• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuNPs@Cu(Ⅱ)-AMTD金屬有機凝膠復合材料的合成及其催化性能

    2018-03-14 06:35:59孫飛飛封其春周映華1
    無機化學學報 2018年3期
    關鍵詞:李鋼碩士論文安徽師范大學

    承 勇 孫飛飛 封其春 周映華1,

    (1教育部功能分子固體重點實驗室,蕪湖 241000)

    (2安徽師范大學化學與材料科學學院,蕪湖 241000)

    0 Introduction

    During the last two decades,a substantial body of research has been directed toward the synthesis of metal nanoparticles in efforts to explore their special properties and potential applications[1-3].Among various metal particles,copper nanoparticles (CuNPs)have attracted considerable attention because oftheir catalytic,optical,electrical conducting and antifungal/antibacterial properties[4-5].CuNPs are considered as a viable alternative to noble metal nanoparticles in certain fields such as antibacterialapplication,organic synthesis,and catalytic reaction.However,copper nanoparticles are known to be extremely sensitive to oxygen by forming copper oxide nanoparticles and are also apt to aggregate into large sized aggregation due to their high surface energy and high reactivity,resulting in the deterioration of their unique properties[6-7].Therefore,it is desirable to use a matrix that could bind the copper nanoparticles and protect them from oxidizing environment[8-14].Up to now,many strategies have been reported for the preparation of hybrid polymeric gel materials containing metal nanoparticles[15-18],however,there are rare concerned with polymeric gel copper composites.

    Polymeric gel material has been regarded as one of the most promising substrate for stabilization of metallic nanoparticles[19-20].Polymeric gel metal composites are viable catalysts because the loosely bound dynamic fibrous structure expected to enhance easy access to the metal nanoparticles[21-23].The catalytic performance and stability of metal nanoparticles can be enhanced by incorporating functional groups such as-NH2,-CONH,and-SiH[24-26].Synthesis of efficient,robust,and reusable homogeneously dispersed copper nanoparticles supported in polymeric gel with enhanced functionalities is still a major challenge.

    In this paper,we describe the successful fabrication of copper nanoparticles within Cu(Ⅱ)-AMTD metal-organicgelmatrix.Thecomposites obtained were characterized by IR,SPR,SEM,TEM,EDX and XPS.It displays highly activity in catalytic 4-nitrophenol and other nitroarenes using NaBH4as a reductant performed in an aqueous solution.Considering the wide-ranging potential applications of a metal-organic gel as a host material for a variety of metal nanoparticals,the approach developed here may lead to new possibilitiesforthe fabrication of nanoparticals/metal-organic gel composites endowed with multiple functionalities.

    1 Experimental

    1.1 Apparatus and materials

    All analytical grade solvents and reagents were used without further purification.The precursor 2-amino-5-mercapto-1,3,4-thiadiazole was prepared according to the published procedures[27].4-nitrophenol(4-NP),2-nitrophenol (2-NP),4-nitroaniline (4-NA)and 8-hydroxy-5-nitroquinoline (8-H-5-NQ) were purchased from Aladdin Chemical Reagent Co.Ltd.,China.Cu (Ac)2,N,N-dimethylformamide (DMF)were purchased from Shanghai Lingfeng Chemical Reagent Co.,Ltd.China.Water was deionized and doubledistilled.

    Fourier transform infrared spectra (FT-IR)were taken on a Shimadzu FTIR-8400S spectrometer with a KBrpellettechnique.Ultraviolet-visible (UV-Vis)spectra experiments were performed on a Yuanxi UVVis 8000A spectrophotometer.Field emission scanning electron microscope (FESEM)images were obtained using a Hitachi S-4800 scanning electron microscope operating at an accelerating voltage of 5.0 kV.Energy Dispersive X-ray Spectroscopy (EDX)was taken with a Hitachi S-4800 scanning electron microscope.The transmitting electron microscopy (TEM)images were recorded on a JEOL-2011 transmission electron microscope at an accelerating voltage of 200 kV.X-ray photoelectron spectra (XPS)experiments were performed on a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer. Nitrogen adsorption-desorption were obtained using a Nova 2000E surface analyzer.Pore-size distribution was determined from the adsorption branch ofthe isotherms using the Barett-Joyner-Halenda (BJH)method.

    1.2Preparation of CuNPs@Cu(Ⅱ)-AMTD composites

    DMF solution (1 mL)of AMTD (0.013 4 g,0.1 mmol)was placed in a centrifuge tube.To this,1 mL aqueous solution of Cu(Ac)2(0.020 1 g,0.1 mmol)was added.This immediately results in a dark blue color solution.After little shaking,the mixture was left to stand undisturbed.About 5 minutes,a dark green opacity gel appeared of which the gel state primarily confirmed by the retardation of flow of the materials upon “inversion ofthe centrifuge tube”.The CuNPs@Cu(Ⅱ)-AMTD green powder was obtained by drying the gel at 80℃in the drying oven about 48 h to constant weight(Scheme 1).

    1.3 Catalytic reduction of 4-NP and other nitroarenes

    Scheme 1 Formation of Cu(Ⅱ)-AMTD metal-organic gel

    To investigate the catalytic efficiency and reusability of the CuNPs@Cu(Ⅱ)-AMTD composites,reduction of 4-NP was performed according to the published procedure[28-29].100 mg CuNPs@Cu(Ⅱ)-AMTD wasadded in a solution containing 50 mL of deionized water to obtain a suspension solution by ultrasonic dispersion.A freshly prepared aqueous solution of NaBH4(56.0 mg,25 mL)was mixed with a 4-NP aqueous solution (10.43 mg,25 mL) (nNaBH4/nsubstrate=5.4)leading to a color change from light yellow to yellow-green.Subsequently,the catalyst suspension solution was added to the mixture under continuous stirring to initiate the reduction reaction.At each time interval,1 mL of the aqueous solution was withdrawn and diluted to 3.0 mL to analyze the reduction efficiency.Since the absorbance of 4-NP is proportional to its concentration in the solution,the ratio of absorbance at time t (At)to that at t=0 (A0)should be equal to the concentration ratio Ct/C0of 4-NP.Consequently,the conversion progress could be directly reflected by the absorption intensity.Therefore,a UVVis spectrophotometer was employed to monitor the progress of the conversion of 4-NP to 4-AP at ambient temperature.For comparison,the control experiment was also carried out under the same experimental condition using AMTD as catalyst.The catalytic activity of the as-prepared CuNPs@Cu(Ⅱ)-AMTD for the reduction of other nitroarenes were also investigated under the same condition.

    To test the recyclability of the catalyst,five successive cycles of catalytic reduction were carried out employing a definite amount of catalyst.In the successivecycles,the catalystwascollected by centrifugation from the solution and washed with ethanol and water several times,and used for the next cycling.

    2 Results and discussion

    2.1Formation of CuNPs@Cu(Ⅱ)-AMTD composites

    Cu(Ⅱ)-AMTD metal-organic gel was prepared by copper acetate and AMTD in DMF/H2O as shown in Scheme 1.To understand the coordination behavior between AMTD and Cu2+,we attempted to obtain crystal structure of the related complex,but not successful.In the absence of a suitable single crystal to undertake X-ray crystallography,we proposed that in the gel the nitrogen atom of thiadiazole ring and sulfur atom of thiol are coordinated with two Cu2+,respectively,forming a coordination polymer.Every Cu2+ion is coordinated with four AMTD,two of them act as N donor while the other two act as S donor ligand.Cu2+is linked by AMTD ligand,forming an extended 2D layer network structure.It is noteworthy to point out that there are hydrogen bonds between the solvent H2O and the amino group in the Cu(Ⅱ)-AMTD coordination polymer which formed the metalorganic gel.Considering the reducibility of-NH2in AMTD,we speculate that Cu(Ⅱ)ion would be reduced to copper (0)and CuNPs would existed in the gel matrix.The S atom of thiadiazole ring could also stabilize the CuNPs.Consequently,the Cu(Ⅱ)-AMTD coordination polymer could be served as a directing medium for the synthesis of CuNPs,which were embedded in the gelmatrix,providing a gelcomposites.

    2.2 Characterization of CuNPs@Cu(Ⅱ)-AMTD composites

    To investigate the morphologies of the composites,SEM were carried out on the xerogel of CuNPs@Cu(Ⅱ)-AMTD.As shown in Fig.1a,the SEM image clearly displays 2D layer fibrillar network,which consistent with the structure of Cu(Ⅱ)-AMTD coordination polymer that we proposed in Scheme 1.

    Nitrogen adsorption-desorption measurements were performed to validate the inner architectures of the 2D layernetwork.The nitrogen adsorptiondesorption isotherms and the pore size distribution curve are shown in Fig.2b (inset).The BET surface area of the gel was calculated as about 4 m2·g-1.In addition,the isotherm exhibits a hysteresis loop in the p/p0range of 0.64 to 0.98.This clearly indicates that the gel exhibits a large structural porosity.The pore size distribution of the gel shows a narrow peak in pore size region of 12.4~42.8 nm.That is mainly caused by the accumulation of the gel fibrillar network.

    Fig.1 (a)SEM image of CuNPs@Cu(Ⅱ)-AMTD composites;(b)Nitrogen adsorption-desorption isotherms of CuNPs@Cu(Ⅱ)-AMTD composites with corresponding pore-size distribution (inset)calculated by BJH method from the desorption branch

    Fig.2 (a,b)TEM images of the CuNPs@Cu(Ⅱ)-AMTD composites;(c)Particles size distribution of CuNPs;(d)EDX image of CuNPs@Cu(Ⅱ)-AMTD composites

    TEM measurements were carried out to characterize the morphology and size distribution of copper nanoparticles embedded in the Cu(Ⅱ)-AMTD metal-organic gel matrix.Observing the formed CuNPs directly in the gel is difficult because the gel is too chick to be opaque for the electron beam.In this work,the gel was diluted as a suspension solution for the measurement of TEM.It can be seen that CuNPs were spherical in nature (Fig.2a).The TEM image enlarged version clearly showing the lattice spacing of 0.12 nm,corresponding to the Cu (220)plane (Fig.2b).The particles size distribution shows that a significant amount of nanoparticles are below 5 nm (Fig.2c).Notably,no reflections assignable to metallic CuNPs were present in the XRD pattern of CuNPs@Cu(Ⅱ)-AMTD,possible because the CuNPs content was below the detection limit and/or due to the poor crystallinity of the CuNPs in the composites.Energydispersive X-ray spectroscopy (EDX)was performed on the xerogelwhich determined the elemental composition of copper,chlorine,nitrogen,and carbon(Fig.2d).

    To examine the CuNPs in the gel,the samples with different ratios (nCu(Ⅱ)/nAMTD=0.15,0.20,0.25,0.30,0.35)were dissolved in H2O.A small hump at around 345 nm was observed in the UV-Vis absorption spectrum (Fig.3a).It can be assigned to a typical surface plasmon resonance (SPR)excitation from the CuNPs.Furthermore,no apparent SPR absorption band appearing at around 560~600 nm was observed,indicating the absence of large CuNPs[30-32].

    Fourier transformed infrared spectroscopy was performed to identify the nature of participation of functional groups present in the ligand and in the corresponding CuNPs@Cu(Ⅱ)-AMTD composites (Fig.3b).The free ligand shows absorption peaks at 3 342,3 254 and 1 609 cm-1that can be assigned to N-H stretching and bending vibrations of-NH2group,which are weaken in the composites.Another broad area was observed near 3 430 cm-1,which could be assigned to the hydrogen bonding of a-OH group of solvent H2O.The peaks at 3 115 and 2 910 cm-1in free ligand assigned to the N-H of thiadiazole ring[33]in the resonance structure are disappeared in the composites,which indicate the coordination of the metal to the N-atom.The weak vibration frequency for-SH stretch at 2 750 cm-1in the ligand is absent in the composites.These observations indicate that the coordination of copper ions with the S atom of thiol group and the N atom of thiadiazole ring in the gel.

    Fig.3 (a)UV-Vis absorption spectra of CuNPs in the gel matrix with different ratios (nCu(Ⅱ)∶nAMTD=0.15,0.20,0.25,0.30,0.35);(b)FT-IR spectra obtained from AMTD and CuNPs@Cu(II)-AMTD composites

    Fig.4 (a)XPS of CuNPs@Cu(Ⅱ)-AMTD composites;(b)High-solution XPS of Cu2p electrons

    For the purpose of gaining insight into components of the CuNPs@Cu(Ⅱ)-AMTD composites,XPS survey spectra were performed.As shown in Fig.4a,five major peaks of S2p,C1s,N1s,O1s,Cu2p obviously emerged in the spectrum,indicating that CuNPs@Cu(Ⅱ)-AMTD prepared here were mainly composed of C,O,N,S and Cu.The oxidation state of copper in samples was also studied by XPS.As shown in Fig.4b,two fitting peaks at 934.6 and 954.3 eV were observed in the Cu2p XPS spectrum,corresponding to the binding energies of Cu2p3/2and 2p1/2,respectively,indicating the existence of Cu(0)or Cuガin the composites[34-35].Furthermore,there was a peak displayed around 942.7 eV, demonstrating the existence of Cu(Ⅱ)[36],which maybe attribute to Cu(Ac)2-AMTD coordination polymerin the composites(Scheme 1).

    2.3 Catalytic reduction of nitroarene

    4-Nitrophenol (4-NP) is one ofthe most hazardous and toxic organic pollutants in waste-water generated from agricultural and industrial sources.4-Aminophenol(4-AP)is also an important intermediate on the manufacture of antipyretic and analgesic drugs.The development of an effective catalysts is expected for the reduction of 4-NP to 4-AP[37-40].So,we choose the reduction of 4-NP as a model reaction to evaluate the catalytic activity of our synthesized composites.

    Normally,the 4-NP solution shows an absorbance peak at 317 nm under neutral conditions,which shifts to 400 nm after adding NaBH4because of the formation of 4-nitrophenolate ions via deprotonation(pKa=7.2)[42-43].During the reduction of 4-NP to 4-AP,the intensity of the absorption peak at 400 nm gradually decreased because of the consumption of 4-NP,resulting in the fading and ultimate bleaching of the yellow-green color of 4-nitrophenolate.Meanwhile,the generation of reduction product 4-AP led to a new UV-Vis peak at approximately 300 nm (Fig.5a)[44].

    Fig.5b presents the time-dependent evolution of theUV-Vis spectra of this reaction with CuNPs@Cu(Ⅱ)-AMTD as catalyst,showing a successive intensity decrease in the absorption peak at 400 nm,along with a concomitant appearance of a new peak at about 300 nm.All the spectra intersect each other at two points,indicating that the nitro compound was gradually converted to 4-AP without the formation of byproducts[45].After a 12 min reaction,the peak at 400 nm ascribed to 4-nitrophenolate disappeared,indicating the complete transformation of the 4-NP.Meanwhile,at the end of the reaction,the peak for 4-NP almost disappeared and only the peak for 4-AP could be observed,thus suggesting the presence of product with high purity.Additionally,the control experiment was performed by taking AMTD instead of CuNPs@Cu(Ⅱ)-AMTD.In this case,the intensity of the peak at 400 nm remained unchanged even after 12 h,confirming the catalytic role of CuNPs on the reduction reaction.

    Given that the concentration of NaBH4significantly exceeds that of 4-NP in the reaction system,the reduction rate was roughly independent of NaBH4concentration.Generally,the kinetics can be considered as pseudo-first-order with respect to 4-NP[46].In this case,the consumption of 4-NP is given by

    where rtis the consumption rate of 4-NP at time t,Ctis the concentration of 4-NP at time t,and k is the first-order rate constant.

    Fig.5 (a)UV-Vis absorption spectra of 4-nitrophenol and 4-aminephenol;(b)Successive UV-Vis absorption spectra of the reduction of 4-nitrophenol by NaBH4in the presence of CuNPs@Cu(Ⅱ)-AMTD composites;(c)Plot of ln(Ct/C0)against time (inset:Ct/C0~t);(d)Conversion efficiency of 4-NP in five successive cycles

    Fig.5c shows ln(Ct/C0)versus reaction time for the reduction of 4-NP using the CuNPs@Cu(Ⅱ)-AMTD as catalyst.ln(Ct/C0) was obtained from the relative intensity of the absorption at 400 nm because the absorption intensity of 4-NP is proportional to its concentration in the medium.The linear relationship between ln(Ct/C0)and reaction time (t)confirms the pseudo-first-order kinetics.The rate constant (k)of the catalytic reaction was 2.5×10-3s-1from the slope of the linear plot,which is higher than that of CuNPs(1.6×10-3s-1)[47],but was lower than that of Cu-TOCNF(2.4×10-2s-1)[48]and CuNCs (8.2×10-3s-1)[49].The ratio of the rate constant to the catalyst weight was 0.025 s-1·g-1.Generally,the rate constant of catalytic reaction is affected by the concentration or loading amount of CuNPs.

    Stability and recyclability is of great importance for the practical applications of catalysts.Recycling andreuseofCuNPs@Cu(Ⅱ)-AMTD werefurther examined under the same reaction conditions as that of the first cycle.As shown in Fig.5d,the catalyst can be successfully recycled and reused for five successive cycles of reaction with a conversion efficiency (~82%),indicating the stable and high recycling efficiency of the CuNPs@Cu(Ⅱ)-AMTD.The good recyclability of CuNPs@Cu(Ⅱ)-AMTD should be attributed to the strong stabilization ability of metal-organic gel matrix toward the CuNPs.These results clearly demonstrate that the Cu(Ⅱ)-AMTD metal-organic gel are excellent supporting carrier for CuNPs growth and immobilization because of their high specific surface area and interwoven fibrous structure properties.

    The CuNPs@Cu(Ⅱ)-AMTD can also be used for the reduction of other nitrobenzene analogues such as 4-NA,2-NP and 8-H-5-NQ.Here,we choose to run the reactions in the presence of CuNPs@Cu(Ⅱ)-AMTD catalyst and nitroarene with NaBH4to clearly monitor the conversion efficiency of the reaction.As shown in Fig.6,the composite exhibits high reactivity with excellent yields toward these nitroarenes compounds.It is also interesting to note that the 2-nitrophenol displays better conversion efficiency than other analogues.

    Fig.6 Reduction of various nitroarenes using CuNPs@Cu(Ⅱ)-AMTD as catalyst:(a)4-NA,(b)2-NP and (c)8-H-5-NQ

    The mechanism of the catalytic reaction could be explained by the Langmuir-Hinshelwood mechanism(Fig.7).NaBH4ionized in water to offer BH4-,providing surface hydrogen for the reaction.BH4-acted as the electron donor,whereas 4-NP acted as the electron acceptor.CuNPs act as an electronic relay agent to overcome the kinetic barrier,allowing the electron transfer from BH4-to 4-NP[43].Because of the strong adsorbing ability of the Cu(Ⅱ)-AMTD metal-organic gel,NaBH4and 4-NP could be rapidly adsorbed on the surface of gel,where the copper particles could relay electrons from the donor of BH4-to the acceptor of 4-NP,and promote the occurrence of reduction reaction.Therefore,the high catalytic activity arises from the synergistic effect of Cu(Ⅱ)-AMTD metalorganic gel and CuNPs:the high adsorption and electron transfer ability.

    Fig.7 Proposed the mechanism of the reduction of 4-NP to 4-AP

    3 Conclusions

    In conclusion,a novel composites CuNPs@Cu(Ⅱ)-AMTD were obtained by using Cu(Ⅱ)-AMTD metalorganic gel as a platform for in situ growth copper nanoparticleswithin gelmatrix.The as-prepared material is an efficient catalyst in the reduction of nitroarenes compounds.Such composites were thus expected to have the potential to be a new class of highly efficient,fully renewable heterogeneous catalyst for industrial applications.

    [1]ScholtenJD,LealBC,DupontJ.ACSCatal.,2012,2:184-200

    [2]Iablokov V,Beaumont S K,Alayoglu S,et al.Nano Lett.,2012,12:3091-3096

    [3]David C,De Abajo F J G.J.Phys.Chem.C,2011,115:19470-19475

    [4]Villanueva M E,Diez A M R,Gonzalez J A,et al.ACS Appl.Mater.Interfaces,2016,8:16280-16288

    [5]Manthiram K,Beberwyck B J,Alivisatos A P.J.Am.Chem.Soc.,2014,136:13319-13325

    [6]Park B K,Jeong S,Kim D,et al.J.Colloid Interface Sci.,2007,311:417-424

    [7]BenaventeE,LozanoH,Gonzalez G.Recent Pat.Nanotechnol.,2013,7:108-132

    [8]Kanninen P,Johans C,Merta J,et al.J.Colloid Interface Sci.,2008,318:88-95

    [9]Ruiz P,Munoz M,Macanás J,et al.Chem.Mater.,2010,22:6616-6623

    [10]Mallick S,Sharma S,Banerjee M,et al.ACS Appl.Mater.Interfaces,2012,4:1313-1323

    [11]Bogdanovi U,Vodnik V,Mitri M,et al.ACS Appl.Mater.Interfaces,2015,7:1955-1966

    [12]Gholinejad M,Jeddi N.ACS Sustainable Chem.Eng.,2014,2:2658-2665

    [13]Tokarek K,Hueso J L,Kustrowski P,et al.Eur.J.Inorg.Chem.,2013:4940-4947

    [14]Li B J,Li Y Y,Wu Y H,et al.Mater.Sci.Eng.C,2014,35:205-211

    [15]Che Y,Zinchenko A,Murata S.J.Colloid Interface Sci.,2015,445:364-370

    [16]Das D,Kar T,Das P K.Soft Matter,2012,8:2348-2356

    [17]Maity I,Rasale D B,Das A K.Soft Matter,2012,8:5301-5308

    [18]Roy S,Banerjee A.Soft Matter,2011,7:5300-5308

    [19]SHENG Li-Ying(沈利英),YU Hai-Tao(于海濤),HE Xuan(何璇),et al.Chin.J.Org.Chem.(有 機化學),2009,29(4):548-563

    [20]WU Ting(吳 婷 ).Thesis for the Master of Anhui Normal University(安徽師范大學碩士論文),2014.

    [21]Lu Y,Spyra P,Mei Y,et al.Macromol.Chem.Phys.,2007,208:254-261

    [22]Otari S V,Patil R M,Waghmare S R.Dalton Trans.,2013,42:9966-9975

    [23]Díaz D D,Kuhbeck D,Koopmans R J.Chem.Soc.Rev.,2011,40:427-448

    [24]Li J,Zhu J W,Liu X H.Dalton Trans.,2014,43:132-137

    [25]Zheng Y,Wang A Q.J.Mater.Chem.,2012,22:16552-16559

    [26]Gupta N R,Prasad B LV,Gopinath G S,et al.RSC Adv.,2014,4:10261-10268

    [27]Misra U,Shukla S,Gurtu S,et al.Boll.Chim.Farm.,1995,134:492-496

    [28]Liang M,Su R,Huang R,et al.ACS Appl.Mater.Interfaces,2014,6:4638-4649

    [29]Liang M,Wang L,Liu X,et al.Nanotechnology,2013,24:245601

    [30]Lisiecki I,Piled M P.J.Phys.Chem.,1995,99:5077-5082

    [31]Salzemann C,Lisiecki I,Brioude A,et al.J.Phys.Chem.B,2004,108:13242-13248

    [32]Mott D,Galkowski J,Wang L Y,et al.Langmuir,2007,23:5740-5745

    [33]Chufán E E,Pedregosa J C,Borrás J.Vib.Spectrosc.,1997,15:191-199

    [34]Bradwell D J,Osswald S,Wei W F,et al.J.Am.Chem.Soc.,2011,133:19971-19975

    [35]Balogh L,Tomalia D A.J.Am.Chem.Soc.,1998,120:7355-7356

    [36]Wu C K,Yin M,OBrien S,et al.Chem.Mater.,2006,18:6054-6058

    [37]AdityaT,PalbA,PalT.Chem.Commun.,2015,51:9410-9431

    [38]Zhao P X,Feng X W,Huanga D S,et al.Coord.Chem.Rev.,2015,287:114-136

    [39]Wang C,Cigand R,Salmon L,et al.Angew.Chem.Int.Ed.,2016,55:3091-3095

    [40]Wang C,Salmon L,Li Q,et al.Inorg.Chem.,2016,55:6776-6780

    [41]JIANG Jun (姜?。?LI Gang (李鋼),KONG Ling-Hao (孔令浩).Acta Phys.-Chim.Sin.(物理化學學報),2015,31(1):137-144

    [42]Yang M Q,Weng B,Xu Y J.Langmuir,2013,29:10549-10558

    [43]Wang H,Dong Z X,Na C Z.ACS Sustainable Chem.Eng.,2013,1:746-752

    [44]Liu C H,Chen X Q,Hu Y F,et al.ACS Appl.Mater.Interfaces,2013,5:5072-5079

    [45]Liang M,Wang L,Su R X,et al.Catal.Sci.Technol.,2013,3:1910-1914

    [46]Zhu C H,Hai Z B,Cui C H.Small,2012,8:930-936

    [47]Deka P,Deka R C,Bharali P.New J.Chem.,2014,38:1789-1793

    [48]Bendi R,Imae T.RSC Adv.,2013,3:16279-16282

    [49]Zhang P H,Sui Y M,Xiao G J,et al.J.Mater.Chem.A,2013,1:1632-1638

    猜你喜歡
    李鋼碩士論文安徽師范大學
    李鋼書法作品欣賞
    海歸李鋼:“紅杉人”民族魂“僑聯(lián)”中國心
    華人時刊(2021年13期)2021-11-27 09:19:18
    著名詩人
    鴨綠江(2021年14期)2021-08-18 03:33:00
    苦難英雄任正非
    南風(2020年29期)2020-11-18 06:57:12
    《安徽師范大學學報》(人文社會科學版)第47卷總目次
    Next-Generation Materials for Cutting Tools: Superhard Materials
    漢語國際教育專業(yè)泰國來華留學生碩士論文語言特征分析及教學啟示
    Hemingway’s Marriage in Cat in the Rain
    “雙一流”視域下導師學術品質對研究生培養(yǎng)質量的影響——基于安徽省四屆優(yōu)秀碩士論文評選的實證研究
    《安徽師范大學學報( 自然科學版) 》2016 年總目次
    在线免费十八禁| 午夜精品国产一区二区电影 | 黄片wwwwww| 哪个播放器可以免费观看大片| 国产精品一及| 日日撸夜夜添| 国产亚洲91精品色在线| 亚洲综合色惰| 久久热精品热| 欧美+亚洲+日韩+国产| 亚洲真实伦在线观看| 91av网一区二区| 国产爱豆传媒在线观看| 久久中文看片网| 天美传媒精品一区二区| 亚洲欧美精品综合久久99| 少妇的逼水好多| 不卡一级毛片| 国产精品人妻久久久影院| 免费av不卡在线播放| 国产女主播在线喷水免费视频网站 | 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 亚洲久久久久久中文字幕| 久久久久九九精品影院| 久久亚洲国产成人精品v| 美女cb高潮喷水在线观看| 免费看日本二区| 欧美日本视频| 美女大奶头视频| 久久久久久大精品| 亚洲国产色片| 国产综合懂色| 国产午夜福利久久久久久| av免费在线看不卡| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| 在线观看66精品国产| 少妇丰满av| 亚洲av第一区精品v没综合| 青春草国产在线视频 | 中文字幕av成人在线电影| 国产男人的电影天堂91| 在线免费观看不下载黄p国产| 亚洲丝袜综合中文字幕| 久久精品91蜜桃| .国产精品久久| 欧美变态另类bdsm刘玥| 精品久久久久久成人av| 淫秽高清视频在线观看| 男人舔女人下体高潮全视频| 国产一区二区在线观看日韩| avwww免费| www日本黄色视频网| 蜜臀久久99精品久久宅男| 自拍偷自拍亚洲精品老妇| 国内精品久久久久精免费| 亚洲图色成人| 成年免费大片在线观看| 日韩亚洲欧美综合| 99热全是精品| 久久精品久久久久久久性| 久久精品久久久久久久性| 日韩欧美精品免费久久| 好男人视频免费观看在线| 国产精品三级大全| 欧美bdsm另类| 久久精品91蜜桃| 欧美+亚洲+日韩+国产| 中文资源天堂在线| 久久精品国产亚洲av涩爱 | 久久久久久大精品| 久久久国产成人精品二区| 国产午夜精品一二区理论片| 亚洲成人精品中文字幕电影| 少妇猛男粗大的猛烈进出视频 | 3wmmmm亚洲av在线观看| av卡一久久| 国产精品一区www在线观看| 蜜桃亚洲精品一区二区三区| 国产精品.久久久| 黄片wwwwww| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 国产高清三级在线| 熟妇人妻久久中文字幕3abv| 国产亚洲5aaaaa淫片| 淫秽高清视频在线观看| 久久精品国产99精品国产亚洲性色| 中文资源天堂在线| 亚洲成人精品中文字幕电影| av卡一久久| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 亚洲欧美成人综合另类久久久 | 中文字幕制服av| 黄色配什么色好看| 亚洲精品色激情综合| 午夜福利视频1000在线观看| 国产一区二区在线av高清观看| 亚洲av中文字字幕乱码综合| 伦精品一区二区三区| 亚洲欧美精品自产自拍| 国产私拍福利视频在线观看| 欧美成人a在线观看| 精品日产1卡2卡| 精品无人区乱码1区二区| 青春草视频在线免费观看| 免费av观看视频| 亚洲成人久久性| 波多野结衣高清作品| 日本欧美国产在线视频| 99热这里只有精品一区| av在线老鸭窝| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 国产精品女同一区二区软件| 久久韩国三级中文字幕| 干丝袜人妻中文字幕| 国内久久婷婷六月综合欲色啪| 大香蕉久久网| 精品国产三级普通话版| 美女xxoo啪啪120秒动态图| 一本久久精品| 最近最新中文字幕大全电影3| 人人妻人人澡人人爽人人夜夜 | 2022亚洲国产成人精品| 精品一区二区免费观看| 亚洲高清免费不卡视频| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 成年av动漫网址| 99热精品在线国产| 成年版毛片免费区| 搞女人的毛片| 少妇高潮的动态图| 国产精品福利在线免费观看| 免费大片18禁| 亚洲欧美精品综合久久99| 97超碰精品成人国产| 日韩成人伦理影院| 日韩欧美 国产精品| 一边亲一边摸免费视频| 亚洲精品影视一区二区三区av| 99久国产av精品国产电影| 久久久国产成人精品二区| 美女被艹到高潮喷水动态| 中文亚洲av片在线观看爽| 中文欧美无线码| 黄色视频,在线免费观看| 国产精品久久久久久精品电影小说 | 乱码一卡2卡4卡精品| 天堂影院成人在线观看| 秋霞伦理黄片| 久久久久国产网址| 人妻夜夜爽99麻豆av| 国产一区二区三区av在线| 日本vs欧美在线观看视频| 亚洲综合精品二区| 色5月婷婷丁香| 成人国产麻豆网| 夜夜骑夜夜射夜夜干| 亚洲丝袜综合中文字幕| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 九九爱精品视频在线观看| 狠狠婷婷综合久久久久久88av| 少妇的逼好多水| 欧美3d第一页| 日韩熟女老妇一区二区性免费视频| 亚洲综合色惰| 少妇熟女欧美另类| 国产在线视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情福利司机影院| 大香蕉久久网| 高清av免费在线| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 亚洲综合色惰| 建设人人有责人人尽责人人享有的| 精品酒店卫生间| 日韩中文字幕视频在线看片| 青春草国产在线视频| 欧美激情极品国产一区二区三区 | 久久韩国三级中文字幕| 少妇被粗大的猛进出69影院 | 最黄视频免费看| videossex国产| 欧美97在线视频| 欧美亚洲 丝袜 人妻 在线| 高清不卡的av网站| 大又大粗又爽又黄少妇毛片口| 亚洲美女黄色视频免费看| 一区二区三区免费毛片| 欧美+日韩+精品| xxxhd国产人妻xxx| 另类精品久久| 美女大奶头黄色视频| 久久99热这里只频精品6学生| 十八禁高潮呻吟视频| 亚洲av日韩在线播放| 中国国产av一级| 自线自在国产av| 成人毛片60女人毛片免费| 制服人妻中文乱码| 久久久国产欧美日韩av| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 麻豆精品久久久久久蜜桃| 久久精品人人爽人人爽视色| 国产视频首页在线观看| 中文字幕亚洲精品专区| kizo精华| 国产免费一级a男人的天堂| 午夜av观看不卡| 色吧在线观看| 卡戴珊不雅视频在线播放| 亚洲欧美日韩另类电影网站| 国产色婷婷99| 亚洲熟女精品中文字幕| 国内精品宾馆在线| 色5月婷婷丁香| 亚洲伊人久久精品综合| 在线观看www视频免费| 亚洲成人av在线免费| 制服人妻中文乱码| 亚洲欧美色中文字幕在线| av播播在线观看一区| 久久国内精品自在自线图片| 亚洲av二区三区四区| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 男女边摸边吃奶| 毛片一级片免费看久久久久| 亚洲在久久综合| 精品久久蜜臀av无| 国产爽快片一区二区三区| 精品熟女少妇av免费看| 亚洲高清免费不卡视频| 人妻制服诱惑在线中文字幕| 亚洲av福利一区| 如何舔出高潮| freevideosex欧美| 一本久久精品| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 人妻制服诱惑在线中文字幕| 伦理电影免费视频| 久久久久久久亚洲中文字幕| 欧美人与性动交α欧美精品济南到 | 久久久a久久爽久久v久久| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级| 国产视频内射| 91精品三级在线观看| 美女主播在线视频| 青青草视频在线视频观看| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡 | 亚洲精品一区蜜桃| 两个人免费观看高清视频| 在线精品无人区一区二区三| 久久人妻熟女aⅴ| 国产精品偷伦视频观看了| 亚洲综合色惰| 在线观看国产h片| 国产免费一区二区三区四区乱码| 免费黄色在线免费观看| 欧美成人午夜免费资源| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 自拍欧美九色日韩亚洲蝌蚪91| a 毛片基地| 亚洲在久久综合| 日本av免费视频播放| 国产极品天堂在线| 在线观看美女被高潮喷水网站| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| 高清午夜精品一区二区三区| 97超视频在线观看视频| 国产成人精品婷婷| 免费观看无遮挡的男女| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频| 国产精品国产三级专区第一集| 高清不卡的av网站| 中文字幕免费在线视频6| 亚洲欧美一区二区三区黑人 | 在线精品无人区一区二区三| 亚洲伊人久久精品综合| 欧美日韩av久久| 精品少妇黑人巨大在线播放| 女人精品久久久久毛片| 最近的中文字幕免费完整| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 老司机影院成人| 女人久久www免费人成看片| 欧美精品国产亚洲| 老司机影院成人| 国产成人精品福利久久| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| 22中文网久久字幕| 国模一区二区三区四区视频| 久久久精品免费免费高清| 国产一区二区在线观看av| 一级黄片播放器| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| 少妇精品久久久久久久| 亚洲精品日韩在线中文字幕| videossex国产| 考比视频在线观看| 国产精品成人在线| 久久久久久久精品精品| 国产 精品1| 亚洲国产精品999| 国产精品一国产av| 国精品久久久久久国模美| 一边摸一边做爽爽视频免费| 纯流量卡能插随身wifi吗| 国产精品国产av在线观看| 欧美日韩精品成人综合77777| 精品午夜福利在线看| 人妻系列 视频| 天天操日日干夜夜撸| 欧美日韩国产mv在线观看视频| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 亚洲久久久国产精品| 一级毛片电影观看| 赤兔流量卡办理| 亚洲国产欧美在线一区| 午夜影院在线不卡| 五月玫瑰六月丁香| 一级爰片在线观看| 大码成人一级视频| 国产乱人偷精品视频| 最黄视频免费看| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 九九在线视频观看精品| 91精品国产国语对白视频| kizo精华| 成人漫画全彩无遮挡| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 亚洲av不卡在线观看| av在线观看视频网站免费| 热99国产精品久久久久久7| 99国产综合亚洲精品| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 欧美少妇被猛烈插入视频| 免费人成在线观看视频色| xxx大片免费视频| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| 一级毛片 在线播放| 国产爽快片一区二区三区| 久久99精品国语久久久| 国产69精品久久久久777片| 18在线观看网站| 99热全是精品| 国产精品无大码| 婷婷色av中文字幕| 99热国产这里只有精品6| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 国产精品嫩草影院av在线观看| 免费观看在线日韩| 一本一本综合久久| av网站免费在线观看视频| 久久国内精品自在自线图片| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 18+在线观看网站| xxx大片免费视频| 免费少妇av软件| 国产精品无大码| 三级国产精品片| 国产av精品麻豆| 日日摸夜夜添夜夜爱| 少妇的逼水好多| √禁漫天堂资源中文www| 国产淫语在线视频| 亚洲精品,欧美精品| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 国产成人精品在线电影| av卡一久久| 色94色欧美一区二区| 精品少妇内射三级| 夫妻性生交免费视频一级片| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 啦啦啦中文免费视频观看日本| 观看美女的网站| 男女无遮挡免费网站观看| 高清av免费在线| 曰老女人黄片| 母亲3免费完整高清在线观看 | av卡一久久| 性高湖久久久久久久久免费观看| 久久韩国三级中文字幕| 国产在线一区二区三区精| 亚洲怡红院男人天堂| 成年av动漫网址| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 亚洲精品乱码久久久v下载方式| 日本午夜av视频| 久热久热在线精品观看| 日韩不卡一区二区三区视频在线| 王馨瑶露胸无遮挡在线观看| 欧美三级亚洲精品| 曰老女人黄片| 一级,二级,三级黄色视频| 国产乱来视频区| 欧美最新免费一区二区三区| 99久久综合免费| 狠狠婷婷综合久久久久久88av| 18禁在线无遮挡免费观看视频| 看免费成人av毛片| 国产免费一区二区三区四区乱码| 中国美白少妇内射xxxbb| 久久久久久久精品精品| 自线自在国产av| 99久久中文字幕三级久久日本| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 少妇精品久久久久久久| 亚洲综合色惰| 成人综合一区亚洲| 国产极品天堂在线| 青春草国产在线视频| 精品久久久久久久久亚洲| 亚洲五月色婷婷综合| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 国模一区二区三区四区视频| 久久久国产精品麻豆| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| av在线观看视频网站免费| av不卡在线播放| 亚洲激情五月婷婷啪啪| 在线观看www视频免费| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 极品人妻少妇av视频| 在线观看人妻少妇| 免费av中文字幕在线| 精品亚洲成国产av| 国产精品三级大全| 欧美成人午夜免费资源| 亚洲av成人精品一二三区| 在线观看一区二区三区激情| 视频区图区小说| 日本91视频免费播放| 九九久久精品国产亚洲av麻豆| 亚洲第一av免费看| 久久av网站| 亚洲色图综合在线观看| 亚洲第一区二区三区不卡| 在现免费观看毛片| 国产精品成人在线| 精品99又大又爽又粗少妇毛片| 精品国产一区二区久久| 国产色婷婷99| 一级毛片 在线播放| 久久这里有精品视频免费| 亚洲av男天堂| 少妇被粗大的猛进出69影院 | 精品午夜福利在线看| 国产色爽女视频免费观看| 又粗又硬又长又爽又黄的视频| 亚洲无线观看免费| 啦啦啦视频在线资源免费观看| 国产av码专区亚洲av| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站| 国产亚洲一区二区精品| 满18在线观看网站| 最近2019中文字幕mv第一页| 99热国产这里只有精品6| 久久精品久久久久久久性| 日韩制服骚丝袜av| 少妇被粗大的猛进出69影院 | 精品久久久久久久久亚洲| 狂野欧美激情性bbbbbb| 26uuu在线亚洲综合色| 天天影视国产精品| 欧美性感艳星| 成年女人在线观看亚洲视频| av国产精品久久久久影院| 欧美三级亚洲精品| 在线观看免费高清a一片| 高清黄色对白视频在线免费看| 在线观看www视频免费| 国产 一区精品| av在线老鸭窝| 亚洲情色 制服丝袜| 91精品三级在线观看| 午夜福利影视在线免费观看| 99九九在线精品视频| 色网站视频免费| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 99热这里只有精品一区| 久久久午夜欧美精品| 老熟女久久久| 日韩强制内射视频| 国产精品国产av在线观看| 热re99久久国产66热| 美女大奶头黄色视频| 狂野欧美激情性bbbbbb| 最新中文字幕久久久久| 久久这里有精品视频免费| 欧美另类一区| 国产免费现黄频在线看| 人人澡人人妻人| 欧美日韩一区二区视频在线观看视频在线| 国产乱来视频区| 亚洲精品,欧美精品| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 午夜免费男女啪啪视频观看| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 午夜激情av网站| 亚洲久久久国产精品| 99久久精品国产国产毛片| 国产午夜精品久久久久久一区二区三区| 蜜桃久久精品国产亚洲av| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲 | 日本猛色少妇xxxxx猛交久久| 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 久久热精品热| 国产精品久久久久久精品古装| 777米奇影视久久| 少妇精品久久久久久久| 日本爱情动作片www.在线观看| 男女免费视频国产| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 99久久精品一区二区三区| 欧美日韩精品成人综合77777| 精品一品国产午夜福利视频| 毛片一级片免费看久久久久| av有码第一页| 免费黄色在线免费观看| 亚洲av.av天堂| 久久久久久人妻| 男女国产视频网站| 国产av精品麻豆| 男女啪啪激烈高潮av片| 国产乱人偷精品视频| 亚洲av电影在线观看一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲国产精品成人久久小说| 成人国产麻豆网| 国产欧美日韩一区二区三区在线 | 热re99久久精品国产66热6| 国产精品国产三级专区第一集| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 日日摸夜夜添夜夜爱| 伊人久久国产一区二区| 欧美精品国产亚洲| 在线观看免费视频网站a站| 一级片'在线观看视频| 日韩视频在线欧美| 97在线视频观看| 日韩,欧美,国产一区二区三区| 99久久综合免费| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 午夜视频国产福利| 色哟哟·www| 啦啦啦啦在线视频资源| 日韩中字成人| 最近的中文字幕免费完整| 成人免费观看视频高清| 综合色丁香网| 秋霞伦理黄片| 男人添女人高潮全过程视频| av天堂久久9| 黄色一级大片看看| 一区二区三区乱码不卡18| 成人毛片a级毛片在线播放| 人妻系列 视频| 又大又黄又爽视频免费| 欧美一级a爱片免费观看看| 一区在线观看完整版| 丁香六月天网| 精品久久国产蜜桃|