• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維超分子鋅/錳配合物的合成、晶體結(jié)構(gòu)及理論計算

    2018-03-14 06:35:51王志濤瓦倫丁瓦爾切夫方千榮李秀梅潘亞茹
    無機(jī)化學(xué)學(xué)報 2018年3期
    關(guān)鍵詞:瓦倫丁學(xué)報化學(xué)

    王志濤 瓦倫丁·瓦爾切夫 方千榮 李秀梅 潘亞茹

    (1通化師范學(xué)院化學(xué)學(xué)院,通化 134002)

    (2吉林大學(xué)無機(jī)合成與制備化學(xué)國家重點實驗室,長春 130012)

    The design and synthesis of metal-organic coordination polymers relying on the selection of ligands and metal ions have become a very attractive research field.This is motivated not only by the intriguing structural diversity but also by the demand of applying functionalmaterialsinto the fieldsofcatalysis,porosity,magnetism,luminescence and nonlinear optics[1-3].In general,grids with various sizes and shapes can be synthesized by choosing suitable single metal ions and organic ligands such as carboxylates and N-donor groups[4-6].Self-assembly is a complex process,highly influenced by many factors,such asthe coordination geometry of metal ions,the nature of organic ligands,solvent system,temperature,pH value of the solution,the ratio between metal salt and ligand,the templates and the counter anions[7-14].Except for these factors,other forces such as hydrogen-bonding,π-π interactions,metal-metal interactions can also greatly influence the supramolecular topology and its dimensionality[15-17]. Therefore, these considerations made us investigate new coordination structures with pyrazine-2,3-dicarboxylic acid,5-nitroisophthalic acid and chelating ligands.In this manuscript,we reported the syntheses,crystal structures,IR,UV,fluorescence,TG properties oftwo new complexes,namely,{[Zn2(pzdc)(L)2(H2O)]·H2O}n(1)and[Mn (μ2-O)(H2O)2(HL)]·NIPH (2).Moreover,we analyzed natural bond orbital (NBO)by using the PBE0/LANL2DZ method built in Gaussian 09 program.

    1 Experimental

    1.1 General procedures

    All solvents and chemicals were commercial reagents and used without further purification.Elemental analyses (carbon,hydrogen,and nitrogen)were performed with a Vario ELⅢElemental Analyzer.IR spectrum (4 000~400 cm-1)was measured from KBr pellet on a Nicolet 6700 FT-IR spectrometer.TG studies were performed on a Perkin-Elmer TGA7 analyzer.UV spectrum was obtained on a Shimzu UV-250 spectrometer in the 200~400 nm range.The fluorescent studies were carried out on a computercontrolled JY Fluoro-Max-3 spectrometer at room temperature.The crystal structure was determined by a Bruker D8 Venture diffractometer.The powder X-ray diffraction (PXRD)studies were performed with a Bruker D8 Discover instrument (Cu Kα radiation,λ=0.154 184 nm,U=40 kV,I=40 mA)over the 2θ range of 5°~50°at room temperature.

    1.2 Synthesis

    {[Zn2(pzdc)(L)2(H2O)]·H2O}n(1):A mixture of H2pzdc (0.068 g,0.4 mmol),HL (0.028 g,0.2 mmol),Zn(OAc)2·2H2O (0.088 g,0.4 mmol)and 18 mL H2O was adjust to the pH≈6.13 with 0.5 mol·L-1NaOH,sealed in a Teflon-lined stainless steel vessel,heated to 160℃for five days,and followed by slow cooling(a descent rate of 10 ℃·h-1)to room temperature.Pale yellow block crystals were obtained.Yield:32%(based on Zn).Anal.Calcd.for C44H32N16O11Zn4(%):C,43.23;H,2.64;N,18.33.Found (%):C,42.97;H,2.15;N,17.89.IR (cm-1):3 286(w),2 989(w),1 752(m),1 637(m),1 605(m),1 567(w),1 473(w),1 434(w),1 375(m),1 357(m),1 255(w),1 159(w),1 118(w),1 060(w),1 013(m),890(w),783(w),765(w),636(w),481(w).

    [Mn(μ2-O)(H2O)2(HL)]·NIPH (2):A mixture of Mn(OAc)2·4H2O (0.10 g,0.4 mmol),H2NIPH (0.084 g,0.4 mmol),HL (0.058 g,0.4 mmol)and 18 mL H2O was placed in a Teflon reactor (30 mL)and the pH value was adjusted to about 7 with 0.5 mol·L-1NaOH solution.Then the mixture was heated at 140℃for 7 days.After cooling to room temperature at a rate of 10℃·h-1,brown crystals of 1 were collected in 45%yield.Anal.Calcd.for C32H30Mn2N8O18(%):C,41.57;H,3.27;N,12.12.Found(%):41.36;H,3.01;N,11.98.IR (KBr,cm-1):3 413(m),3 102(w),1 630(s),1 606(s),1 583 (m),1 533(m),1 495 (w),1 443(w),1 334 (s),1 101(w),998(w),788(w),720(m),537(w).

    1.3 X-ray crystallography

    Single-crystal X-ray diffraction data for 1 and 2 were measured on a Bruker Smart ApexⅡCCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.071 073 nm)at 293 K.The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program[18-19].Anisotropic thermal parameters were assigned to all non-hydrogen atoms.The hydrogen atoms were placed at the calculated positions and refined as riding atoms with isotropic displacement parameters.The details of the crystal parameters,data collection and refinement for 1 and 2 are summarized in Table 1.Selected bond lengths and bond angles are shown in Table 2.

    CCDC:1468826,1;1439401,2.

    Table 1 Crystal data and structure refinement for 1 and 2

    Table 2 Selected bond lengths(nm)and bond angles(°)for 1 and 2

    2 Results and discussion

    2.1 IR spectrum

    For complex 1,two bands at 1 637 and 1 357 cm-1can be attributed to ν(OCO)assymand ν(OCO)sym[20],respectively.The Δν(ν(OCO)assym-ν(OCO)sym)is 280 cm-1,exhibiting the presence of monodentate (Δν>200 cm-1)linkage of carboxylates in the dianions.Therefore,the carboxylates coordinate to the metal as monodentate ligands via the carboxylate groups[21].The absence of the characteristic bands at abound 1 700 cm-1in complex 1 owing to the protonated carboxylic group indicates the complete deprotonation of pzdc ligand upon reaction with Zn ions[22].Moreover,X-ray diffraction analysisfurtherattributes the existence of monodentate coordination manners of the carboxylate groups and prence deprotonation of pzdc ligands.

    Infrared spectroscopy of complex 2 shows the typical anti-symmetric (1 606 cm-1)and symmetric(1 334 cm-1)stretching bands of carboxylate groups.The absence of the characteristic band around 1 700 cm-1in complex 2 owing to the protonated carboxylic group indicates that the present deprotonation of NIPH ligand.Moreover,the strong and broad band centered at 3 413 cm-1for 2 is owing to the H-O-H stretching vibration of water molecule in the light of the known structure[23].

    2.2 Description of the structure

    X-ray single-crystal diffraction analysis reveals that 1 crystallizes in the monoclinic system,space group C2/c and features a 2D network structure.The coordination environment of Zn(Ⅱ)in 1 is displayed in Fig.1.There are two coordination centers,Zn1 and Zn2,in the crystal structure.The Zn1 ion is fivecoordinated by two carboxylate oxygen atoms(O1,O4A)from two different pzdc ligands,two nitrogen donors (N2A,N8)from pzdc and HL ligands and one coordinated water molecule (O5).The Zn2 ion is also five-coordinated by five nitrogen atoms(N3,N4,N5B,N6,N7).The Zn-O distances fall in the range of 0.198 9(2)~0.212 5(2)nm,and Zn-N bond length fall in the 0.200 7(3)~0.222 2(3)nm,which are all in the normal ranges and the coordination angles around Zn atom are in the range 75.86(11)°~170.90(11)°.

    Fig.1 ORTEP drawing of 1 showing the local coordination environment of Zn(Ⅱ)

    In the crystal structure of complex 1,the HL ligands take μ3coordination mode and the completely deprotonated pzdc ligands show one kind of coordination mode,namely,monodentate bridging mode.As a result,two Zn(Ⅱ)ions are linked by four HL ligand to form dinuclear subunits,which are bridged by pzdc ligands to yield a two-dimensional(2D)network architecture (Fig.2).Each Zn(Ⅱ) shows a distorted square-pyramidal coordination structure.

    Fig.2 View of the two-dimensional network along a axis

    It is worth noting that hydrogen bonding interactions are important in the synthesis of supramolecular architecture[24].There are O-H…O and C-H…O hydrogen bonding interactions between carboxylate oxygen atom,carbon atoms and coordinated water molecules in complex 1 (Table 3).In addition,there are π-π interactions (Fig.3)in complex 1 between pyrazine ring of pzdc ligand and pyrazole ring of HL ligand.The centroid-to-centroid distance between adjacent ring is 0.345 6(2)nm for N4N5C14C13C12 and N1C3C4N2C5C6 rings. The perpendicular distance is 0.315 30(15)nm for N4N5C14C13C12 and N1C3C4N2C5C6rings.Thus,thetwo-dimensional networks are further extended into a three-dimensional supramolecular framework through hydrogen bonds and π-π interactions,which play an important role in stabilizing compound 1.

    Fig.3 View of π-π stacking interactions in complex 1

    Complex 2 crystallizes in the triclinic system,spacegroup P1 and featuresazero-dimensional structure.The coordination environment of Mn(Ⅱ)in 2 is displayed in Fig.4.There are two Mn(Ⅱ)ion,two NIPH ligand,two HL ligand,four coordinated water molecule and two μ2-O atomsin the molecular structure.Each Mn(Ⅱ)ion is six-coordinated by two coordinated water molecules (O7,O9),two μ2-O atoms(O8,O8A)and two nitrogen donors (N2 and N3)from HL ligand to supply a distorted octahedral coordination structure.One coordinated water molecule (O9),one μ2-O atom (O8)and two nitrogen atoms(N2,N3)define an equatorial plane,whereas the axial coordination sites are employed by the other coordinated water molecule(O7)and μ2-O atom (O8A).The Mn-O distances fall in the range of 0.213 46(14)~0.233 36(14)nm,and Mn-N bond length fall in the 0.222 64(14)~0.225 56(14)nm,which are all in the normal range and the coordination angles around Mn(Ⅱ)ion are in the range of 73.95(5)°~168.77(5)°.

    Fig.4 ORTEP drawing of 2 showing the local coordination environment of Mn(Ⅱ)

    Table 3 Hydrogen bond parameters for complexes 1 and 2

    In 2,the HL ligand adopts classic chelating mode,while NIPH ligand wasnotinvolved in coordination,which just play a role of balance charge.Two Mn(Ⅱ)ions are linked by two μ2-O atoms to form dinuclearsubunits,and exhibits zero-dimensional structure.Further study of the crystal packing of complex 2 suggests that there are two kinds of N-H…O and O-H…O hydrogen bonding interactions between nitrogen atom of HL ligand,carboxylate oxygen atoms of NIPH ligand,and coordinated water molecule (Table 3).Moreover,In complex 2,5-member ring of HL and 6-member ring of NIPH ligand centroid distances are 0.368 79(10)nm for N1N2C3C2C1 and C9C10C11C12C13C14 rings,with the vertical distance of 0.326 64(7)nm,indicating the existence of π-π effect,so the structure is more stable.Therefore,a three-dimensional supramolecular network structure is formed by such hydrogen bonds and π-π stacking(Fig.5).

    In order to check the purity of complex 1 and 2,powder X-ray diffraction of the as-synthesized sample were measured at room temperature (Fig.6).The peak positions ofexperimentalpatterns are in good agreement with the simulated ones,which clearly indicates good purity of 1 and 2[25-26].

    Fig.5 View of the 3D supramolecular architecture of 2 formed by hydrogen-bonding and π-π interactions

    Fig.6 PXRD analysis of complex 1 (a)and 2 (b)

    2.3 Thermal analysis

    The thermal stability of complex 1 was tested in the range of 50~700 ℃ under a nitrogen atmosphere at a heating rate of 5℃·min-1.The TGA curve of complex 1 is shown in Fig.7.It displays that the first weight loss of 49.5%from 60 to 192℃corresponds to the release of water molecules and HL ligand(Calcd.50.0%).Upon further heating,an obvious weight loss(26.2%)occurs in the temperature range of 192~525℃,corresponding to the removal of pzdc ligands(Calcd.27.1%).After 525 ℃ no weight loss is found,which indicates the complete decomposition of 1.

    2.4 Photoluminescent properties

    Fig.7 TG curve of the complex 1

    Fig.8 Solid-state emission spectrum of 1 at room temperature

    The emission spectrum of complex 1 in the solid state at room temperature is displayed in Fig.8.It can be reviewed that complex 1 shows blue photoluminescence with an emission maximum at ca.460 nm upon excitation at 375 nm.By way of studying the nature of these emission bands,we first investigated the photoluminescence properties of free H2pzdc,and the resultindicated thatitdoesnotemitany luminescence in the range of 400~800 nm.And then we discussed the emission spectrum of HL itself and theresultconfirmed thatitdoesnotemitany luminescence in the range 400~800 nm,which has also been proved previously[27].Therefore,on the basis of previous literature[28],the emission band could be assigned to the emission of ligand-to-metal charge transfer (LMCT).For possessing strong fluorescent intensity,complex 1 appears to be good candidates for novel hybrid inorganic-organic photoactive materials.

    2.5 UV spectrum analysis

    The UV spectra for complex 2 (Fig.9),H2NIPH and HL ligands have been studied in the solid state.For H2NIPH and HL ligands,there are 277 and 245 nm absorption bands,respectively,while 275 nm for complex 2,which should be assigned to the n→π*[29-32]transition of HL ligand in 2.However,after the ligands coordinates to the Mn2+ion,the absorption intensity increases.

    Fig.9 UV spectrum of 2 at room temperature

    2.6 Theoretical calculations

    All calculations in this work were carried out with the Gaussian 09 program[33].The parameters of the molecular structure for calculation were all from the experimental data of the complex.We analyzed natural bond orbital (NBO)by density functional theory (DFT)[34]with the PBE0[35-38]hybrid functional and the LANL2DZ basis set[39].

    The selected natural atomic charges and natural electron configuration for the complex 1 are displayed in Table 4.It is showed that the electronic configurations of Zn(Ⅱ)ion,N and O atoms are 4s0.303d9.984p0.40,2s1.32~1.372p4.06~4.23and 2s1.64~1.692p5.11~5.23,respectively.On the basis of above results,one can conclude that the Zn(Ⅱ)ion coordinated with N and O atoms is mostly on 3d,4s,and 4p orbitals.N atoms form coordination bonds with Zn(Ⅱ)ion using 2s and 2p orbitals.All O atoms provide electrons of 2s and 2p to Zn(Ⅱ)ion and form the coordination bonds.Thus,the Zn(Ⅱ)ion obtained some electrons from N atoms and O atoms of ligands[40-41].Therefore,on the basis of valence-bond theory,the atomic net charges distribution of the complex 1 appears the obvious covalent interaction between the coordinated atoms and Zn(Ⅱ)ion.

    As can be seen from the Fig.10,lowest unoccupied molecular orbital (LUMO)ismainly consists of HL and H2pzdc ligands,whereas highest occupied molecular orbital (HOMO)mostly composed of HL ligand.So,the charge transfer from ligand to ligand maybededuced from somecontoursof molecular orbital of complex 1.

    Table 4 Selected natural atomic charges and natural electron configuration for 1 and 2

    The selected natural atomic charges and natural electron configuration for complex 2 is displayed in Table 4.It is showed that the electronic configurations of Mn(Ⅱ) ion,N and O atoms are 4s0.233d5.825p0.43,2s1.32~1.352p3.88~4.10and 2s1.61~1.872p4.90~5.18,respectively.On the basis of above results,one can infer that the Mn(Ⅱ)ion coordination with N and O atoms is mostly on 3d,4s,and 5p orbitals.N atoms form coordination bonds with Mn(Ⅱ)ion using 2s and 2p orbitals.All O atoms provide electrons of 2s and 2p to Mn(Ⅱ)ion and form the coordination bonds.Thus,the Mn(Ⅱ)ion obtained some electrons from two N atoms of HL ligand,two O atomsofcoordinated watermolecules,two μ2-O atoms[40-41].Therefore,on the basis of valence-bond theory,the atomic net charge distribution and the NBO bond orders of complex 2 (Table 4)exhibits the obvious covalent interaction between the coordinated atoms and Mn(Ⅱ)ion.The differences of the NBO bond orders for Mn-O and Mn-N bonds make their bond lengths be different[41],which is in good agreement with the X-ray crystal structural data of complex 2.

    As can be seen from the Fig.11,lowest unoccupiedmolecularorbital (LUMO)ismostly consists of HL ligand and metal,whereas highest occupied molecular orbital (HOMO)mainly composed of μ2-O and metal center.So,the charge transfer from ligand to ligand and metal to ligand may be inferred from some contours of molecular orbital of complex 2.

    Fig.10 Frontier molecular orbitals of the complex 1

    Fig.11 Frontier molecular orbitals of the complex 2

    3 Conclusions

    In general, we have described two new supramolecular zinc/manganese complexes.In 1,the pyrazine-2,3-dicarboxylate ligands function in monodentate bridging coordination mode,and the HL ligands take μ3coordination mode.As a result,two Zn(Ⅱ) ions are linked by four HL ligand to yield dinuclear subunits,which are bridged by pzdc ligands to form a two-dimensional network structure.In 2,the HL ligand takes classic chelating mode,while NIPH ligand was not involved in coordination,which just plays a role of balance charge.Two Mn(Ⅱ)ions are linked by two μ2-O atoms to form dinuclear subunits,and exhibits zero-dimensional structure.It is worthy to note that the intermolecular hydrogen bonds and π-π interactions play an important role in the supramolecular structure.These materials will give new impetus to the construction of novel functional material with potentially useful physical properties.

    [1]Uppadine L H,Lehn J M.Angew Chem.Int.Ed.,2004,43:240-243

    [2]WANG Qing-Wei(王慶偉),WANG Ya-Nan(王亞楠),LI Xiu-Mei(李秀梅),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報),2014,30(9):2219-2224

    [3]Hou L,Li D,Shi W J,et al.Inorg.Chem.,2005,44:7825-7832

    [4]Hines C C,Reichert W M,Griffin S T.J.Mol.Struct.,2006,796:76-85

    [5]Wang X L,Qin C,Wang E B,et al.Chem.Eur.J.,2006,12:2680-2691

    [6]García-Couceiro U,Castillo O,Luque A,et al.Cryst.Growth Des.,2006,6:1839-1847

    [7]Hong M C,Zhao Y J,Su W P,et al.Angew.Chem.Int.Ed.,2000,39:2468-2470

    [8]Hong M C,Zhao Y Z,Su W P,et al.J.Am.Chem.Soc.,2000,122:4819-4820

    [9]Abrahams B F,Batten S R,Grannas M J,et al.Angew.Chem.Int.Ed.,1999,38:1475-1477

    [10]Bu X H,Chen W,Lu S L,et al.Angew.Chem.Int.Ed.,2001,40:3201-3203

    [11]Noro S,Kitaura R,Kondo M,et al.J.Am.Chem.Soc.,2002,124:2568-2583

    [12]Bu X H,Chen W,Du M,et al.Inorg.Chem.,2002,41:437-439

    [13]Kasai K,Aoyagi M,Fujita M.J.Am.Chem.Soc.,2000,122:2140-2141

    [14]Sun L B,Li Y,Liang Z Q,et al.Dalton Trans.,2012,41:12790-12796

    [15]Li X M,Pan Y R,Ji J Y,et al.J.Inorg.Organomet.Polym.,2014,24:836-841

    [16]Pan Y R,Sun M,Li X M.Chin.J.Struct.Chem.,2015,34:576-584

    [17]Liu Y Y,Ma J F,Yang Y,et al.Inorg.Chem.,2007,46:3027-3037

    [18]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G?ttingen,Germany,1997.

    [19]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [20]Devereux M,Shea D O,Kellett A,et al.Inorg.Biochem.,2007,101:881-892

    [21]Farrugia L J,Wing X A.Windows Program for Crystal Structure Analysis,University of Glasgow,UK,1988.

    [22]Fu Z Y,Wu X T,Dai J C,et al.Eur.J.Inorg.Chem.,2002,2002:2730-2735

    [23]Nakamoto K.Infrared Spectra and Raman Spectra of Inorganic and Coordination Compound.New York:Wiley,1986.

    [24]Krische M J,Lehn J M.Struct.Bond.,2000,96:3-29

    [25]Gilbert A,Baggott J.Essentials of Molecular Photochemistry.Oxford,Boston:Blackwell Scientific Publications,1991.

    [26]Han Z B,He Y K,Ge C H,et al.Dalton Trans.,2007,36:3020-3024

    [27]Rendell D.Fluorescence and Phosphorescence.New York:John Willey&Sons,1987.

    [28]Zheng S L,Chen X M.Aust.J.Chem.,2004,57:703-712

    [29]Mohamed G G,El-Gamel N E A.Spectrochim.Acta Part A,2004,60:3141-3154

    [30]Dong M N,He L L,Fan Y J,et al.Cryst.Growth Des.,2013,13:3353-3364

    [31]Glasson C R K,Meehan G V,Motti C A,et al.Dalton Trans.,2011,40:10481-10490

    [32]Pandey S,Das S S,Singh A K,et al.Dalton Trans.,2011,40:10758-10768

    [33]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09,Rev.B.09,Gaussian Inc.,Pittsburgh,2009.

    [34]Parr R G,Yang W.Density Functional Theory of Atoms and Molecules.Oxford:Oxford University Press,1989.

    [35]Ernzerhof M,Scuseria G E.J.Chem.Phys.,1999,110:5029-5036

    [36]Adamo C,Barone V.J.Chem.Phys.,1999,110:6158-6170

    [37]Perdew J P,Burke K,Ernzerhof M.Phys.Rev.Lett.,1996,77:3865-3868

    [38]Perdew J P,Burke K,Ernzerhof M.Phys.Rev.Lett.,1997,78:1396-1397

    [39]Dunning T H,Hay P J.Modern Theoretical Chemistry:Vol.3.New York:Plenum,1976:1-28

    [40]Wang L,Zhao J,Ni L,et al.J.Inorg.Gen.Chem.,2012,638:224-230

    [41]LI Zhang-Peng(李章朋),XING Yong-Heng(邢永恒),ZHANG Yuan-Hong(張元紅),et al.Acta Phys.-Chim.Sin.(物理化學(xué)學(xué)報),2009,25(4):741-746

    猜你喜歡
    瓦倫丁學(xué)報化學(xué)
    每天都說我愛你
    致敬學(xué)報40年
    山岳的瓦倫丁 Marco Pantani
    中國自行車(2018年4期)2018-05-26 09:01:39
    當(dāng)善良遇到誠信
    中國信用(2017年3期)2017-05-14 09:58:04
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    學(xué)報簡介
    學(xué)報簡介
    在线观看66精品国产| 在线天堂中文资源库| 中文字幕最新亚洲高清| 成年女人毛片免费观看观看9 | 69av精品久久久久久 | 欧美 日韩 精品 国产| 好男人电影高清在线观看| 涩涩av久久男人的天堂| www.自偷自拍.com| 亚洲精品久久成人aⅴ小说| 成人亚洲精品一区在线观看| 纵有疾风起免费观看全集完整版| 视频区图区小说| 国产区一区二久久| 91老司机精品| 成人永久免费在线观看视频 | 又大又爽又粗| 女人精品久久久久毛片| 国产精品一区二区免费欧美| 我要看黄色一级片免费的| 又紧又爽又黄一区二区| 女同久久另类99精品国产91| 夜夜骑夜夜射夜夜干| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 丁香六月天网| 日韩欧美三级三区| 国产男女超爽视频在线观看| 色精品久久人妻99蜜桃| 国产成人av教育| 男女高潮啪啪啪动态图| 国产av国产精品国产| 国产成+人综合+亚洲专区| 五月天丁香电影| 久久国产精品影院| 欧美国产精品va在线观看不卡| 无限看片的www在线观看| 亚洲av成人一区二区三| 亚洲中文日韩欧美视频| 人人澡人人妻人| 50天的宝宝边吃奶边哭怎么回事| xxxhd国产人妻xxx| 久久人妻av系列| 制服人妻中文乱码| 国产片内射在线| 伦理电影免费视频| 欧美大码av| 黄片播放在线免费| 黄色毛片三级朝国网站| 国产免费视频播放在线视频| 啦啦啦视频在线资源免费观看| 日韩免费高清中文字幕av| 精品福利观看| 老司机亚洲免费影院| 午夜91福利影院| 美女国产高潮福利片在线看| 搡老熟女国产l中国老女人| 精品少妇久久久久久888优播| 老司机深夜福利视频在线观看| 中文亚洲av片在线观看爽 | 亚洲精品在线观看二区| 久热这里只有精品99| 女性生殖器流出的白浆| 大型av网站在线播放| 99riav亚洲国产免费| 亚洲成a人片在线一区二区| 国产片内射在线| 夜夜骑夜夜射夜夜干| 激情视频va一区二区三区| 午夜精品国产一区二区电影| 日韩成人在线观看一区二区三区| 男女无遮挡免费网站观看| 伊人久久大香线蕉亚洲五| 亚洲五月色婷婷综合| 色老头精品视频在线观看| 日本av手机在线免费观看| 午夜91福利影院| 欧美人与性动交α欧美软件| 亚洲成人免费电影在线观看| 成人国产一区最新在线观看| avwww免费| 十八禁网站免费在线| 国产免费现黄频在线看| 亚洲七黄色美女视频| a级毛片在线看网站| av又黄又爽大尺度在线免费看| 怎么达到女性高潮| www日本在线高清视频| 超碰97精品在线观看| 亚洲欧美色中文字幕在线| 十八禁网站免费在线| 肉色欧美久久久久久久蜜桃| 久久九九热精品免费| 欧美成狂野欧美在线观看| 99久久国产精品久久久| 男人操女人黄网站| 欧美中文综合在线视频| xxxhd国产人妻xxx| 色老头精品视频在线观看| 日韩免费av在线播放| 国产av一区二区精品久久| 一夜夜www| 菩萨蛮人人尽说江南好唐韦庄| 欧美久久黑人一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品亚洲一级av第二区| 午夜日韩欧美国产| 亚洲天堂av无毛| 女人精品久久久久毛片| 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 最近最新中文字幕大全电影3 | 亚洲人成电影免费在线| 亚洲精品自拍成人| 精品福利永久在线观看| 性色av乱码一区二区三区2| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看66精品国产| 99久久人妻综合| 啦啦啦免费观看视频1| 日本欧美视频一区| 久久久水蜜桃国产精品网| 欧美在线一区亚洲| 最新的欧美精品一区二区| 国产成人一区二区三区免费视频网站| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 久久婷婷成人综合色麻豆| 免费在线观看完整版高清| 成人亚洲精品一区在线观看| 51午夜福利影视在线观看| 一夜夜www| 欧美人与性动交α欧美精品济南到| 99久久精品国产亚洲精品| 在线播放国产精品三级| 精品少妇内射三级| 国产精品免费视频内射| 亚洲国产欧美日韩在线播放| 成人av一区二区三区在线看| 精品亚洲成国产av| 午夜福利一区二区在线看| 亚洲熟妇熟女久久| 久久中文看片网| 成年动漫av网址| 一本一本久久a久久精品综合妖精| 在线天堂中文资源库| videosex国产| 99国产精品一区二区蜜桃av | 人妻一区二区av| 国产午夜精品久久久久久| 亚洲精品一二三| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看| 国产精品九九99| 免费看十八禁软件| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品高潮呻吟av久久| 99精品欧美一区二区三区四区| 国产有黄有色有爽视频| 国产精品 国内视频| 满18在线观看网站| 男女下面插进去视频免费观看| 大香蕉久久成人网| 成人国语在线视频| 中文字幕最新亚洲高清| 久久热在线av| 中文字幕最新亚洲高清| 50天的宝宝边吃奶边哭怎么回事| 无限看片的www在线观看| 亚洲一区中文字幕在线| 久久久久久免费高清国产稀缺| 精品亚洲成国产av| 国产一区有黄有色的免费视频| 美女高潮喷水抽搐中文字幕| 极品教师在线免费播放| 亚洲九九香蕉| 啪啪无遮挡十八禁网站| 波多野结衣一区麻豆| 日韩大片免费观看网站| 淫妇啪啪啪对白视频| 美女国产高潮福利片在线看| 国产精品影院久久| 欧美午夜高清在线| 国产有黄有色有爽视频| 日本wwww免费看| 国产人伦9x9x在线观看| 国产片内射在线| 我的亚洲天堂| 色播在线永久视频| 一边摸一边做爽爽视频免费| 精品国产亚洲在线| 黄色 视频免费看| 少妇精品久久久久久久| 国产精品久久久人人做人人爽| 一本一本久久a久久精品综合妖精| 亚洲男人天堂网一区| 在线天堂中文资源库| 啪啪无遮挡十八禁网站| 最新的欧美精品一区二区| 日本wwww免费看| 午夜成年电影在线免费观看| 99精品在免费线老司机午夜| 亚洲国产av影院在线观看| 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 丰满少妇做爰视频| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 国产精品九九99| 国产黄色免费在线视频| 欧美日韩亚洲国产一区二区在线观看 | 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 欧美黑人欧美精品刺激| 一夜夜www| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 国产精品国产高清国产av | 新久久久久国产一级毛片| a级片在线免费高清观看视频| 欧美精品一区二区大全| 国产欧美日韩一区二区精品| 桃花免费在线播放| 久久影院123| 无限看片的www在线观看| 中文亚洲av片在线观看爽 | 国产亚洲精品第一综合不卡| 国产成人精品在线电影| 欧美成狂野欧美在线观看| 免费av中文字幕在线| 久久精品亚洲精品国产色婷小说| 丝瓜视频免费看黄片| 在线天堂中文资源库| 热99re8久久精品国产| 人人澡人人妻人| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 欧美一级毛片孕妇| 91九色精品人成在线观看| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 超色免费av| 亚洲 欧美一区二区三区| 手机成人av网站| 亚洲精品在线观看二区| 成年人免费黄色播放视频| 啪啪无遮挡十八禁网站| 视频在线观看一区二区三区| av超薄肉色丝袜交足视频| 最新的欧美精品一区二区| 成人三级做爰电影| 一区二区三区乱码不卡18| 老司机靠b影院| 亚洲av日韩精品久久久久久密| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 桃花免费在线播放| 国产精品电影一区二区三区 | 黄色视频在线播放观看不卡| 97在线人人人人妻| 国产一区二区激情短视频| 操美女的视频在线观看| 无限看片的www在线观看| 久久人人97超碰香蕉20202| av在线播放免费不卡| 国产成人精品在线电影| 成人手机av| 在线播放国产精品三级| 亚洲av第一区精品v没综合| 久久影院123| 国产精品久久久久久精品古装| 少妇被粗大的猛进出69影院| 麻豆av在线久日| 亚洲欧洲日产国产| 手机成人av网站| 国产又爽黄色视频| 天天操日日干夜夜撸| 久久久久久亚洲精品国产蜜桃av| 久久国产亚洲av麻豆专区| videos熟女内射| 人成视频在线观看免费观看| 正在播放国产对白刺激| 超碰97精品在线观看| 宅男免费午夜| 中亚洲国语对白在线视频| 日本撒尿小便嘘嘘汇集6| 免费在线观看日本一区| 亚洲五月色婷婷综合| 高清视频免费观看一区二区| 亚洲人成电影观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 一个人免费看片子| 国产成人精品在线电影| 亚洲人成伊人成综合网2020| 亚洲欧美日韩高清在线视频 | 久久人妻福利社区极品人妻图片| 麻豆国产av国片精品| 亚洲欧洲日产国产| 美国免费a级毛片| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 大香蕉久久成人网| 精品第一国产精品| 动漫黄色视频在线观看| 18禁国产床啪视频网站| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 美女福利国产在线| 亚洲av成人不卡在线观看播放网| 亚洲熟妇熟女久久| 香蕉国产在线看| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 精品国产亚洲在线| 天堂动漫精品| 国产精品成人在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久ye,这里只有精品| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 99re在线观看精品视频| 亚洲av日韩在线播放| 一级毛片电影观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲性夜色夜夜综合| 国产麻豆69| 亚洲专区字幕在线| 国产在线观看jvid| 久久久国产精品麻豆| 女警被强在线播放| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 成人黄色视频免费在线看| 成人18禁在线播放| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 黄片大片在线免费观看| 高清av免费在线| 国产在视频线精品| 久久久久久久大尺度免费视频| 亚洲视频免费观看视频| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 精品国内亚洲2022精品成人 | 啪啪无遮挡十八禁网站| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 黄色成人免费大全| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 欧美久久黑人一区二区| 午夜两性在线视频| 亚洲男人天堂网一区| 久久性视频一级片| 欧美精品av麻豆av| 国产视频一区二区在线看| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| 久久国产精品人妻蜜桃| 建设人人有责人人尽责人人享有的| 欧美黄色片欧美黄色片| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 日韩制服丝袜自拍偷拍| 91成年电影在线观看| 日本vs欧美在线观看视频| 亚洲国产欧美网| 乱人伦中国视频| 国产有黄有色有爽视频| 国产精品免费大片| 亚洲 国产 在线| 免费看十八禁软件| 亚洲色图综合在线观看| 免费少妇av软件| 国产熟女午夜一区二区三区| 在线观看免费高清a一片| 天天影视国产精品| 18在线观看网站| 久久青草综合色| 99国产极品粉嫩在线观看| 亚洲一区二区三区欧美精品| 一级毛片精品| 久久精品国产a三级三级三级| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 一二三四在线观看免费中文在| 国产精品国产av在线观看| 久久九九热精品免费| 男男h啪啪无遮挡| 99久久人妻综合| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 婷婷成人精品国产| 午夜福利在线免费观看网站| 亚洲国产欧美在线一区| 侵犯人妻中文字幕一二三四区| 极品教师在线免费播放| 久久人人爽av亚洲精品天堂| 亚洲美女黄片视频| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 熟女少妇亚洲综合色aaa.| 中文亚洲av片在线观看爽 | 在线观看人妻少妇| 男女下面插进去视频免费观看| 男女高潮啪啪啪动态图| 另类精品久久| 国产免费现黄频在线看| 日韩中文字幕视频在线看片| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 精品久久久精品久久久| 久久亚洲精品不卡| 国产色视频综合| 亚洲av片天天在线观看| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 搡老乐熟女国产| 丝袜喷水一区| 一边摸一边抽搐一进一小说 | 777米奇影视久久| 国产日韩欧美视频二区| 19禁男女啪啪无遮挡网站| 777米奇影视久久| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区 | av在线播放免费不卡| 亚洲午夜理论影院| 国产精品麻豆人妻色哟哟久久| 亚洲精华国产精华精| 黄色怎么调成土黄色| 亚洲国产看品久久| 欧美精品一区二区免费开放| 一区二区三区国产精品乱码| 国产男靠女视频免费网站| 日韩人妻精品一区2区三区| 我的亚洲天堂| 一个人免费看片子| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| 国产不卡av网站在线观看| 性少妇av在线| av免费在线观看网站| 女性生殖器流出的白浆| √禁漫天堂资源中文www| 老司机靠b影院| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 成人精品一区二区免费| av在线播放免费不卡| 中文字幕人妻熟女乱码| 亚洲一区中文字幕在线| 天堂动漫精品| √禁漫天堂资源中文www| 国产精品影院久久| 亚洲av国产av综合av卡| 高清欧美精品videossex| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 国产色视频综合| 国产精品国产高清国产av | 精品人妻熟女毛片av久久网站| av又黄又爽大尺度在线免费看| 12—13女人毛片做爰片一| 纵有疾风起免费观看全集完整版| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 国产97色在线日韩免费| 久久久久久久国产电影| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 老司机影院毛片| 50天的宝宝边吃奶边哭怎么回事| 精品人妻在线不人妻| 操出白浆在线播放| 麻豆成人av在线观看| 黄频高清免费视频| 久久 成人 亚洲| 久久久久精品人妻al黑| 国产精品一区二区免费欧美| 久久中文看片网| 欧美国产精品一级二级三级| 国产野战对白在线观看| 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 日本a在线网址| 国产亚洲精品一区二区www | 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕 | www日本在线高清视频| 一个人免费在线观看的高清视频| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 一区二区三区精品91| a级毛片黄视频| 亚洲九九香蕉| 色综合婷婷激情| 亚洲中文av在线| 国产精品一区二区在线不卡| 国产又爽黄色视频| av欧美777| 欧美一级毛片孕妇| 色在线成人网| 国产区一区二久久| 男女午夜视频在线观看| 免费观看a级毛片全部| 精品国产亚洲在线| 男女边摸边吃奶| 欧美日韩精品网址| 日本a在线网址| 又黄又粗又硬又大视频| 露出奶头的视频| 精品高清国产在线一区| 国产一区二区三区综合在线观看| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 成人国产av品久久久| 女人久久www免费人成看片| 久久青草综合色| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 宅男免费午夜| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看 | 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| av电影中文网址| 天堂中文最新版在线下载| 国产在视频线精品| 欧美激情高清一区二区三区| 久久精品国产综合久久久| 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| 午夜福利,免费看| 人人妻人人添人人爽欧美一区卜| 国产伦理片在线播放av一区| 免费av中文字幕在线| 一区二区日韩欧美中文字幕| av网站在线播放免费| 亚洲国产看品久久| 欧美另类亚洲清纯唯美| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 国产免费av片在线观看野外av| 免费av中文字幕在线| 欧美黄色片欧美黄色片| 成人18禁高潮啪啪吃奶动态图| 他把我摸到了高潮在线观看 | tube8黄色片| 日韩中文字幕视频在线看片| 丁香欧美五月| 精品午夜福利视频在线观看一区 | 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| cao死你这个sao货| 精品福利观看| a在线观看视频网站| 亚洲精品在线美女| 欧美日韩视频精品一区| 久久婷婷成人综合色麻豆| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| 在线亚洲精品国产二区图片欧美| 久久久国产成人免费| 在线亚洲精品国产二区图片欧美| 在线观看免费午夜福利视频| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 国产日韩欧美视频二区| 中国美女看黄片| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| 高清欧美精品videossex| 黑丝袜美女国产一区| 精品国产国语对白av| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 国产午夜精品久久久久久| 国产av国产精品国产| 91成年电影在线观看| 亚洲国产欧美网| 人人妻人人澡人人爽人人夜夜| 色播在线永久视频| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 人人妻人人澡人人爽人人夜夜| 99久久99久久久精品蜜桃|