• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維樹枝狀銀薄膜的可控生長及其在表面增強拉曼光譜中的應用

    2018-03-14 06:36:09張慧娟張東杰張叢筠劉亞青
    無機化學學報 2018年3期
    關鍵詞:中北大學愛華學報

    張慧娟 張東杰 張叢筠 劉亞青

    (中北大學功能納米復合材料山西省重點實驗室,太原 030051)

    0 Introduction

    Surface enhanced Raman spectroscopy (SERS),a highly sensitive and convenient analytical method,which could provide rich fingerprint structure information.It has been intensely researched for many years in the fields of medicine,analytical chemistry,surface science,and so on[1-3].To date,a number of nanostructures (Au,Ag)have been fabricated as SERS substrates for acquiring remarkable SERS signal enhancement[4],especially the structure of gold[5],silver[6]and copper[7].Among them,the performance of silver is best,due to their unique electrical and tunable localized surface plasmon resonance (LSPR)properties.So silver nanostructures with various morphologies are studied,such as roughened plasmonic nanoarrays[8-9],nanorods[10],core-shellnanostructures[11-13],Ag nanowires[14], dendrites[15-16],Ag nanosheets[17],“flower like” nanoparticles[18-19],Ag nanocubes[20]and other complex hierarchical structures[21].

    Among all these substrates,silver dendrites have received considerable attention,because oftheir multilevel generations of branches with self-similarity and periodic arrangement which can increase the specific surface area and generate many spots with huge coupling effect (so-called as “hot spots”)[22].So a lot of promising dendritic Ag structures acted as SERS substrates have been developed and used for various applications.For instance,Wang et al.[23]detected 2-MBT using a silver dendrites formed by a selfassembled fabrication approach with a detection limit of 10-10mol·L-1.Hu et al.[24]prepared an ultrastable SERS substrates based on Ag dendritic nanostructures coated with silica nanofilm,which possessed significant potential for rapid,sensitive and quantitative detection of organic molecules.Zuo et al.[25]synthesized ordered Ag nanodendrite cluster arrays to detect rhodamine 6G with the concentration as low as 10 pmol·L-1.Meanwhile,they examined their SERS-sensitivity to thiram with a limitation to 10-5mol·L-1.However,it is still a challenge to prepare a SERS substrate with high sensitivity, stability, and reproducibility for trace detection of target molecules at the same time.

    Herein,silver dendritic films with large covering densities have been synthesized based on anodic aluminum oxide (AAO)membrane by a simple galvanic displacement reaction.This method was conducted at room temperature preparation withoutusing any surfactants.The morphology,distribution and density of these silver dendritic films could be tuned easily just by controlling the reaction time as well as the concentrations of AgNO3.Using these silver dendritic films as SERS substrates,Raman signal of rhodamine 6G (R6G)with differentconcentrationscan be obtained due to numerous hot spots on the substrates.The limits of detection (LOD)for R6G could be reached 10-11mol·L-1.Moreover,a good reproducibility and stability can be also obtained for this SERS substrate,indicating a promising application for SERS detection.

    1 Experiment

    1.1 Materials

    Silver nitrate (AgNO3,ACS,99.9%)was purchased from Alfa Aesar.AAO membrane was supplied by Whatman International Corp.All chemical reagents were analytical grade and used without any purification.All glass containers were rinsed with aqua regia (VHCl∶VHNO3=3∶1)before used,and then rinsed with ultrapure water(the resistivity of 18.2 MΩ·cm-1,Millipore)several times.

    1.2 Synthesis of silver dendritic thin film

    For the preparation of silver dendritic thin film,the bottom side of AAO membrane was firstly sputterdeposited with thin copper film of 500 nm through thermal evaporator.Subsequently,silicon wafer,AAO(sputtered with Cu membrane),O ring,and a teflon cell were assembled into the above reaction device which was sealed to avoid the overflowing of reaction solutions by clamps (Fig.1a).Finally,AgNO3(5 mL,0.1 mol·L-1)was added into the reaction device slowly,and then AAO was taken out 10 minutes later.It was obvious that the upper side of the AAO was changed into silvery white,indicating the occurrence of silver dendritic thin film.The samples were washed with ultrapure water for several times,and then dried at room temperature for 24 h.In order to obtain the optimal morphology and distribution of dendritic silver films,controlled experimentswere conducted by changing the reaction time and the concentrations of AgNO3,respectively.

    1.3 Characterization

    The distribution,size and morphology of the synthesized silver dendritic thin film were characterized by a scanning electron microscope(SEM,Tescan MIRA 3LMH,U=15 kV,I=10 mA),a transmission electron microscope (TEM,JEOL 2100F,U=120 kV)and a high resolution TEM (HRTEM,JEOL 2100F,U=200 kV).X-ray diffraction (XRD)data of the asprepared samples were recorded from a Bruker D8 focus diffractometer with Cu Kα source (λ=0.154 16 nm).The scanning angle range (2θ)is from 30°to 80°with scanning speed of 1°·min-1.The corresponding working voltage and current were 40 kV and 40 mA,respectively.

    1.4 SERS measurements

    For SERS measurement,the samples were prepared by drop-casting 0.1 mL of 10-6mol·L-1rhodamine 6G (R6G)solutions onto the silver dendriteintegrated AAO membrane and dried in atmosphere.The samples were rinsed with ultrapure water for several times and dried in dark at ambient condition again.Bare AAO membrane with 500 nm Cu film was also immersed in 10-2mol·L-1R6G solution for comparison.The Raman scattering measurements were conducted on a confocal microprobe Raman system(Renishaw invia)through a 50 L ×objective,and the excitation wavelength was 785 nm with a power of 9 mW.The total acquisition time was 10 s for each spectrum.

    2 Results and discussion

    2.1 Structure and characterization

    The size and morphology of AAO membrane used in the experimentcould be seen in Fig.S1A(Supporting Information).The diameter of the inner pores was about 200 nm,and the thickness was~60 μm.Fig.S1B shows the bottom side of the AAO membrane,sputtered with 500 nm Cu films.In the experiment,the aqueous silver nitrate contacted with the Cu layer through the inner pores of AAO membrane(inset in Fig.S1A),and then silver dendritic thin film was obtained by growing through the inner pores.

    Fig.1 (a)Illustration of the growth device of silver dendritic thin film;(b~e)SEM images of the silver dendritic thin film with different reaction times of(b)1 min (c)5 min (d)10 min and (e)1 h

    When the concentration of AgNO3was 0.1 mol·L-1with reaction time for 10 min,SEM images of the products reveal the 3D networked dendritic silver nanostructures on the upside of AAO membrane(Fig.1 (a)).It can be seen that the large scale of dendritic samples are formed into a thin film above the AAO membrane with a fairly high rate of coverage.The length of the main trunk is about 20 μm while the length of the average side branches is around 5 μm.SEM image in Fig.1(b)is a main branch of the dendritic structure in Fig.1(a),which also confirms that these silver dendrites are well defined,uniform and ordered with pronounced trunk and smaller branches on both sides of the trunk.Moreover,these sub-branches align with an angle of~60°to the main branches,showing a symmetrical structure.

    The morphology and structure were further confirmed by TEM,selected area electron diffraction(SAED)and XRD (Fig.2(a~f)).The Dark field TEM images and SAED illustrate the crystalline nature of the silver dendrites (Fig.2(c~d)).The SAED patterns was recorded from a tip of a small branch,showing regular hexagonal diffraction spot array.The crystal orientation and growth direction of the silver dendrite can be obtained,indicating that the whole dendrite is a single crystal represented by facets.Further insight into the Ag dendrites has been obtained by HRTEM images (Fig.2(e)),which consists of the tip area of the main branch.The results show that the distance between the lattice planes is 0.204 nm,which is in agreement with d spacing of face centered cubic (fcc)structures (PDF No.87-0597).Fig.2 (f)illustrates the XRD pattern of silver dendritic films adsorbed on the AAO membrane,also confirming the crystalline nature of the products.The peaks at 38.3°,44.3°,64.4°and 77.5°are obtained,corresponding to the (111),(200),(220)and (311)crystal plane respectively,which confirms the presence of face centered cubic pattern(PDF No.87-0597)[26].The peak at38.3° corresponding to (111)plane is found to be of high intensity compared to other planes,indicating that the silver dendrites preferentially grows along the (111)plane.

    Fig.2 Silver dendritic thin film prepared at 0.1 mol·L-1of silver nitrate (aqueous)for 10 min;(a)SEM images;(b)TEM images;(c)Dark field TEM images;(d)Selected area electron diffraction (SAED)pattern;(e)HRTEM image;(f)X-ray diffraction (XRD)pattern

    2.2 Time evolution study

    It is known that a strong anisotropic growth contributes to the evolution of silver nanostructure into a thermodynamic stable dendritic structure[27].However,it is difficult to predict the reaction time for the formation of dendritic structure.In order to study the influence of the reaction time,the growth of dendritic silver films was carried out at reaction times ranging from 1 min to 3 h,with a constant AgNO3concentration of 0.1 mol·L-1.As the reaction time ranging from 1 min to 3 h,the rate of coverage on the AAO membrane becomes higher (Fig.S2),while the coverage isstillveryhigh especially when the reaction time is 1 min.As shown in Fig.3,when the reaction time is very short(1 min),the growth process is dominated by a nonequilibrium condition[28],so silver dendritic structures are always formed with broken branches,and the thickness of these branches is small.Moreover,some distinct silver nanoparticles can be found around the defective dendritic products,indicating the nanoparticle aggregation based growth.By 5 min,the crystals have developed into welldefined dendritic structures.During this period,the tips of the main trunk start to divided into some smaller branches (Fig.3 (c)).High-magnification SEM image in Fig.3(d)is a smaller trunk in Fig.3(c),which indicates the appearance of secondary branches.As the growth process extend to 10 min,the morphology ofthe dendritesgradually develop to unbroken structure,and the branches on trunks arrang more symmetrically.After 1 and 3 h,the length of trunks increase and more secondary branches appeared,which indicates the transform process from quasiequilibrium to equilibrium conditions.It is noteworthy that tertiary branches came into being on secondary branches (Fig.3(e~h)).Many silver nanoparticles adsorb on the tertiary branches,which can be seen in Fig.3(f).Moreover,the tertiary branches and silver nanoparticles on them start to fuse together,and the surface of the dendritic structures became smooth,which is thermodynamically stable.The relationship between morphological evolution and SERS signal were investigated,in which the AAO-based dendrites obtained at 1 h reaction time show the best SERS sensitivity (Fig.S3).

    The growth process above could be explained by a diffusion limited aggregate mechanism[29].It is illustrated that the formation of the dendritic structure is based on the asymmetric growth of silver nanoparticles.At the beginning stage,the growth rate of dendrites is controlled by the rate of Ag+diffusion to the interface.After the galvanic displacement reaction,Ag+converts into Ag nanoparticles,and then silver nanoparticles start to grow along the (111)direction,due to the growth process is more prone to along the(111)direction to form a trunk.As the growth process continues,more and more silver nanoparticles are formed,and these additional silver nanoparticles move randomly to a low energy position and attach to the silver trunk.Moreover,these attach silver nanoparticles grow still along the (111)direction,further resulting in the secondary and tertiary branches.Lastly,all the prepared trunks,branches grow and interconnect to each other finally,and a whole silver dendritic structure is formed when the growth process take place repeatedly.

    2.3 Effects of AgNO3concentrations

    Fig.3 SEM images of the silver dendritic thin film with different reaction times

    The morphology of a crystal structure is affected by the relationship between the growth condition and the equilibrium state,such as the driving force for crystallization.For the syntheses of the silver dendritic films in this case,the driving force depends on the degree of supersaturation.Higher concentration of Ag+can enhance the reaction rate greatly,leading to huge changes in the morphology and distribution of silver dendritic films.Therefore,a series of AgNO3concentrations were selected to investigate their effects to the formation of silver dendrites.Fig.4 illustrates the growth process of silver dendrites at various concentrations (0.01,0.05,0.1,0.5 mol·L-1)for a reaction time of 10 min,and a drastic change is observed.

    When the concentration of AgNO3was 0.01 mol·L-1,only many dispersive silver nanoparticles were obtained without any appearance of dendritic nanostructures,indicating that low concentration can led to incomplete morphologies.As the concentration added to 0.05 mol·L-1,a broken dendritic silver nanostructure appeared with some imperfect branches,indicating that a higher concentration can promotes the transition from incomplete structure to dendritic growth.By 0.1 mol·L-1,a whole dendritic sample can be formed with symmetrical branches.However,higher concentration will not be helpful for the controllable formation of silver dendritic structures due to too fast reaction (Fig.4(d)).Although the morphology of the silver structure is stilldendrite,however,the thickness of the trunk and branches are very large with many huge silver nanoparticles on the surface.This experiment indicates that a silver dendritic structure with well-defined morphology can be obtained just by controlling the concentration of silver nitrite in the solution.

    Fig.4 SEM images of the silver dendritic thin film with different concentrations of AgNO3

    2.4 SERS activity,stability and reproducibility

    In order to study the SERS properties of the dendritic silver thin films adsorbed on AAO membranes,R6G with different concentration were utilized as probe molecules.The Raman spectra (Fig.5a)show the major vibrational peaks of R6G at 613,776,1 185,1 312,1 364,1 511,1 576,and 1 651 cm-1,which are attributed to the plane bending of C-C-C ring,outof-plane bending of the hydrogen atoms within the xanthene skeleton,C-C stretching vibrations,and the aromatic stretching vibrations[30],respectively.It is notable that the ultrasensitive molecular sensing for R6G is as low as 10-11mol·L-1.The inset shown in Fig.5(a)shows the intensities of representative band at 1 364 cm-1against the logarithmic concentration of R6G.It is noteworthy that the R6G molecules present a good signal-to-noise ratio,even for the concentrations down to 10-11mol·L-1,and the distinctive and characteristic peaks of R6G can be still discernable at 10-11mol·L-1,indicating a great sensitivity in molecule detection.The stability of the SERS substrate is another important factor for the practical application.Therefore,to study the shelf-life of silver substrates,the as-prepared silver dendritic films exposed under ambient conditions for different days (0~180 days)was tested (Fig.5b).The results show no distinct changes in either the intensity or the position of the R6G spectral peaks,indicating good stability of the silver dendritic SERS substrate.

    Fig.5 (a)SERS spectra of R6G with different concentrations on the silver dendritic thin film (from 10-6to 10-11mol·L-1),(inset Plot of signal intensity of R6G at 1 364 cm-1versus logarithmic R6G concentration);(b)SERS spectra of R6G adsorbed on the silver dendritic thin film with different exposure time (from 0 to 180 days);(c)SERS spectra of R6G randomly recorded at 50 positions from prepared SERS substrates,the inset shows the SERS intensity maps at the band of 1 364 cm-1;(d)Intensity distribution of the 1 364 cm-1peak of the 50 spectra

    In order to evaluate the reproducibility of the silver dendritic SERS substrates,Raman spectra of R6G molecules with a concentration of 10-6mol·L-1were collected randomly from different positions.The result in Fig.5(c)shows a satisfactory consistency of the SERS performance.The relative intensity distribution at typical peaks of 1 364 cm-1of the SERS substrate shows the relative intensity deviation is less than 20%in total,demonstrating a good reproducibility of SERS signals Fig.5(d).

    Fig.6 SERS spectra of thiram with different concentrations on the silver dendritic thin film(from 10-5to 10-9 mol·L-1)

    To evaluate the potential application in realworld samples,the as-prepared SERS substrates were tested using thiram as probe molecules.The detected minimum concentration of thiram is as low as 1×10-9mol·L-1,indicating a promising potential for realworld monitoring of trace organic pollutants.

    3 Conclusions

    AAO membrane modified with Ag dendrites were successfully fabricated and acted as an effective 3D SERS substrates.The morphologies of Ag dendritic structures can be facilely controlled by changing the reaction time and the concentrations of AgNO3.These results also indicate that the significance of gap separation between neighboring branches or subbranches and the sub-branches couplings in the overall electric field enhancements for the AAO based SERS substrate.The as-synthesized 3D substrate with special structures could generate abundant of hot spots and provide large surface to loading analyte molecules.This flexible,robust and eco-friendly SERS substrate presents extremely high sensitivity,high reproducibility and stability,which can potentially be used for trace detection of organic pollutants in environment.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Schlucker S.Angew.Chem.Int.Ed.,2014,53:4756-4795

    [2]Cialla D,Marz A,Bohme R,et al.Anal.Bioanal.Chem.,2012,403:27-54

    [3]Lei Y,Yang S K,Wu M H,et al.Chem.Soc.Rev.,2011,40:1247-1258

    [4]ZHOU Xin(周鑫),YAO Ai-Hua(姚愛華),ZHOU Tian(周田),et al.Chem.J.Chinese Universities(高等學?;瘜W學報),2014,30(3):543-549

    [5]XU Ling(徐玲),YAO Ai-Hua(姚愛華),XU Yan(胥巖),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32(12):2183-2190

    [6]HUANG Qing-Li(黃慶利),ZHU Xia-Shi(朱霞石).Chinese J.Inorg.Chem.(無機化學學報),2014,30(2):442-450

    [7]MAN Shi-Qing(滿石清),XIAO Gui-Na(肖桂娜).Chinese J.Inorg.Chem.(無機化學學報),2009,25(7):1279-1283

    [8]Yang S K,Slotcavage D,Mai J D,et al.J.Mater.Chem.C,2014,2:8350-8356

    [9]Cheng Z Q,Nan F,Yang D J,et al.Nanoscale,2015,7:1463-1470

    [10]Huang Z L,Meng G W,Huang Q,et al.J.Raman Spectrosc.,2013,44:240-246

    [11]Rong Z,Xiao R,Wang C W,et al.Langmuir,2015,29:8129-8137

    [12]Guo P Z,Sikdar D,Huang X Q,et al.Nanoscale,2015,7:2862-2868

    [13]LI Jian-Feng(李劍鋒),HU Jia-Wen(胡家文),REN Bin(任斌),et al.Acta Phys.-Chim.Sin.(物 理 化 學 學 報),2005,21(8):825-828

    [14]Tao A,Kim F,Hess C,et al.Nano Lett.,2003,3:1229-1233

    [15]Chan Y F,Zhang C X,Wu Z L,et al.Appl.Phys.Lett.,2013,102:183118

    [16]Laurier K G M,Poets M,Vermoortele F,et al.Chem.Commun.,2012,48:1559-1561

    [17]Zhu C H,Meng G W,Huang Q,et al.Chem.Commun.,2011,47:2709-2711

    [18]Liang H Y,Li Z P,Wang W Z,et al.Adv.Mater.,2009,21:1-5

    [19]Xie J P,Zhang Q B,Lee J Y,et al.ACS Nano,2008,2:2473-2480

    [20]McLellan J M,Li Z Y,Siekkinen A R,et al.Nano Lett.,2007,7:1013-1017

    [21]Li X D,Li M C,Cui P,et al.CrystEngComm,2014,16:3834-3838

    [22]Xie S P,Zhang X C,Xiao D,et al.J.Phys.Chem.C,2011,115:9943-9951

    [23]Wang X,Liu X H,Wang X.J.Mol.Struct.,2011,997:64-69

    [24]Hu Y S,Jeon J,Seok T J,et al.ACS Nano,2010,4:5721-5730

    [25]Zuo J,Meng G W,Zhu C H,et al.RSC Adv.,2016,6:26490-26494

    [26]Fang J X,You H J,Kong P,et al.Cryst.Growth Des.,2007,7:864-867

    [27]Alam M M,Ji W,Luitel H N,et al.RSC Adv.,2014,4:52686-52689

    [28]Jiang Z Y,Lin Y,Xie Z X.Mater.Chem.Phys.,2012,134:762-767

    [29]Zhu S Q,Zhang T,Guo X L,et al.Nanoscale Res.Lett.,2014,9:114

    [30]Xu H Y,Shao M W,Chen T,et al.J.Raman Spectrosc.,2012,43:396-404

    猜你喜歡
    中北大學愛華學報
    《中北大學學報(社會科學版)》征稿啟事
    中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
    科學導報(2021年91期)2021-01-11 07:02:14
    致敬學報40年
    《中北大學學報(自然科學版)》征稿簡則
    有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
    第一次拔牙
    神奇的光
    在廈金胞張愛華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    學報簡介
    學報簡介
    久久久久九九精品影院| 夜夜夜夜夜久久久久| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| av欧美777| 在线a可以看的网站| 成人国语在线视频| 免费搜索国产男女视频| 两个人看的免费小视频| 禁无遮挡网站| 18禁国产床啪视频网站| 村上凉子中文字幕在线| 老司机福利观看| 亚洲av美国av| 国内精品一区二区在线观看| 亚洲国产精品合色在线| 亚洲熟女毛片儿| 999久久久国产精品视频| av中文乱码字幕在线| 一a级毛片在线观看| 久久久久久久久久黄片| 国产精品爽爽va在线观看网站| 51午夜福利影视在线观看| 这个男人来自地球电影免费观看| 俄罗斯特黄特色一大片| 波多野结衣高清作品| 亚洲国产欧美人成| 狠狠狠狠99中文字幕| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 桃色一区二区三区在线观看| 日本在线视频免费播放| 亚洲精品av麻豆狂野| 免费在线观看视频国产中文字幕亚洲| 免费在线观看视频国产中文字幕亚洲| 精品不卡国产一区二区三区| 91字幕亚洲| av在线播放免费不卡| 日本精品一区二区三区蜜桃| 丝袜美腿诱惑在线| 一边摸一边抽搐一进一小说| 女警被强在线播放| 午夜福利成人在线免费观看| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 精品高清国产在线一区| 18禁美女被吸乳视频| 色综合站精品国产| 亚洲熟妇中文字幕五十中出| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱色亚洲激情| 亚洲中文日韩欧美视频| 看片在线看免费视频| 中文在线观看免费www的网站 | 蜜桃久久精品国产亚洲av| 精品欧美国产一区二区三| 亚洲九九香蕉| 国产亚洲精品久久久久久毛片| 国产视频一区二区在线看| 91老司机精品| 啦啦啦韩国在线观看视频| 亚洲 欧美一区二区三区| cao死你这个sao货| 国产午夜福利久久久久久| 欧美日韩精品网址| 熟女电影av网| 全区人妻精品视频| 一二三四在线观看免费中文在| 午夜日韩欧美国产| 岛国在线免费视频观看| 天天添夜夜摸| 丝袜美腿诱惑在线| 久久人妻福利社区极品人妻图片| 精品免费久久久久久久清纯| 日韩欧美免费精品| 亚洲av电影在线进入| videosex国产| 在线视频色国产色| 中文资源天堂在线| 亚洲欧美日韩东京热| 国产精品免费视频内射| 欧美三级亚洲精品| 最好的美女福利视频网| 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲美女久久久| 又黄又爽又免费观看的视频| 看片在线看免费视频| 特级一级黄色大片| 久久久久免费精品人妻一区二区| 一区二区三区国产精品乱码| 日韩精品中文字幕看吧| 夜夜看夜夜爽夜夜摸| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 97人妻精品一区二区三区麻豆| 少妇熟女aⅴ在线视频| 天天一区二区日本电影三级| 亚洲一区高清亚洲精品| 精品久久蜜臀av无| 制服人妻中文乱码| 精品免费久久久久久久清纯| 国产精品日韩av在线免费观看| 2021天堂中文幕一二区在线观| 亚洲欧洲精品一区二区精品久久久| 日本三级黄在线观看| 久久热在线av| 啪啪无遮挡十八禁网站| 亚洲熟妇熟女久久| 欧美又色又爽又黄视频| 女人爽到高潮嗷嗷叫在线视频| 欧美国产日韩亚洲一区| 国产av一区在线观看免费| 午夜成年电影在线免费观看| 老司机福利观看| 久久久精品欧美日韩精品| a级毛片在线看网站| 免费在线观看成人毛片| 成人18禁高潮啪啪吃奶动态图| 黄色毛片三级朝国网站| 国产精品免费视频内射| 久久久国产欧美日韩av| 丰满的人妻完整版| 国产伦人伦偷精品视频| 操出白浆在线播放| 中文在线观看免费www的网站 | 一进一出好大好爽视频| 男女之事视频高清在线观看| 精品熟女少妇八av免费久了| 正在播放国产对白刺激| 欧美精品啪啪一区二区三区| 午夜影院日韩av| 巨乳人妻的诱惑在线观看| 中文字幕久久专区| 国内久久婷婷六月综合欲色啪| 久久中文看片网| 精品电影一区二区在线| 午夜影院日韩av| 丰满的人妻完整版| 亚洲国产欧洲综合997久久,| 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 美女免费视频网站| 亚洲成人国产一区在线观看| 69av精品久久久久久| 国产成人一区二区三区免费视频网站| 一本精品99久久精品77| 18禁黄网站禁片午夜丰满| 观看免费一级毛片| 欧美不卡视频在线免费观看 | 日韩av在线大香蕉| 高清毛片免费观看视频网站| 老司机福利观看| 韩国av一区二区三区四区| 12—13女人毛片做爰片一| 免费电影在线观看免费观看| 大型av网站在线播放| 两人在一起打扑克的视频| 啦啦啦韩国在线观看视频| 亚洲熟女毛片儿| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 女警被强在线播放| 无人区码免费观看不卡| 日韩三级视频一区二区三区| 国内毛片毛片毛片毛片毛片| 久久久国产精品麻豆| 欧美不卡视频在线免费观看 | 国产蜜桃级精品一区二区三区| 亚洲精品美女久久av网站| 露出奶头的视频| 日韩精品青青久久久久久| 黄片小视频在线播放| 久久天躁狠狠躁夜夜2o2o| 国产单亲对白刺激| 久久精品国产综合久久久| 日韩免费av在线播放| 深夜精品福利| 亚洲五月婷婷丁香| www.熟女人妻精品国产| 欧美不卡视频在线免费观看 | 久久午夜亚洲精品久久| 亚洲天堂国产精品一区在线| 色老头精品视频在线观看| 日韩欧美精品v在线| 国产精品自产拍在线观看55亚洲| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| cao死你这个sao货| 欧美大码av| 九色国产91popny在线| 久久 成人 亚洲| 麻豆成人av在线观看| 悠悠久久av| 国产爱豆传媒在线观看 | 欧美性长视频在线观看| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| 亚洲中文日韩欧美视频| 在线十欧美十亚洲十日本专区| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇中文字幕五十中出| 欧美成人一区二区免费高清观看 | 18禁国产床啪视频网站| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| 亚洲精华国产精华精| 女人高潮潮喷娇喘18禁视频| 久久天堂一区二区三区四区| 我要搜黄色片| 桃红色精品国产亚洲av| www国产在线视频色| 波多野结衣巨乳人妻| 成人精品一区二区免费| 白带黄色成豆腐渣| 好男人电影高清在线观看| 日本 av在线| 免费看美女性在线毛片视频| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 欧美大码av| 一区二区三区国产精品乱码| 国产精华一区二区三区| 午夜激情福利司机影院| 99久久综合精品五月天人人| 亚洲人成网站高清观看| 又紧又爽又黄一区二区| 99re在线观看精品视频| 视频区欧美日本亚洲| 亚洲欧美日韩高清专用| 久久人妻av系列| 亚洲av五月六月丁香网| 男女午夜视频在线观看| 国产高清视频在线观看网站| 久久香蕉精品热| 午夜免费成人在线视频| 99精品欧美一区二区三区四区| 制服丝袜大香蕉在线| 狂野欧美白嫩少妇大欣赏| 两个人看的免费小视频| 老熟妇乱子伦视频在线观看| 日韩 欧美 亚洲 中文字幕| 日本精品一区二区三区蜜桃| 岛国在线观看网站| 日本免费一区二区三区高清不卡| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 色尼玛亚洲综合影院| 麻豆成人av在线观看| 久久久久久久久久黄片| 国产熟女午夜一区二区三区| 99精品在免费线老司机午夜| 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区| 日本一区二区免费在线视频| 久久久久久久久中文| 波多野结衣高清无吗| 欧美日韩亚洲综合一区二区三区_| 性欧美人与动物交配| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 黄频高清免费视频| 男插女下体视频免费在线播放| 久久国产乱子伦精品免费另类| 五月玫瑰六月丁香| 欧美成狂野欧美在线观看| 伦理电影免费视频| 久热爱精品视频在线9| 亚洲美女视频黄频| or卡值多少钱| 久久这里只有精品19| 午夜福利成人在线免费观看| 中国美女看黄片| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| bbb黄色大片| 精品久久久久久成人av| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免费看| 曰老女人黄片| 久久国产乱子伦精品免费另类| 视频区欧美日本亚洲| 性欧美人与动物交配| 777久久人妻少妇嫩草av网站| 亚洲成人国产一区在线观看| 99精品久久久久人妻精品| 在线观看舔阴道视频| 99re在线观看精品视频| 俺也久久电影网| 国产av麻豆久久久久久久| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产激情欧美一区二区| 午夜激情av网站| 亚洲精品在线观看二区| 美女黄网站色视频| 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 精品久久久久久久人妻蜜臀av| 欧美精品亚洲一区二区| 97碰自拍视频| 国产精品,欧美在线| 国产亚洲精品久久久久5区| 久久九九热精品免费| 国产亚洲欧美98| 精品第一国产精品| 不卡av一区二区三区| 不卡一级毛片| 色噜噜av男人的天堂激情| 国产一区二区激情短视频| 母亲3免费完整高清在线观看| 国产麻豆成人av免费视频| 精品久久久久久久久久久久久| 人人妻人人看人人澡| 国产精品久久久久久久电影 | 中亚洲国语对白在线视频| 很黄的视频免费| 亚洲在线自拍视频| 国产av在哪里看| 最近最新免费中文字幕在线| 午夜精品一区二区三区免费看| 嫩草影视91久久| 国产黄色小视频在线观看| 久久午夜综合久久蜜桃| 久久精品人妻少妇| av视频在线观看入口| 精品第一国产精品| 精品人妻1区二区| av超薄肉色丝袜交足视频| 脱女人内裤的视频| 少妇人妻一区二区三区视频| 久久久久国内视频| 男男h啪啪无遮挡| 亚洲成人精品中文字幕电影| 又大又爽又粗| 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 制服诱惑二区| 搡老熟女国产l中国老女人| 黄色女人牲交| 一进一出抽搐动态| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久,| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 久久久国产精品麻豆| www.精华液| 久久久久久九九精品二区国产 | 国产精品乱码一区二三区的特点| 91麻豆精品激情在线观看国产| 国产精品 国内视频| 我要搜黄色片| 校园春色视频在线观看| 在线观看www视频免费| 久久香蕉国产精品| a级毛片a级免费在线| 免费看日本二区| 免费无遮挡裸体视频| 亚洲激情在线av| 亚洲18禁久久av| 国产精品综合久久久久久久免费| 男女床上黄色一级片免费看| 又大又爽又粗| 黄色毛片三级朝国网站| 国产三级中文精品| 午夜亚洲福利在线播放| 正在播放国产对白刺激| 91字幕亚洲| 18美女黄网站色大片免费观看| 国产在线精品亚洲第一网站| 全区人妻精品视频| 午夜福利免费观看在线| 亚洲熟妇熟女久久| 91av网站免费观看| 久久国产精品人妻蜜桃| 2021天堂中文幕一二区在线观| av超薄肉色丝袜交足视频| 看黄色毛片网站| 他把我摸到了高潮在线观看| xxxwww97欧美| 在线观看www视频免费| 日本免费a在线| 国产成人av激情在线播放| 亚洲成人中文字幕在线播放| 1024手机看黄色片| www日本在线高清视频| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 少妇熟女aⅴ在线视频| 床上黄色一级片| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看 | 国产99久久九九免费精品| 亚洲国产看品久久| 精品欧美国产一区二区三| 亚洲一区二区三区不卡视频| 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 日本免费一区二区三区高清不卡| 最近最新免费中文字幕在线| 91九色精品人成在线观看| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频精品福利| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 久久久久久久久久黄片| 色av中文字幕| 久久欧美精品欧美久久欧美| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 欧美一区二区国产精品久久精品 | 亚洲精品av麻豆狂野| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 一区二区三区国产精品乱码| 国产三级在线视频| 日本a在线网址| 亚洲一区高清亚洲精品| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 日韩精品免费视频一区二区三区| 欧美日韩一级在线毛片| www日本在线高清视频| www.999成人在线观看| 国产97色在线日韩免费| 动漫黄色视频在线观看| 黄频高清免费视频| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆| 一本久久中文字幕| 中文资源天堂在线| 欧美午夜高清在线| 欧美黑人巨大hd| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸| 1024香蕉在线观看| 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 日本一本二区三区精品| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| 搞女人的毛片| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 校园春色视频在线观看| 国产区一区二久久| 一本综合久久免费| 亚洲国产精品sss在线观看| 久久久国产成人免费| 日本熟妇午夜| 亚洲国产欧洲综合997久久,| 成人亚洲精品av一区二区| 嫩草影视91久久| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 欧美3d第一页| av天堂在线播放| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 精品久久久久久久末码| 亚洲一区中文字幕在线| 少妇裸体淫交视频免费看高清 | 国语自产精品视频在线第100页| 国产黄色小视频在线观看| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 一个人免费在线观看电影 | 成年版毛片免费区| 一夜夜www| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 国产1区2区3区精品| 深夜精品福利| 九色国产91popny在线| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 亚洲成人中文字幕在线播放| 性欧美人与动物交配| 国产精品98久久久久久宅男小说| 久久久国产精品麻豆| 一级毛片精品| 哪里可以看免费的av片| 50天的宝宝边吃奶边哭怎么回事| 国产精品,欧美在线| 正在播放国产对白刺激| 久久99热这里只有精品18| 国产成人啪精品午夜网站| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 村上凉子中文字幕在线| 在线观看日韩欧美| 老司机靠b影院| 好男人在线观看高清免费视频| 精品国产超薄肉色丝袜足j| 男插女下体视频免费在线播放| 精品少妇一区二区三区视频日本电影| 免费看美女性在线毛片视频| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 美女高潮喷水抽搐中文字幕| 观看免费一级毛片| 丰满人妻一区二区三区视频av | 国产精品av视频在线免费观看| 两人在一起打扑克的视频| av天堂在线播放| 国产视频内射| 亚洲自拍偷在线| 国产成人欧美在线观看| 亚洲国产精品999在线| 国产v大片淫在线免费观看| 久久久国产欧美日韩av| 国产单亲对白刺激| 欧美在线黄色| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 日本在线视频免费播放| 免费av毛片视频| 亚洲天堂国产精品一区在线| 国产精品,欧美在线| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 午夜精品一区二区三区免费看| 天堂√8在线中文| 国产1区2区3区精品| 90打野战视频偷拍视频| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 91九色精品人成在线观看| 老熟妇仑乱视频hdxx| 免费av毛片视频| 日本在线视频免费播放| 丰满的人妻完整版| xxx96com| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 国产av一区二区精品久久| 亚洲国产中文字幕在线视频| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 亚洲乱码一区二区免费版| 可以在线观看的亚洲视频| 国产高清视频在线播放一区| 日韩大码丰满熟妇| 国产视频一区二区在线看| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 国产精品1区2区在线观看.| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 免费无遮挡裸体视频| 老鸭窝网址在线观看| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院| 91av网站免费观看| 成人永久免费在线观看视频| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 亚洲人成网站高清观看| 亚洲成人国产一区在线观看| 国产69精品久久久久777片 | 50天的宝宝边吃奶边哭怎么回事| 亚洲最大成人中文| 午夜亚洲福利在线播放| 亚洲欧美日韩东京热| 国产成人精品久久二区二区91| 三级男女做爰猛烈吃奶摸视频| 一本久久中文字幕| 一区二区三区高清视频在线| 国产熟女午夜一区二区三区| 神马国产精品三级电影在线观看 | 亚洲 欧美 日韩 在线 免费| 国产真实乱freesex| 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看| 亚洲avbb在线观看| 一进一出好大好爽视频| 91老司机精品| 国产不卡一卡二| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 91九色精品人成在线观看| 大型av网站在线播放| 成人特级黄色片久久久久久久| 别揉我奶头~嗯~啊~动态视频| 国产av在哪里看| 99热这里只有精品一区 | 欧美日本亚洲视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 黄色毛片三级朝国网站| 欧美日韩乱码在线| 三级男女做爰猛烈吃奶摸视频| 精品欧美国产一区二区三| av天堂在线播放| 欧美中文综合在线视频| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 日日干狠狠操夜夜爽|