• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成LuF3∶Yb3+,Er3+微晶及其上轉(zhuǎn)換發(fā)射與溫度傳感特性

    2018-03-14 06:36:06廖金生郭江飛黃海平溫和瑞
    關(guān)鍵詞:微晶水熱理工大學(xué)

    王 祺 廖金生 郭江飛 黃海平 溫和瑞

    (江西理工大學(xué),冶金與化學(xué)工程學(xué)院,贛州 341000)

    0 Introduction

    Rare-earth (RE)ion doped luminescence upconversion (UC)materials have attracted much attention owing to their wide application prospects in solid-state lasers[1],luminescence display panels[2-3],solar cells[4-6],biological labels[7],biological imaging[8],and optical temperature sensors[9-10].Recently,applying these UC materials as temperature sensing medium has attracted great attention[11-17].In this application,the optical temperature sensors based on the fluorescence intensity ratio (FIR)technique as a noninvasive thermometry are considered to be an alternative candidate to replace traditional temperature sensors because they can be operated in some harsh environments such as electrical power stations,building fire detection,oil refineries.Furthermore,the FIR technique which takes the advantage of temperature dependence of two thermally coupled energy levels of RE ions,can reduce the dependence of measurement conditions and improve the sensitivity[18-19].

    Erbium ion (Er3+)has attracted much attention due to its unique electric energy level structures.The lifetimes of some intermediate energy levels of Er3+are long enough.Thus,Er3+ion is a promising competitor for UC luminescence center.Green UC luminescence of Er3+ion hold a pair of thermally coupled emission levels (2H11/2and4S3/2),whose emission intensity ratio would vary with environment temperature.It is well known that the2H11/2→4I15/2transition of Er3+is hypersensitive,and the temperature sensitivityofthe materials varies remarkably for Er3+ions in different hosts[8-24].Therefore,finding a host capable to provide suitable crystal field environment surrounding Er3+dopant to enhance radiative probability of the2H11/2→4I15/2hypersensitive transition is a key for obtaining high temperature sensitivity of Er3+.

    Binary rare earth fluorides (REF3)have been considered as an excellent luminescent rigid host matrix for various optically active lanthanide ions(Ln3+),because they normally possess a high refractive index and low phonon energy (<400 cm-1),which leads to the low probability of nonradiative decay and consequently the luminescence quantum yields are usually higher than in oxide hosts and in most inorganic matrixes.Recently,several chemical synthesis techniques to prepare Ln3+doped REF3phosphors are available such as thermal decomposition[25],coprecipitation reaction[26],hydrothermal method[27].Among all the methods for the synthesis of Ln3+doped REF3phosphors,hydrothermal method has been proven to be an effective and convenient wet chemistry technique.During the hydrothermal process,chemical reactions are carried out under autogenous pressure and at temperatures above the boiling point of water in the autoclave[28].Moreover,the size distribution of particles,phase compositions,and morphologies can be easily controlled by modifying the reaction conditions such as reaction temperature,pH value,and the starting materials.However,to the best of our knowledge,there is little or no investigation on the UC emission and temperature sensing performances of LuF3∶Yb3+,Er3+microcrystals prepared by hydrothermal method without any surfactant. We report here the hydrothermal synthesis of the Yb3+/Er3+co-doped LuF3microcrystals and determine how synthetic parameter can influence the textural and optical properties of the resulting UC materials.The luminescence properties of LuF3∶Yb3+,Er3+microcrystals are investigated by changing doping concentrations of Yb3+(and Er3+)ions in the host.Additionally,their thermometry behaviors have also been illustrated by FIR technique.

    1 Experimental

    1.1 Sample preparation

    All the chemicals of Lu2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),NaF (AR),HNO3and NaOH were used as the starting materials without any further purification.LuF3∶Yb3+,Er3+samples for different Yb3+doping concentration (5%~15%)with a fixed Er3+concentration (2%)and Er3+doping concentration (1%~5%)with a fixed Yb3+concentration (10%)were prepared by the hydrothermal method without employing any surfactants.A typical procedure for the LuF3∶Yb3+,Er3+(Yb10%,Er2%)sample synthesis as an example is described as follows:0.350 2 g Lu2O3,0.039 4 g Yb2O3and 0.007 6 g Er2O3were first dissolved in dilute nitric acid under heating.After the Lu2O3,Yb2O3and Er2O3were completely dissolved,the extra nitrite acid was removed by evaporation.Then deionized water was added to obtain Lu(NO3)3,Yb(NO3)3and Er(NO3)3mixed solution.Meanwhile 0.335 9 g NaF (nRE(NO3)3∶nNaF=1∶4)was dissolved in deionzed water while stirring.Second,the obtained NaF solution was slowly added into the above solution with magnetic stirring.Afterward the pH value of the solution was adjusted via using nitric acid or NaOH.The resultant milky colloidal suspension was transferred into a 100 mL Teflon-lined stainless-steel autoclave,sealed and heated to 180℃for 21 h.Finally,the autoclave was cooled to room temperature naturally,and the products were deposited at the bottom of vessel.The precipitate was separated by centrifugation and washed three times with absolute alcohol.After being dried in air at 80℃for 12 h,the final powder products were obtained.Other phosphor samples were prepared by the same procedure,except for changing Ln(NO3)3and the pH value.

    1.2 Characterization

    X-ray diffractometer (XRD)patterns of samples were examined on a X′Pert PRO (PANalytical)powder diffractometer with Cu Kα (λ=0.150 465 nm,40 kV,40 mA)radiation to identify the crystal phase.The XRD data within the range from 10°to 80°were recorded in a scanning mode with a step size of 0.02°and a step scanning time of 8 s for Rietveld refinement.The morphology of the samples was characterized by a JSM6700F scanning electron microscope (SEM)operated at 10 kV and a JEOL-2010 transmission electron microscope (TEM)equipped with the energy dispersive X-ray spectrum (EDS)operated at 200 kV.In order to investigate the temperature dependence of theUC emission,thesamplewasplaced in a temperature-controlled copper cylinder, and its temperature was increased from 293 to 573 K.The UC spectra of sample at various temperatures were obtained using a Fluorolog-3 double monochromator equipped with a Hamamatsu R928 Photomultiplier under the excitation of a 980 nm diode laser with 150 mW (the power density is about 3 W·cm-2).

    2 Results and discussion

    2.1 Effect of the pH for solution on the crystal structure

    Fig.1 XRD patterns for as-obtained sample with different pH values;Standard data for LuF3(PDF No.32-0612)is also presented in the figure

    The crystallinity and phase purity of the asprepared samples are examined with XRD.Fig.1 shows XRD patterns of the as-obtained samples at 180℃for 21 h with different pH values in comparison to the standard card.As shown in Fig.1,it is obvious that all diffraction peaks of the product obtained at the mixed solution of pH=1 could be clearly indexed to the pure orthorhombic phase LuF3(PDF No.32-0612).When the pH value of the mixed solution is 3,it is clearly seen that other impurity phase(hexagonal NaLuF4PDF No.27-0726)emerged.With the pH value of the mixed solution continuing to increase to 7,it is clearly seen that NaLuF4is the main phase.With the pH value of the mixed solution increasing until 13,it is clearly seen that the diffraction peaks of the product matched well with the standard data of monoclinic LuO(OH)(PDF No.01-072-0928).The above-stated results indicate that the pH value is very important for preparing the pure orthorhombic phase LuF3.

    Fig.2 XRD refinement result for the LuF3∶10%Yb,2%Er sample,showing the Bragg reflection positions,the observed and calculated XRD profiles,and the difference between the observed and calculated patterns

    Rietveld refinement is an effective method to analyze the position of atoms in a primitive cell.In order to evaluate the structural parameters of LuF3∶10%Yb3+,2%Er3+,structural refinement was carried out by the TOPAS (total pattern analysis solutions)program using the Rietveld method.Fig.2 gives the experimental and refined XRD patterns of the LuF3∶10%Yb3+,2%Er3+sample.The black crosses and red solid line represent the experimental and calculated patterns,respectively.The pink vertical lines show the positions of the simulated diffraction patterns.The difference between the experimental and calculated results is plotted by the blue line at the bottom.By comparing the calculated data with the experimental data,we find that each peak is in good agreement.There is no impurity phase found in the samples,which reveals that it is a good single phase.The Rietveld refinement analysis indicates the values(Rp=5.28%and Rwp=6.77%,where Rpis the residual obtained by directly calculating the XRD spectrum calculated from the model structure and the experimental data and Rwpis the weight to specific position,which are within the accepted error range,indicating that the refinement results and the above assumption are reliable.According to the literature,the Yb3+and Er3+ions occupy the site of Lu3+ions.In order to further evaluate the occupying sites of the doping ions of Yb3+and Er3+,structural refinement was also carried out on LuF3∶10%Yb3+,2%Er3+,as shown in Fig.2.The resulting crystallographic data of LuF3∶10%Yb3+,2%Er3+are summarized in Table 1.The atomic coordinates and site occupancy fraction (SOF)are presented in Table 2.

    Table 1 Crystal structural data and lattice parameters for LuF3∶10%Yb,2%Er

    A low-magnification SEM image (Fig.3a)of the LuF3∶10%Yb3+,2%Er3+sample shows that the morphology is octahedral-like structure with good uniformity and dispersity.Fig.3b a high magnification SEM image of the prepared powders.As can be seen in these images,the LuF3∶10%Yb3+,2%Er3+sample show smooth and the particle size is about 4.5 μm.Morphological observation by transmission electron microscopy (TEM)is also shown in Fig.3c.The TEM image of the Yb3+/Er3+co-doped LuF3sample indicates the particle size is 4.5 μm,which accords well with the result of SEM.Combining with the high resolutionTEM image (HRTEM)(Fig.3d),it can be clearly seen that the lattice fringes show the imaging characteristics in which the orthorhombic structure LuF3crystal where the interplanar spacing of 0.338 4 nm corresponds to the distance of the (020)plane.The EDS was used to further characterize the chemical composition of the as-prepared product,and the results shown in Fig.3e confirm that element ratios consist with the chemical formula of Yb3+/Er3+codoped LuF3sample for 10%Yb3+and 2%Er3+,with nYb∶nEr∶nLu=5∶1∶44.The results confirm that Yb3+and Er3+ions have been effectively incorporated into the LuF3host lattice,agreeing with the XRD analysis above.The above results indicate that the LuF3∶Yb3+,Er3+micorcrystals can be successfully obtained by one-step hydrothermal method.

    Table 2 Atomic coordinates and site occupancy fraction(SOF)for LuF3∶10%Yb,2%Er

    Fig.3 Low- (a)and high-magnification (b)SEM images of LuF3∶10%Yb3+,2%Er3+sample;(c)TEM image of LuF3:10%Yb3+,2%Er3+sample;(d)HRTEM image of LuF3∶10%Yb3+,2%Er3+sample;(e)EDS data taken from a single particle

    2.2 UC luminescence studies

    To investigate influence of the synthesis parameter (pH value)on UC emission of as-obtained samples,the UC emission spectra of the as-obtained samples with different pH values are shown in Fig.4a.It is obvious that green and red UC emissions of the product obtained at the mixed solution of pH=1 is strongest among those of all pH values.When the pH value of the mixed solution is 3,it is clearly seen that UC emission obviously decrease and the relative intensity of green and red light is opposite compared with that of pH=1,which is due to other impurity phase (NaLuF4)emerged.The other impurity phase leads to luminescence quenching.With the increase of the pH value of the mixed solution,UC emissions of the products continually decrease.The increase of the concentration of the other impurity will further lead to luminescence quenching.The above-stated results indicate that the pH value as synthesis parameter is very important for obtaining strong UC emission.

    Fig.4 UC emission spectra of the LuF3∶Yb3+,Er3+samples for(a)different pH values,(b)different Yb3+concentrations with a fixed 2%Er3+and different Er3+concentrations with a fixed 10%Yb3+ (c)under 980 nm excitation

    In order to investigate concentration quenching of Yb3+/Er3+co-doped LuF3,Fig.4b and 4c show the dependence of the UC luminescence spectra of the Yb3+/Er3+co-doped LuF3phosphors on the sensitizer(Yb3+)and activator (Er3+)concentrations,respectively.Intense green emission at 523 and 539 nm (2H11/2→4I15/2and4S3/2→4I15/2transitions of Er3+)and weak red emission at 660 nm (4F9/2→4I15/2transition of Er3+)are observed in the emission spectra.As the concentrations of Er3+are fixed at 2%,the green emission intensity becomes stronger with the increasing of Yb3+content and reaches a maximum at 10%in the range of 5%~15%,which is shown in Fig.4b.The concentration quenching effect appears in this system and results in intensity decreasing as the concentration of Yb3+over 10%.This is believed to be due to the onset of the quenching effect that transfers the excitation of Er3+back to Yb3+and self-quenching in high-Yb3+doping concentration[29-31].As the concentrations of Yb3+are fixed at 10%,the green emission intensity becomes stronger with the increasing of Er3+content and reaches a maximum at 2%in the range of 1%~5% (Fig.4c).The concentration quenching effect is caused by the cross-relaxation process among Er3+ions.The concentration quenching will not occur at low concentration,because the distance between identical Er3+ions is so large that the energy migration is hampered[32].With the increase of the Er3+concentration,the average distance between Er3+ions become shorter and the energy transferbecome convenient.The critical distance of which can prevent the energy transfer happening can be calculated by the following formula[33]:Rc=2[3V/(4πNXc)]1/3,where V is the volume of the unit cell,Xcis the critical concentration and N is the number of available crystallographic sites occupied by the activator ions in the unit cell.The values of V and N for the crystalline LuF3(orthorhombic system,a=0.614 97 nm,b=0.677 08 nm,c=0.448 13 nm,Z=4,V=abc,N=Z)are 0.186 595 nm3and 4,respectively.Considering the above optimum concentration as the critical concentration Xc,the Rcfor Er3+is 1.645 4 nm in the LuF3∶10%Yb3+,2%Er3+phosphors.

    In order to investigate the UC mechanism,pump power-dependence of green and red UC emission spectra in LuF3∶Yb3+,Er3+micorcrystals was measured and displayed in a logarithmic scale (Fig.5).The emission intensity Iemdepends on the excitation power IPfollowing to the relationship of Iem∝IPn,where n is the number of the pumping laser photons required to excite RE ions from the ground state to the emitting excited state.The slopes (n)of the linear fittings are 1.75 for green emission (2H11/2→4I15/2and4S3/2→4I15/2)and 1.90 for red emission (4F9/2→4I15/2),indicating that twophoton processes are required to populate the2H11/2,4S3/2and4F9/2emitting levels,respectively.

    Fig.5 (a) UC spectra of LuF3∶Yb3+,Er3+phosphors for different laser powers of 980 nm excitation;(b)Dependences of the UC intensities(Iem)of green (2H11/2,4S3/2)→4I15/2and red4F9/2→4I15/2 transitions on the 980 nm pumping laser power(Ip)for LuF3∶Yb3+,Er3+phosphors

    Fig.6 displays the energy levels of Yb3+and Er3+ions in LuF3∶Yb3+,Er3+micorcrystals aswell as the proposed UC mechanisms.As for Yb3+/Er3+codoped system under 980 nm excitation,the 980 nm laser photon excites the Yb3+ion from the2F7/2ground state to the2F5/2excited state.And the excited Yb3+ion in the2F5/2state transfers it excitation energy to one nearby Er3+ion.The Er3+ion at the ground4I15/2state is excited to the upper4F7/2state via two energy transfer (ET1and ET2)processes[34].Subsequently,the non-radiative relaxation process of4F7/2state populates two lower energy levels (2H11/2and4S3/2),resulting in the green (2H11/2→4I15/2and4S3/2→4I15/2)UC emissions.The weak red UC emission centered at 660 nm is originated from4F9/2→4I15/2transition.There exist two main possible pumping mechanisms for red emission.The first pumping mechanism is the nonradiative relaxation from the populated4S3/2state to the4F9/2state through multphonon interaction.In the second pumping mechanism,Er3+ion can be relaxed from4I11/2level to4I13/2level,and then excited to4F9/2state via ET3process.

    Fig.6 Energy level diagrams of Yb3+and Er3+ions and UC emission mechanism in LuF3∶Yb3+,Er3+phosphors

    2.3 Effect of temperature on UC emission and temperature-sensing behavior

    As already mentioned,UC bands centered at 523 and 539 nm arise from2H11/2→4I15/2and4S3/2→4I15/2transitions.The energy gap between the levels2H11/2and4S3/2of Er3+is around 568 cm-1,the state of2H11/2may also be populated from4S3/2by thermal excitation and the UC emission intensity ratio of emission band at 523 to 539 nm could change with the variable temperature,therefore it is could be used as optically temperature sensor for the present UC phosphors.In order to investigate the temperature sensing properties of as-prepared phosphors,the green UC emission spectra for LuF3∶10%Yb3+,2%Er3+phosphor at various temperature (from 293 to 573 K)are presented in Fig.7,in which the spectra are normalized to the emission peak at 539 nm.It is found that no remarkable shift in emission wavelength for the sample while the fluorescence intensity ratio (FIR)of UC emission from2H11/2→4I15/2to4S3/2→4I15/2increases with the rise of temperature.The relative population of the thermally coupled energy levels follows the Boltzmann distribution and the FIR of two emissions can be written as follows[35]:

    Fig.7 Temperature dependence of the green UC luminescence spectra of LuF3∶Yb3+,Er3+phosphor under 980 nm excitation

    where IHand ISare intensities (the integrated areas below the emission curves)for the upper (2H11/2→4I15/2)and lower (4S3/2→4I15/2)thermally coupled levels transitions,respectively.In general,N,g,ω,δ represent the number of ions,the degeneracy,the angular frequency,the emission cross section of fluorescence transitions from excited state (2H11/2and4S3/2)to the ground state(4I15/2),respectively. ΔE is the energy gap between the2H11/2and4S3/2levels,k is the Boltzmann constant,and T is the absolute temperature.B is the pre-exponential factor.

    The fluorescent intensity ratio (FIR)of these two UC emissions shows a remarkable dependence on the temperature (Fig.8a).According to the expression of the FIR,the value of Ln(FIR)versus the inverse absolute temperature (1/T)is plotted in Fig.8b.The linear fitting of the experimental data gave slope and intercept equal to 980.69 and 1.02,respectively.As a consequence,the energy gap ΔE and the pre-exponential constant are evaluated to be about 680 cm-1and 2.77,respectively.These two parameters are vital factors for the sensitivity (S)of temperature detection,as defined by the following equation[35]:

    where the term FIR is the symbol used for fluorescence intensity ratio.The calculated values of sensor sensitivity were plotted as a function of absolute temperature (Fig.8c)and found to be maximum about 15.3×10-4K-1at 490 K.The temperature sensitivity of LuF3∶Yb3+,Er3+phosphor is comparable to that (15.7×10-4K-1at 386 K)of LaF3∶Yb3+/Er3+phosphor[36].Therefore,the Yb3+/Er3+co-doped LuF3micorcrystals can be used as an efficient optical temperature sensor.

    Fig.8 Upconversion-based temperature-sensing behaviour of LuF3∶Yb3+,Er3+phosphor:(a)FIR relative to the temperature;(b)Monolog plot of the FIR as a function of the inverse absolute temperature;(c)Sensor sensitivity as a function of temperature

    3 Conclusions

    In summary,the LuF3∶Yb3+,Er3+microcrystals have been prepared by one-step hydrothermal method at 180℃for 21 h under pH=1.The intense visible UC luminescence of sample is clearly observed under 980 nm excitation.The mechanisms of UC lumine-scence and the changes of the emission intensity with Yb3+concentration or Er3+concentration are discussed.The transition mechanisms of the UC luminescence can be ascribed to a two-photon absorption process.The best doping concentration of LuF3for UC emission is about 10%Yb3+and 2%Er3+.The green UC emission bands observed around 523 (2H11/2→4I15/2)and 539 nm (4S3/2→4I15/2)have been utilized for optical thermometry via the fluorescence intensity ratio technique.The dependence of FIR for the sample LuF3∶10%Yb3+,2%Er3+with optimal composition on temperature were measured in the range of 293~573 K,and the sensitivities of sample reach the maximum 15.3×10-4K-1at 490 K.All these results suggest that Yb3+/Er3+co-doped LuF3phosphor materials can be explored UC fluorescence imaging and temperature measurements with high sensitivity.

    Acknowledgements:This work was financially supported by the National Natural Science Foundation of China(Grant No.51162012),the Science Program of the Education Office,Jiangxi Province (Grant No.GJJ160597)and the Major Project of Natural Science Foundation of Jiangxi Province (Grant No.20165ABC28010).

    [1]Auzel F.Chem.Rev.,2004,104:139-173

    [2]Downing E,Hesselink L,Ralston J,et al.Science,1996,273:1185-1189

    [3]Binnemans K.Chem.Rev.,2007,107:2592-2614

    [4]Cheng Y Y,Nattestad A,Schulze T F,et al.Chem.Sci.,2016,7:559-568

    [5]LI Shu-Quan(李樹全),LIN Jian-Ming(林建明),WU Ji-Huai(吳 季 懷),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào)),2009,25:60-64

    [6]LIAO Jin-Sheng(廖金生),SU Zhen-Yu(蘇振欲),ZHOU Dan(周單),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29:2351-2356

    [7]Chen Z G,Chen H L,Hu H.J.Am.Chem.Soc.,2008,130:3023-3029

    [8]Shang L,Dong S J,Nienhaus G U.Nano Today,2011,6:401-418

    [9]DU Xin-Chao(杜新超),HE Zhen-Quan(賀正 權(quán)),LIN Xiao(林 霄 ),et al.Acta Photonica Sin.(光 子 學(xué) 報(bào) ),2015,44:406003-406009

    [10]Zuo Q H,Luo L H,Yao Y J.J.Alloys Compd.,2015,632:711-716

    [11]Bao Y N,Xu X S,Wu J L,et al.Ceram.Int.,2016,42:12525-12530

    [12]Li X P,Wang X,Zhong H,et al.Ceram.Int.,2016,42:14710-14715

    [13]Marciniak L,Waszniewska K,Bednarkiewicz A,et al.J.Phys.Chem.C,2016,120:8877-8882

    [14]Ananias D,Paz F,Yufit D,et al.J.Am.Chem.Soc.,2015,137:3051-3058

    [15]Marciniak L,Prorok K,Francés-Soriano L,et al.Nanoscale,2016,8:5037-5042

    [16]Marciniak L,Bednarkiewicz A,Hreniak D,et al.J.Mater.Chem.C,2016,4:11284-11290

    [17]Vetrone F,Naccache R,Zamarron A,et al.ACS Nano,2010,4:3254-3258

    [18]Soni A K,Rai V K,Kumar S.Sens.Actuators B,2016,229:476-482

    [19]Yang X X,Fu Z L,Yang Y M,et al.J.Am.Ceram.Soc.,2015,98:2595-2600

    [20]Dong B,Cao B S,Feng Z Q,et al.Sens.Actuators,B,2012,165:34-37

    [21]Singh S K,Kumar K,Rai S B.Sens.Actuators,A,2009,149:16-20

    [22]Singh A K,Shahi P K,Rai S B,et al.RSC Adv.,2015,5:16067-16073

    [23]Ding M Y,Chen D Q,Lu C H,et al.Mater.Lett.,2017,189:5-8

    [24]Suo H,Zhao X Q,Zhang Z Y,et al.Chem.Eng.J.,2017,313:65-73

    [25]Sun X,Zhang Y W,Du Y P,et al.Chem.Eur.J.,2007,13:2320-2332

    [26]Singh A K,Kumar K,Pandey A C,et al.Spectrochim.Acta,Part A,2013,106:236-241

    [27]Wang X,Zhuang J,Peng Q,et al.Inorg.Chem.,2006,45:6661-6665

    [28]Yan B,Wu J H.J.Mater.Res.,2009,24:3050-3056

    [29]Hinojosa S,Meneses-Nava M A,Barbosa-Garcia O,et al.J.Lumin.,2003,102:694-698

    [30]Auzel F,Baldacchini G,Laversenne L,et al.Opt.Mater.,2003,24:103-109

    [31]Zhu H Y,Lin M,Jin G R,et al.J.Lumin.,2017,851:292-297

    [32]Guo C F,Ding X,Seoc H J,et al.J.Alloys Compd.,2011,509:4871-4874

    [33]Blasse G.Philips Res.Rep.,1969,24:131-44

    [34]Shi L S,Shen Q Y,Qiu Z Z.J.Lumin.,2014,148:94-97

    [35]Dong B,Cao B S,He Y Y.Adv.Mater.,2012,24:1987-1993

    [36]Cheng X R,Ma X C,Zhang H J,et al.Physica B,2017,521:270-274

    猜你喜歡
    微晶水熱理工大學(xué)
    昆明理工大學(xué)
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    水熱還是空氣熱?
    Li2O加入量對(duì)Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無(wú)模板水熱合成
    丝袜人妻中文字幕| 久久伊人香网站| 亚洲成人精品中文字幕电影| 在线观看日韩欧美| 成人国产一区最新在线观看| 桃色一区二区三区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| av中文乱码字幕在线| 在线观看午夜福利视频| 大型黄色视频在线免费观看| 无人区码免费观看不卡| www.自偷自拍.com| 精品无人区乱码1区二区| 亚洲精品中文字幕在线视频| 精品久久久久久成人av| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 国产精品一及| 中文字幕最新亚洲高清| 九九热线精品视视频播放| 日韩精品中文字幕看吧| 精品无人区乱码1区二区| 国产在线观看jvid| 级片在线观看| 国产av不卡久久| 757午夜福利合集在线观看| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 国产片内射在线| 日韩欧美一区二区三区在线观看| 中文字幕av在线有码专区| 嫁个100分男人电影在线观看| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 岛国视频午夜一区免费看| 日本一本二区三区精品| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 99久久无色码亚洲精品果冻| 亚洲电影在线观看av| 日韩欧美在线二视频| 亚洲无线在线观看| 激情在线观看视频在线高清| 亚洲国产精品久久男人天堂| 日本免费a在线| 欧美精品啪啪一区二区三区| 久久午夜亚洲精品久久| 男女下面进入的视频免费午夜| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| 操出白浆在线播放| 久久天堂一区二区三区四区| 亚洲专区国产一区二区| 成熟少妇高潮喷水视频| 狠狠狠狠99中文字幕| 神马国产精品三级电影在线观看 | 国产精品98久久久久久宅男小说| 亚洲成人久久爱视频| 中文字幕人妻丝袜一区二区| 中文亚洲av片在线观看爽| 亚洲国产精品久久男人天堂| 黄频高清免费视频| 2021天堂中文幕一二区在线观| 久久久久国产一级毛片高清牌| 免费观看人在逋| 国产三级在线视频| 无人区码免费观看不卡| 亚洲激情在线av| 亚洲精品一区av在线观看| 欧美精品亚洲一区二区| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 老司机午夜十八禁免费视频| 精品乱码久久久久久99久播| 久久精品91蜜桃| 国产精品 欧美亚洲| 精品免费久久久久久久清纯| 99久久久亚洲精品蜜臀av| 啦啦啦韩国在线观看视频| 在线观看免费日韩欧美大片| 免费在线观看影片大全网站| 一级毛片女人18水好多| 18禁黄网站禁片午夜丰满| 91成年电影在线观看| 少妇粗大呻吟视频| 国产成人啪精品午夜网站| 两个人视频免费观看高清| 亚洲美女视频黄频| 国产精品98久久久久久宅男小说| 91麻豆av在线| 亚洲中文av在线| 老熟妇仑乱视频hdxx| www.熟女人妻精品国产| av福利片在线| 这个男人来自地球电影免费观看| 十八禁网站免费在线| 国产蜜桃级精品一区二区三区| www.自偷自拍.com| 国产亚洲精品综合一区在线观看 | 亚洲avbb在线观看| 亚洲av成人av| 又粗又爽又猛毛片免费看| 久久久久久久久中文| 麻豆成人午夜福利视频| 婷婷六月久久综合丁香| 999精品在线视频| netflix在线观看网站| 成年免费大片在线观看| 日本免费a在线| 欧美在线黄色| 亚洲成人免费电影在线观看| www.熟女人妻精品国产| 精品久久久久久久末码| 国产91精品成人一区二区三区| 身体一侧抽搐| 欧美不卡视频在线免费观看 | 日韩精品青青久久久久久| 欧美黄色淫秽网站| 久久性视频一级片| 午夜福利免费观看在线| 国产精品一及| 五月伊人婷婷丁香| 三级男女做爰猛烈吃奶摸视频| 身体一侧抽搐| 很黄的视频免费| 日韩欧美免费精品| 日本 av在线| 香蕉久久夜色| 丰满人妻熟妇乱又伦精品不卡| 制服诱惑二区| 国产成人精品无人区| 亚洲熟妇熟女久久| 男女做爰动态图高潮gif福利片| 男人舔女人的私密视频| 91老司机精品| 中亚洲国语对白在线视频| av欧美777| 日韩欧美国产一区二区入口| 亚洲欧美精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 婷婷丁香在线五月| 1024手机看黄色片| 久久久久久久精品吃奶| 在线免费观看的www视频| 日韩欧美国产一区二区入口| 中文亚洲av片在线观看爽| 50天的宝宝边吃奶边哭怎么回事| 搡老妇女老女人老熟妇| 久久精品夜夜夜夜夜久久蜜豆 | 中文字幕熟女人妻在线| 伊人久久大香线蕉亚洲五| 99久久99久久久精品蜜桃| 少妇的丰满在线观看| 国产精品 国内视频| 香蕉av资源在线| 女同久久另类99精品国产91| 国产精品 欧美亚洲| 一本久久中文字幕| 国产精品av久久久久免费| 草草在线视频免费看| 亚洲 国产 在线| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟妇乱子伦视频在线观看| 日本在线视频免费播放| 久久性视频一级片| 日韩三级视频一区二区三区| 国产精品乱码一区二三区的特点| www.www免费av| 久久精品91蜜桃| 身体一侧抽搐| 一区二区三区高清视频在线| 午夜视频精品福利| 日本免费一区二区三区高清不卡| 99久久久亚洲精品蜜臀av| 91字幕亚洲| 亚洲真实伦在线观看| av天堂在线播放| 久久久久亚洲av毛片大全| 此物有八面人人有两片| 在线观看www视频免费| 又紧又爽又黄一区二区| 亚洲中文字幕日韩| 国语自产精品视频在线第100页| 亚洲va日本ⅴa欧美va伊人久久| 日日摸夜夜添夜夜添小说| 国产激情偷乱视频一区二区| 成人永久免费在线观看视频| 又黄又粗又硬又大视频| 99久久99久久久精品蜜桃| 亚洲精品av麻豆狂野| 丰满人妻熟妇乱又伦精品不卡| 中出人妻视频一区二区| 欧美日韩亚洲国产一区二区在线观看| 成人亚洲精品av一区二区| 精品欧美一区二区三区在线| svipshipincom国产片| 中文字幕久久专区| 可以在线观看毛片的网站| 亚洲成av人片在线播放无| 亚洲av成人一区二区三| 男男h啪啪无遮挡| 亚洲专区国产一区二区| 老熟妇仑乱视频hdxx| 亚洲精品中文字幕在线视频| 999精品在线视频| 一区二区三区高清视频在线| 男人舔奶头视频| 精品久久久久久,| 美女午夜性视频免费| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩东京热| 人人妻人人看人人澡| 无限看片的www在线观看| 特级一级黄色大片| 久久香蕉精品热| 午夜福利高清视频| 日韩精品青青久久久久久| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区三| 黄色视频不卡| 午夜亚洲福利在线播放| 欧美zozozo另类| 男插女下体视频免费在线播放| 成人av在线播放网站| 欧美黄色淫秽网站| 国产日本99.免费观看| 99久久综合精品五月天人人| 99热这里只有精品一区 | 午夜两性在线视频| 亚洲熟女毛片儿| 久久久久久九九精品二区国产 | 成人av在线播放网站| 成人国语在线视频| 午夜福利成人在线免费观看| 免费观看精品视频网站| 99国产精品一区二区三区| 一二三四在线观看免费中文在| 久久香蕉精品热| 免费看a级黄色片| 草草在线视频免费看| 床上黄色一级片| 日日干狠狠操夜夜爽| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色| 最近最新中文字幕大全电影3| 成人欧美大片| 超碰成人久久| 国产精品综合久久久久久久免费| 日韩成人在线观看一区二区三区| 国产精品一及| 香蕉丝袜av| 欧美日韩福利视频一区二区| 1024手机看黄色片| 亚洲免费av在线视频| 精品第一国产精品| 韩国av一区二区三区四区| 身体一侧抽搐| 欧美在线黄色| 欧美一区二区国产精品久久精品 | 非洲黑人性xxxx精品又粗又长| 最近最新中文字幕大全电影3| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费| 黄色女人牲交| 日韩欧美免费精品| 青草久久国产| 蜜桃久久精品国产亚洲av| 日韩欧美在线二视频| 久久久久精品国产欧美久久久| 国产精品永久免费网站| 国产精品一区二区免费欧美| 久久久久国产精品人妻aⅴ院| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 欧美黄色片欧美黄色片| 香蕉丝袜av| 久久香蕉激情| 中文字幕最新亚洲高清| 在线国产一区二区在线| 丁香六月欧美| 十八禁网站免费在线| 久久久精品国产亚洲av高清涩受| 亚洲午夜理论影院| 91成年电影在线观看| 亚洲专区中文字幕在线| 人人妻人人澡欧美一区二区| 国产不卡一卡二| 亚洲熟妇熟女久久| 成人午夜高清在线视频| 高清毛片免费观看视频网站| 欧美色欧美亚洲另类二区| 蜜桃久久精品国产亚洲av| 最新美女视频免费是黄的| 国产探花在线观看一区二区| 亚洲专区字幕在线| 亚洲国产高清在线一区二区三| 欧美在线黄色| 一个人免费在线观看的高清视频| a在线观看视频网站| 国产日本99.免费观看| 国产精品 欧美亚洲| 国产精品亚洲美女久久久| 人妻夜夜爽99麻豆av| 国产三级在线视频| 黄色视频不卡| 午夜激情福利司机影院| 国产精品永久免费网站| 欧美高清成人免费视频www| 精品福利观看| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区二区三区在线观看| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 国产激情久久老熟女| 国产精品亚洲美女久久久| 搡老熟女国产l中国老女人| 国产亚洲av高清不卡| 久久久国产欧美日韩av| 亚洲av成人av| 亚洲欧美日韩高清专用| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 亚洲人成77777在线视频| 很黄的视频免费| 91大片在线观看| 亚洲色图av天堂| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 午夜日韩欧美国产| 精品电影一区二区在线| 美女高潮喷水抽搐中文字幕| 又大又爽又粗| 欧美极品一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出抽搐gif免费好疼| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 成年免费大片在线观看| 久久精品亚洲精品国产色婷小说| 日本免费一区二区三区高清不卡| 天堂√8在线中文| 在线观看免费午夜福利视频| 免费在线观看日本一区| 黄色 视频免费看| 日本精品一区二区三区蜜桃| 中国美女看黄片| 日本在线视频免费播放| 在线a可以看的网站| 免费av毛片视频| 在线观看午夜福利视频| 99热6这里只有精品| 99国产精品一区二区三区| 亚洲成人中文字幕在线播放| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 最近最新中文字幕大全电影3| 久久香蕉精品热| 五月玫瑰六月丁香| 91国产中文字幕| 亚洲第一电影网av| 婷婷亚洲欧美| 18禁黄网站禁片免费观看直播| av视频在线观看入口| 两人在一起打扑克的视频| 丁香六月欧美| 日本免费一区二区三区高清不卡| 床上黄色一级片| 日本一区二区免费在线视频| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 亚洲精品国产精品久久久不卡| 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 日本黄大片高清| 床上黄色一级片| 亚洲欧美激情综合另类| 特级一级黄色大片| 五月伊人婷婷丁香| 免费人成视频x8x8入口观看| 特大巨黑吊av在线直播| 欧美绝顶高潮抽搐喷水| 久久久久久九九精品二区国产 | 法律面前人人平等表现在哪些方面| 黄色丝袜av网址大全| 国产黄片美女视频| 巨乳人妻的诱惑在线观看| 听说在线观看完整版免费高清| 90打野战视频偷拍视频| 99国产精品一区二区蜜桃av| 一个人观看的视频www高清免费观看 | 亚洲最大成人中文| 日本 av在线| 岛国在线免费视频观看| 亚洲人成伊人成综合网2020| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 男女下面进入的视频免费午夜| 亚洲中文av在线| 亚洲成人久久爱视频| 亚洲av成人精品一区久久| ponron亚洲| 俄罗斯特黄特色一大片| 国产日本99.免费观看| 欧美乱色亚洲激情| 18禁黄网站禁片免费观看直播| 成在线人永久免费视频| 男人的好看免费观看在线视频 | 欧美黑人精品巨大| a在线观看视频网站| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| 免费在线观看成人毛片| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 老鸭窝网址在线观看| 国产精品永久免费网站| 国产精品亚洲一级av第二区| 天堂动漫精品| 精品一区二区三区四区五区乱码| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 我要搜黄色片| 国内久久婷婷六月综合欲色啪| 久久精品91蜜桃| 九色成人免费人妻av| 校园春色视频在线观看| 久久久久久人人人人人| 午夜福利免费观看在线| 成年女人毛片免费观看观看9| av免费在线观看网站| 美女黄网站色视频| aaaaa片日本免费| 成人国产综合亚洲| 日本精品一区二区三区蜜桃| 99热6这里只有精品| 757午夜福利合集在线观看| 岛国视频午夜一区免费看| 国产精品1区2区在线观看.| 亚洲欧美精品综合一区二区三区| 亚洲18禁久久av| 欧美3d第一页| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 一卡2卡三卡四卡精品乱码亚洲| 人妻夜夜爽99麻豆av| 我要搜黄色片| 欧美久久黑人一区二区| 此物有八面人人有两片| 亚洲欧美一区二区三区黑人| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 一本久久中文字幕| 91在线观看av| 18禁国产床啪视频网站| 可以在线观看的亚洲视频| 欧美日韩精品网址| 国产精品一区二区三区四区久久| 性欧美人与动物交配| 欧美三级亚洲精品| 久久中文字幕人妻熟女| 伦理电影免费视频| 久久精品人妻少妇| 亚洲一码二码三码区别大吗| 成人一区二区视频在线观看| 国产又色又爽无遮挡免费看| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| or卡值多少钱| 91大片在线观看| 少妇人妻一区二区三区视频| 最近在线观看免费完整版| 亚洲国产日韩欧美精品在线观看 | 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| 亚洲精品国产精品久久久不卡| 美女扒开内裤让男人捅视频| 欧美+亚洲+日韩+国产| 在线观看美女被高潮喷水网站 | 日本免费a在线| 制服人妻中文乱码| 人人妻人人澡欧美一区二区| 两性夫妻黄色片| 好看av亚洲va欧美ⅴa在| 国产精品av视频在线免费观看| 国产真实乱freesex| 一本综合久久免费| 亚洲熟妇中文字幕五十中出| 首页视频小说图片口味搜索| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品 | 午夜日韩欧美国产| 黄色女人牲交| 最新在线观看一区二区三区| 黄色成人免费大全| 欧美性猛交黑人性爽| xxx96com| 美女午夜性视频免费| 日韩有码中文字幕| 成年版毛片免费区| 嫩草影院精品99| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 国产真实乱freesex| 欧美精品亚洲一区二区| 国产精品精品国产色婷婷| xxx96com| 一区福利在线观看| 免费在线观看成人毛片| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 真人做人爱边吃奶动态| 国产精品,欧美在线| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 久久久久久久久免费视频了| 色噜噜av男人的天堂激情| 国产成人一区二区三区免费视频网站| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 最近最新中文字幕大全电影3| 国产在线观看jvid| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 欧美成人性av电影在线观看| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 国产亚洲精品一区二区www| 久久香蕉国产精品| 欧美久久黑人一区二区| 久久婷婷人人爽人人干人人爱| 狂野欧美激情性xxxx| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 熟女电影av网| 在线观看午夜福利视频| 激情在线观看视频在线高清| 一个人免费在线观看电影 | 特大巨黑吊av在线直播| av天堂在线播放| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 亚洲七黄色美女视频| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 黄色毛片三级朝国网站| 国产av不卡久久| 精品国产乱子伦一区二区三区| 国产精品,欧美在线| www.熟女人妻精品国产| 久久这里只有精品中国| 老司机福利观看| 一级a爱片免费观看的视频| 夜夜夜夜夜久久久久| 欧美成人午夜精品| 久久精品91无色码中文字幕| 国产精品一区二区三区四区免费观看 | 国产精品综合久久久久久久免费| 男人的好看免费观看在线视频 | 男女之事视频高清在线观看| 天堂av国产一区二区熟女人妻 | www.www免费av| 欧美不卡视频在线免费观看 | 中文资源天堂在线| 黄色视频,在线免费观看| 人人妻人人看人人澡| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 久久香蕉国产精品| 一级毛片高清免费大全| 色综合站精品国产| 日日爽夜夜爽网站| 欧美一区二区国产精品久久精品 | 国语自产精品视频在线第100页| 一个人免费在线观看电影 | 一级作爱视频免费观看| 亚洲欧美日韩东京热| 国产av不卡久久| 国产片内射在线| 亚洲乱码一区二区免费版| 最近在线观看免费完整版| 国产精品一区二区精品视频观看| 久久久精品欧美日韩精品| 免费一级毛片在线播放高清视频| 丰满人妻一区二区三区视频av | 可以在线观看毛片的网站| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| 亚洲七黄色美女视频| 岛国在线观看网站| 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 一区二区三区国产精品乱码| 淫秽高清视频在线观看| 日韩大尺度精品在线看网址| 免费在线观看完整版高清| 国产在线精品亚洲第一网站| 深夜精品福利| 国产探花在线观看一区二区| 女生性感内裤真人,穿戴方法视频|