and the Major Project of Natural Science Foundation of Jiangxi Province (Grant No.20165ABC28010).

    [1]Auzel F.Chem.Rev.,2004,104:139-173

    [2]Downing E,Hesselink L,Ralston J,et al.Science,1996,273:1185-1189

    [3]Binnemans K.Chem.Rev.,2007,107:2592-2614

    [4]Cheng Y Y,Nattestad A,Schulze T F,et al.Chem.Sci.,2016,7:559-568

    [5]LI Shu-Quan(李樹全),LIN Jian-Ming(林建明),WU Ji-Huai(吳 季 懷),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào)),2009,25:60-64

    [6]LIAO Jin-Sheng(廖金生),SU Zhen-Yu(蘇振欲),ZHOU Dan(周單),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29:2351-2356

    [7]Chen Z G,Chen H L,Hu H.J.Am.Chem.Soc.,2008,130:3023-3029

    [8]Shang L,Dong S J,Nienhaus G U.Nano Today,2011,6:401-418

    [9]DU Xin-Chao(杜新超),HE Zhen-Quan(賀正 權(quán)),LIN Xiao(林 霄 ),et al.Acta Photonica Sin.(光 子 學(xué) 報(bào) ),2015,44:406003-406009

    [10]Zuo Q H,Luo L H,Yao Y J.J.Alloys Compd.,2015,632:711-716

    [11]Bao Y N,Xu X S,Wu J L,et al.Ceram.Int.,2016,42:12525-12530

    [12]Li X P,Wang X,Zhong H,et al.Ceram.Int.,2016,42:14710-14715

    [13]Marciniak L,Waszniewska K,Bednarkiewicz A,et al.J.Phys.Chem.C,2016,120:8877-8882

    [14]Ananias D,Paz F,Yufit D,et al.J.Am.Chem.Soc.,2015,137:3051-3058

    [15]Marciniak L,Prorok K,Francés-Soriano L,et al.Nanoscale,2016,8:5037-5042

    [16]Marciniak L,Bednarkiewicz A,Hreniak D,et al.J.Mater.Chem.C,2016,4:11284-11290

    [17]Vetrone F,Naccache R,Zamarron A,et al.ACS Nano,2010,4:3254-3258

    [18]Soni A K,Rai V K,Kumar S.Sens.Actuators B,2016,229:476-482

    [19]Yang X X,Fu Z L,Yang Y M,et al.J.Am.Ceram.Soc.,2015,98:2595-2600

    [20]Dong B,Cao B S,Feng Z Q,et al.Sens.Actuators,B,2012,165:34-37

    [21]Singh S K,Kumar K,Rai S B.Sens.Actuators,A,2009,149:16-20

    [22]Singh A K,Shahi P K,Rai S B,et al.RSC Adv.,2015,5:16067-16073

    [23]Ding M Y,Chen D Q,Lu C H,et al.Mater.Lett.,2017,189:5-8

    [24]Suo H,Zhao X Q,Zhang Z Y,et al.Chem.Eng.J.,2017,313:65-73

    [25]Sun X,Zhang Y W,Du Y P,et al.Chem.Eur.J.,2007,13:2320-2332

    [26]Singh A K,Kumar K,Pandey A C,et al.Spectrochim.Acta,Part A,2013,106:236-241

    [27]Wang X,Zhuang J,Peng Q,et al.Inorg.Chem.,2006,45:6661-6665

    [28]Yan B,Wu J H.J.Mater.Res.,2009,24:3050-3056

    [29]Hinojosa S,Meneses-Nava M A,Barbosa-Garcia O,et al.J.Lumin.,2003,102:694-698

    [30]Auzel F,Baldacchini G,Laversenne L,et al.Opt.Mater.,2003,24:103-109

    [31]Zhu H Y,Lin M,Jin G R,et al.J.Lumin.,2017,851:292-297

    [32]Guo C F,Ding X,Seoc H J,et al.J.Alloys Compd.,2011,509:4871-4874

    [33]Blasse G.Philips Res.Rep.,1969,24:131-44

    [34]Shi L S,Shen Q Y,Qiu Z Z.J.Lumin.,2014,148:94-97

    [35]Dong B,Cao B S,He Y Y.Adv.Mater.,2012,24:1987-1993

    [36]Cheng X R,Ma X C,Zhang H J,et al.Physica B,2017,521:270-274

    猜你喜歡
    微晶水熱理工大學(xué)
    昆明理工大學(xué)
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    水熱還是空氣熱?
    Li2O加入量對(duì)Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無(wú)模板水熱合成
    xxxwww97欧美| 俄罗斯特黄特色一大片| 亚洲自拍偷在线| 日韩欧美国产一区二区入口| 久久精品国产自在天天线| 亚洲精品粉嫩美女一区| 日韩有码中文字幕| 波多野结衣巨乳人妻| 色哟哟哟哟哟哟| 午夜a级毛片| 亚洲av一区综合| 国产美女午夜福利| 国产伦精品一区二区三区四那| 日韩欧美在线二视频| h日本视频在线播放| 在线观看66精品国产| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线观看免费| ponron亚洲| 午夜福利18| 在线观看一区二区三区| 久久久久久久久大av| 欧美黄色片欧美黄色片| 欧美性猛交黑人性爽| 免费观看人在逋| 国产成人福利小说| 在线免费观看不下载黄p国产 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲av免费高清在线观看| 99久久无色码亚洲精品果冻| 免费观看的影片在线观看| 热99re8久久精品国产| 最新在线观看一区二区三区| 欧美另类亚洲清纯唯美| 久久伊人香网站| 人妻丰满熟妇av一区二区三区| 99久久99久久久精品蜜桃| 日韩精品中文字幕看吧| 亚洲电影在线观看av| av天堂在线播放| 国产精品av视频在线免费观看| 国产精品一及| 免费观看的影片在线观看| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| 男女视频在线观看网站免费| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 免费观看的影片在线观看| 久久草成人影院| 精品久久久久久久久久久久久| 国产精品99久久久久久久久| 精品国产亚洲在线| 国产av不卡久久| 好男人在线观看高清免费视频| 99热这里只有是精品50| netflix在线观看网站| 国产成人欧美在线观看| 搡老熟女国产l中国老女人| 在线播放国产精品三级| 99久久精品一区二区三区| 又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 亚洲自拍偷在线| 88av欧美| 国产黄色小视频在线观看| 亚洲五月婷婷丁香| 99久久精品国产亚洲精品| 乱码一卡2卡4卡精品| 欧美+日韩+精品| 色哟哟哟哟哟哟| 国产精品av视频在线免费观看| 天美传媒精品一区二区| 午夜精品久久久久久毛片777| 日韩 亚洲 欧美在线| 久久国产精品人妻蜜桃| 日本黄大片高清| 欧美黄色片欧美黄色片| 一级黄片播放器| 亚洲三级黄色毛片| av中文乱码字幕在线| 乱人视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 国产欧美日韩精品亚洲av| 久99久视频精品免费| 国产伦精品一区二区三区四那| 97碰自拍视频| 午夜福利免费观看在线| 成人鲁丝片一二三区免费| 免费看光身美女| 婷婷色综合大香蕉| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 亚洲最大成人中文| 精品乱码久久久久久99久播| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 精品久久久久久久久亚洲 | 亚洲久久久久久中文字幕| 精品久久久久久,| 亚洲中文字幕一区二区三区有码在线看| 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 国产亚洲av嫩草精品影院| 99热这里只有精品一区| 久久久久久久久中文| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 变态另类成人亚洲欧美熟女| 在线观看av片永久免费下载| 国产不卡一卡二| 国产精品女同一区二区软件 | 狂野欧美白嫩少妇大欣赏| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人精品一区久久| 亚洲,欧美,日韩| 国产伦一二天堂av在线观看| 亚洲成人久久性| 国产高清激情床上av| 精品久久国产蜜桃| 久久久久国内视频| 精品人妻熟女av久视频| 亚洲avbb在线观看| 麻豆一二三区av精品| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 亚洲av一区综合| 国产中年淑女户外野战色| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 亚洲七黄色美女视频| 热99re8久久精品国产| 国产精品野战在线观看| 欧美日韩黄片免| 免费av毛片视频| 国产高清有码在线观看视频| 99久久精品国产亚洲精品| 午夜视频国产福利| 日本黄大片高清| 丰满人妻一区二区三区视频av| 老鸭窝网址在线观看| 久久精品国产99精品国产亚洲性色| 小蜜桃在线观看免费完整版高清| 网址你懂的国产日韩在线| 日本免费一区二区三区高清不卡| 亚洲av.av天堂| 亚洲无线在线观看| av视频在线观看入口| 亚洲国产色片| 国产精品永久免费网站| 国产精品99久久久久久久久| 嫩草影视91久久| 日韩欧美一区二区三区在线观看| 有码 亚洲区| 色精品久久人妻99蜜桃| 女人被狂操c到高潮| 欧美激情国产日韩精品一区| 91字幕亚洲| 亚洲av.av天堂| 日韩av在线大香蕉| 男女视频在线观看网站免费| 亚洲欧美日韩高清专用| av黄色大香蕉| 国产毛片a区久久久久| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 国产主播在线观看一区二区| 亚洲18禁久久av| 老鸭窝网址在线观看| 欧美黄色淫秽网站| 国产精品一区二区免费欧美| 成人国产综合亚洲| 中文字幕av成人在线电影| 日韩中字成人| or卡值多少钱| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清| 国产在视频线在精品| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 88av欧美| 亚洲欧美清纯卡通| 国产黄片美女视频| 亚洲国产精品999在线| 亚洲内射少妇av| 亚洲欧美日韩高清专用| 成人美女网站在线观看视频| 亚洲午夜理论影院| 最好的美女福利视频网| 国产欧美日韩一区二区三| 精品一区二区三区视频在线| 久久久精品大字幕| 国产熟女xx| 日本成人三级电影网站| 婷婷色综合大香蕉| 一夜夜www| 最近中文字幕高清免费大全6 | 3wmmmm亚洲av在线观看| 精品乱码久久久久久99久播| 最后的刺客免费高清国语| 别揉我奶头 嗯啊视频| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 国产高清激情床上av| 国产免费一级a男人的天堂| 他把我摸到了高潮在线观看| a在线观看视频网站| 亚洲欧美精品综合久久99| av在线老鸭窝| 9191精品国产免费久久| 欧美一区二区精品小视频在线| 国产主播在线观看一区二区| 性色av乱码一区二区三区2| 久久性视频一级片| 国产精品嫩草影院av在线观看 | 成年女人永久免费观看视频| 亚洲成av人片免费观看| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 日韩成人在线观看一区二区三区| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 99热精品在线国产| 91午夜精品亚洲一区二区三区 | 亚洲精品日韩av片在线观看| 亚洲熟妇中文字幕五十中出| 精品人妻1区二区| 亚洲国产高清在线一区二区三| 波多野结衣高清作品| 欧美色视频一区免费| 国产精品野战在线观看| 免费看a级黄色片| 亚洲av日韩精品久久久久久密| 亚洲成av人片免费观看| 级片在线观看| 亚洲第一区二区三区不卡| 欧美bdsm另类| 一区二区三区免费毛片| 内地一区二区视频在线| 色综合婷婷激情| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 欧美中文日本在线观看视频| 久久久精品大字幕| 亚洲真实伦在线观看| 成年女人永久免费观看视频| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 1000部很黄的大片| eeuss影院久久| 乱人视频在线观看| 日韩有码中文字幕| 9191精品国产免费久久| 久久久久久九九精品二区国产| 亚洲av.av天堂| 欧美成狂野欧美在线观看| 成人鲁丝片一二三区免费| 日韩国内少妇激情av| 婷婷色综合大香蕉| 久久久久九九精品影院| 最近最新中文字幕大全电影3| 日本成人三级电影网站| 搡老岳熟女国产| 日本免费a在线| 美女 人体艺术 gogo| 久久久久久久久中文| 国产高清视频在线播放一区| 欧美一区二区国产精品久久精品| 很黄的视频免费| 成人美女网站在线观看视频| 国产乱人伦免费视频| 人人妻人人澡欧美一区二区| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 日本成人三级电影网站| 国产av不卡久久| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 丰满的人妻完整版| 99在线视频只有这里精品首页| 在线播放无遮挡| 日韩中字成人| 性插视频无遮挡在线免费观看| 国产高清三级在线| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 老司机深夜福利视频在线观看| 免费观看的影片在线观看| 亚洲美女搞黄在线观看 | 性色av乱码一区二区三区2| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| av在线天堂中文字幕| 精品日产1卡2卡| 又紧又爽又黄一区二区| 有码 亚洲区| 亚洲第一欧美日韩一区二区三区| .国产精品久久| 黄片小视频在线播放| 久久性视频一级片| 国产伦在线观看视频一区| 一进一出好大好爽视频| 国产成人av教育| 九九在线视频观看精品| 中国美女看黄片| 少妇高潮的动态图| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 黄片小视频在线播放| 国产精品永久免费网站| 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 一a级毛片在线观看| 又爽又黄无遮挡网站| 亚洲 国产 在线| 一级作爱视频免费观看| 亚洲成人久久性| 亚洲av免费高清在线观看| 午夜两性在线视频| 久久九九热精品免费| 亚洲人成网站在线播放欧美日韩| 成人无遮挡网站| 99久久九九国产精品国产免费| 嫩草影院新地址| 国产亚洲精品综合一区在线观看| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看| 中文字幕熟女人妻在线| 99久久99久久久精品蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 真人做人爱边吃奶动态| 欧美一区二区国产精品久久精品| 中文字幕高清在线视频| 90打野战视频偷拍视频| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 怎么达到女性高潮| 男女床上黄色一级片免费看| 久久久精品大字幕| 亚洲内射少妇av| 免费人成在线观看视频色| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 久久久精品大字幕| 欧美精品国产亚洲| 国产精品野战在线观看| 久久久精品欧美日韩精品| 色综合婷婷激情| 国产精品日韩av在线免费观看| 看免费av毛片| 国产一区二区在线av高清观看| 欧美潮喷喷水| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 国产精品三级大全| 亚洲中文日韩欧美视频| 噜噜噜噜噜久久久久久91| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 国产精品亚洲美女久久久| 最近视频中文字幕2019在线8| 少妇的逼水好多| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看| 一夜夜www| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 国产一区二区亚洲精品在线观看| 少妇的逼水好多| 舔av片在线| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 久久香蕉精品热| 国产精品乱码一区二三区的特点| 色吧在线观看| 欧美色视频一区免费| 夜夜爽天天搞| 久久伊人香网站| ponron亚洲| 国产精品女同一区二区软件 | 91麻豆av在线| 精品久久久久久久久亚洲 | 国产精品98久久久久久宅男小说| 嫁个100分男人电影在线观看| 国产极品精品免费视频能看的| 久久久色成人| 日韩人妻高清精品专区| 亚洲一区高清亚洲精品| 国产真实伦视频高清在线观看 | 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 韩国av一区二区三区四区| 亚洲最大成人av| 小蜜桃在线观看免费完整版高清| 国产伦人伦偷精品视频| 免费av不卡在线播放| 成人无遮挡网站| 动漫黄色视频在线观看| bbb黄色大片| 人人妻人人澡欧美一区二区| 亚洲人成网站在线播| 一进一出好大好爽视频| 国产精品电影一区二区三区| 欧美性感艳星| 亚洲经典国产精华液单 | 午夜免费成人在线视频| 亚洲av不卡在线观看| 色综合亚洲欧美另类图片| 一本精品99久久精品77| 麻豆国产97在线/欧美| 小蜜桃在线观看免费完整版高清| 性色av乱码一区二区三区2| 亚洲色图av天堂| 成人无遮挡网站| 色哟哟哟哟哟哟| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 久久久久久久亚洲中文字幕 | 又黄又爽又免费观看的视频| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 亚洲第一欧美日韩一区二区三区| 亚洲激情在线av| 欧美一级a爱片免费观看看| 色哟哟·www| 亚洲国产日韩欧美精品在线观看| 欧美成人性av电影在线观看| 日韩中文字幕欧美一区二区| 美女 人体艺术 gogo| 国产v大片淫在线免费观看| 91午夜精品亚洲一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 在线观看一区二区三区| 人妻久久中文字幕网| 日韩欧美精品v在线| 精品99又大又爽又粗少妇毛片 | 1024手机看黄色片| 亚洲乱码一区二区免费版| 一进一出抽搐动态| 悠悠久久av| а√天堂www在线а√下载| 欧美激情在线99| 成人欧美大片| 亚洲自偷自拍三级| 色尼玛亚洲综合影院| 深夜a级毛片| 在线免费观看不下载黄p国产 | 熟女电影av网| 最后的刺客免费高清国语| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 老司机深夜福利视频在线观看| 嫩草影院精品99| 赤兔流量卡办理| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 国产精品免费一区二区三区在线| 高清在线国产一区| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 一区福利在线观看| 色尼玛亚洲综合影院| 国产高清激情床上av| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 午夜精品一区二区三区免费看| 国产精品精品国产色婷婷| 国产精品一区二区三区四区免费观看 | 日本在线视频免费播放| 精品久久久久久久久av| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 国产野战对白在线观看| 国产综合懂色| 欧美性感艳星| 全区人妻精品视频| 很黄的视频免费| 九九久久精品国产亚洲av麻豆| 日日夜夜操网爽| 亚洲av第一区精品v没综合| 国产精品久久久久久久电影| 热99re8久久精品国产| 男女下面进入的视频免费午夜| 怎么达到女性高潮| 最近中文字幕高清免费大全6 | 色在线成人网| 真实男女啪啪啪动态图| 一级毛片久久久久久久久女| 久久精品91蜜桃| 一级黄片播放器| 黄色女人牲交| 波多野结衣巨乳人妻| 免费搜索国产男女视频| 国产乱人视频| 免费黄网站久久成人精品 | 国产伦在线观看视频一区| 在线观看午夜福利视频| 亚洲av成人不卡在线观看播放网| 日韩欧美在线二视频| 麻豆国产97在线/欧美| 欧美精品啪啪一区二区三区| 国产精品嫩草影院av在线观看 | 深夜精品福利| 亚洲一区二区三区不卡视频| 午夜福利视频1000在线观看| 日韩成人在线观看一区二区三区| 亚洲在线自拍视频| 69人妻影院| 我的老师免费观看完整版| 国产精品久久久久久久久免 | 别揉我奶头 嗯啊视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲经典国产精华液单 | 搡女人真爽免费视频火全软件 | 欧美3d第一页| 国产精品,欧美在线| 亚洲午夜理论影院| 午夜免费激情av| 亚洲成人精品中文字幕电影| 亚洲在线观看片| 亚洲七黄色美女视频| 国产免费一级a男人的天堂| 色综合欧美亚洲国产小说| 99在线人妻在线中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 1024手机看黄色片| 男人舔女人下体高潮全视频| 少妇的逼水好多| 在线观看午夜福利视频| 久久人人精品亚洲av| 亚洲av成人精品一区久久| 最近中文字幕高清免费大全6 | 97人妻精品一区二区三区麻豆| 久久久精品大字幕| 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 成人亚洲精品av一区二区| 亚洲国产欧美人成| 一级黄色大片毛片| aaaaa片日本免费| 久久精品国产清高在天天线| 欧美乱色亚洲激情| 欧美成狂野欧美在线观看| 久久国产乱子免费精品| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 男女那种视频在线观看| 99热只有精品国产| 99精品在免费线老司机午夜| 乱人视频在线观看| 天天一区二区日本电影三级| 国产三级黄色录像| 男女那种视频在线观看| a级毛片a级免费在线| 在线十欧美十亚洲十日本专区| 欧美zozozo另类| 可以在线观看毛片的网站| 国产乱人伦免费视频| 午夜福利在线观看吧| 婷婷精品国产亚洲av| 桃红色精品国产亚洲av| 身体一侧抽搐| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av在线| 亚洲av.av天堂| 久久精品国产99精品国产亚洲性色| avwww免费| 午夜精品一区二区三区免费看| 欧美性猛交╳xxx乱大交人| 国产黄片美女视频| 日韩有码中文字幕| 少妇被粗大猛烈的视频| 男女那种视频在线观看| 国产精品精品国产色婷婷| av福利片在线观看| 能在线免费观看的黄片| 日本与韩国留学比较| 在线播放国产精品三级| 成年女人永久免费观看视频| 激情在线观看视频在线高清| 成人av在线播放网站| 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 观看美女的网站| 亚洲精品在线美女| 久久99热6这里只有精品| 久久精品久久久久久噜噜老黄 | 桃红色精品国产亚洲av| 亚洲精品在线观看二区| 久久久久精品国产欧美久久久| 亚洲无线在线观看| 成人欧美大片| av视频在线观看入口| av在线蜜桃| 精品日产1卡2卡|