• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于End-On疊氮橋聯(lián)的混合價Co(Ⅱ/Ⅲ)和一維Cu(Ⅱ)鏈-席夫堿化合物的合成、結(jié)構(gòu)及磁學性質(zhì)

    2018-03-14 06:35:32田菊梅張景萍
    無機化學學報 2018年3期
    關(guān)鍵詞:席夫堿疊氮口腔醫(yī)學

    田菊梅 張景萍

    (1廈門醫(yī)學院口腔醫(yī)學系,廈門 361023)

    (2東北師范大學化學學院,長春 130024)

    The design of molecule-based magnetic materials is one of the hot topics owing to their potential applications including high-density information storage,quantum information computing technology,spintronic and magnetocaloric refrigeration[1-13].Magnetic materials can display attractive architecture and magnetic exchange coupling due to their tunable characteristics by employing well established design principle and synthetic procedure[14-17].There are many factors influencing the target magnetic complexes during the course of synthesis,such as well-designed polydentate ligands,bridging ligands,transition metal ions,solvent,temp-erature,stoichiometric ratio,pH value,crystallization mechanism and the order of addition.Our present work has focused on investigating the influence of bridging ligands on the molecular structure dimension and magnetic properties of the resulting system,and exploring the magneto-structural correlations.

    According to the reported literature,we find that the ligand diazine Schiff base N,N′-bis(salicylidene)hydrazine (H2salhn)is especially useful in forming mono-/dinuclear metal complexes,e.g.,dinuclear 3d metal complexes M2(salhn)3(M=Fe,Co,Mn)[18-21],dinuclear zinc and copper complex M2(salhn)2(H2O)4(M=Zn,Cu)[22],mononuclear ruthenium complex[RuH(CO)(PPh3)2(salhn)][23],series of di-ruthenium complexes[24],dirhodium [(CO)2Rh(salhn)Rh (CO)2][25].The N2O2-donor Schiff base H2salhn provides the=N-N=fragment,which acts not only as chelating sites,but also as bridging unit between the two metal ions[20].Therefore,H2salhn is inclined to act as a role of chelating ligands,and thus to form two nuclear clusters.This allows us to consider employing other bridging ligands,which may be helpful to assemble extended system (from 0D to 1D or 2D or 3D)and to investigate the related magnetic properties of the resulting novel systems.

    Therefore,a suitable bridging ligand plays a crucial role in assembling extended magnetic materials of the Schiff base H2salhn system.In our previous work[26-27],our group has assembled magnetic materials by selecting carboxylate bridging ligands to bind 3d transition-metal ions into polynuclear aggregates.As the expansion of this line,the azido ligand is another suitable choice as bridging ligand for the construction of magnetic materials due to their extremely versatile coordination modes and effectively mediating magnetic exchange interactions[28-38].Herein,we have successfully synthesized and studied two novel complexes[CoⅡCoⅢ4(salhn)4(N3)6(CH3OH)2(H2O)2]·4CH3OH·2H2O (1)and[Cu2(salhn)(N3)2]n(2).Complex 1 consists of a mixed-valence penta-nuclear cobalt cluster.Compared with the previous Co2(salhn)3diamagnetic system[20],complex 1 shows antiferromagnetic behaviors according to the magnetic measurements.Complex 2 consists of a 1D copper chain,in which the azido groups successfully replace coordinated water molecules to form extended network by using different synthetical method as compared to the reported Cu2(salhn)2(H2O)4system[22].In these two complexes,azido groups both adopt end-on (EO,μ-1,1)coordination mode.The magnetic measurements indicate complex 2 shows antiferromagnetic behavior.Here,we have reported the synthesis,X-ray singlecrystal structure,and magnetic properties of these two complexes.

    1 Experimental

    1.1 Reagents and physical measurements

    Caution! The reported azideispotentially explosive.Only small amounts of the material should be handled,and with care.

    Solvents and starting materials were purchased commercially and used as received without further purification unless otherwise noted.The Schiff base H2salhn was prepared in~95%yield by condensation reaction of hydrazine and salicylaldehyde in a 1∶2 molar ratio in methanol according to the reported method[19].The resulted yellow precipitate followed by recrystallization from dimethylformamide (DMF)to form yellow single crystal of H2salhn suited for X-ray diffraction analysis, which crystallizes in the monoclinic space group P21/n with the crystallographic parameter:a=8.526 0(19)nm,b=6.319 0(14)nm,c=11.823(3)nm,β=107.846(3)°.

    The elemental analyses (C,H,and N)were performed on a Perkin-Elmer Model 240C elemental analyzer.The Cu and Co elemental analyses were determined by the Leaman inductively coupled plasma(ICP)spectrometer.Infrared spectra (400~4 000 cm-1)were measured on a Perkin-Elmer Fourier transform infrared (FTIR)spectrophotometer using KBr pellets.Powder X-ray diffraction (PXRD)measurements were assessed on a Siemens D5005 diffractometer with Cu Kα (λ=0.154 184 nm)with a step size of 0.1°in 2θ range of 5°~50°at room temperature.The XRD accelerating voltage and emission current were 40 kV and 30 mA,respectively.

    1.2 Syntheses of complexes 1~2

    1.2.1 Synthesis of[CoⅡCoⅢ4(salhn)4(N3)6(CH3OH)2

    H2salhn (0.24 g,1 mmol)and KOH (0.11 g,2 mmol)were dissolved in methanol solvent (20 mL),forming a clear yellow solution,which was magnetically stirred at 40~50 ℃ for 30 min.Then,a methanol solution (20 mL)of CoCl2·6H2O (0.71 g,3 mmol)was added to the hot yellow solution.After 15 min,an aqueous solution (1 mL)of sodium azide (0.20 g,3 mmol)was added under continuous stirring for 1 h.Black-colored,needle-like crystals of complex 1 were obtained from the filtrate after a few days.Yield:65%(based on Co ions).Anal.Calcd.for C62H72Co5N26O18(% ):Co,16.70;C,42.21;H,4.11;N,20.64.Found(%):Co,17.10;C,41.82;H,4.28;N,20.14.IR (KBr,cm-1):2 077 and 2 023 for the azido groups,1 603 for ν(C=N).

    1.2.2 Synthesis of[Cu2(salhn)(N3)2]n(2)

    An aqueous solution (1 mL)of sodium azide(0.039 g,0.6 mmol)was added to a methanol solution(20 mL)of Cu(NO3)2·3H2O (0.097 0.4 mmol).After stirring for 20 min,a hot DMF solution (2 mL)of H2salhn (0.048 g,0.2 mmol)and triethylamine (0.040 g,0.4 mmol)was added to the resulting mixture with continuous stirring for 3 h.Black-colored,block crystals of 2 were obtained from the filtrate after a few days.Yield:60% (based on Cu ions).Anal.Calcd.for C14H10Cu2N8O2(%):Cu,28.28;C,37.42;H,2.24;N,24.94.Found(%):Cu,28.34;C,37.12;H,2.29;N,24.44.IR (KBr,cm-1):2 046 and 2 101 for the azido groups,1 604 for ν(C=N).

    1.3 Details of X-ray crystallography

    Single-crystal X-ray diffraction data sets for 1 and 2 were obtained on a Bruker SMART APEX CCD area detector diffractometer using graphite monochromated Mo Kα radiation (λ=0.071 073 nm)at 195 K.Structure solution (direct methods)and the refinement of full-matrix least-squares were carried out using the SHELXTL software package[39].All the non-hydrogen atoms were refined with anisotropic thermal parameters.The hydrogen atoms attached to carbon and nitrogen atoms were placed in geometrically calculated positions.Crystallographic and refinement details for all compounds are summarized in Table 1.Selected bond lengthsand anglesare listed in TableS1~S2(Supporting information).

    CCDC:869426,1;869427,2.

    1.4 Magnetic measurements

    The magnetic susceptibility measurementsonpolycrystalline samples of 1 and 2 were conducted on Quantum Design SQUID MPMS XL-5 instruments in the temperature range of 300~2 K and under the applied magnetic field of 1 and 5 kOe,respectively.The field dependent magnetizations for 1 and 2 were measured at 2 K in the field range of 0~5 T.The temperature dependence of the field-cooled (FC),zerofield-cooled (ZFC)for 2 was assessed under a dc field of 100 Oe.

    Table 1 Crystallographic data and structure refinement summary for complexes 1~2

    2 Results and discussion

    2.1 Synthesis

    Complex 1 has been synthesized by reacting CoCl2·6H2O,H2salhn,KOH,and NaN3in 3 ∶1 ∶2 ∶3 molar ratio in the mixture solvent(41 mL)of methanol and water (40 ∶1,V/V).The trivalent cobalt may be resulted from the oxidation of Co(Ⅱ) to Coバ by atmospheric oxygen gas under basic condition.Excess of metal material may be responsible to the presence of divalent cobalt center in complex 1,compared to the full trivalent metal system Co2(salhn)3assembling from CoCl2·6H2O,H2salhn,KOH in 2∶3∶6 molar ratio[20].

    A mixture solvent(methanol 20 mL,DMF 2 mL and water 1 mL)of Cu(NO3)2·3H2O,H2salhn,NaN3,and triethylamine in 2 ∶1 ∶3 ∶2 molar ratio yields block crystals of 2.

    2.2 X-ray crystal structures

    2.2.1 Structural analyses of 1

    Fig.1 Structure of complex 1:(a)ellipsoid of the subunit and the numbering scheme with probability of 30%;(b)penta-nuclear cobalt cluster and the numbering scheme for cobalt ions viewing from the same direction as (a);(c)zigzag-like cluster along a axis

    Single-crystal X-ray diffraction analysis indicates that complex 1 crystallizes in the monoclinic space group P21/n.The selected bond distances and bond angles are given in Table S1.The molecule is a neutral zigzag-like penta-nuclear cobalt cluster.And four CH3OH molecules and two H2O molecules are located in the crystal lattice.The asymmetric unit consists of three Co ions,two deprotonated ligands(salhn2-),two end-on azido groups,one terminal azido group,one coordinated H2O molecule and CH3OH molecule (Fig.1a).Co(1)is located on an inversion centre and exhibits a N2O4coordination polyhedron with octahedral geometry.Two nitrogen atoms from two azido groups are situated at axial positions.The equatorial positions are occupied by four oxygen atoms belonging to two coordinated H2O molecules and CH3OH molecules,respectively.The azido group acts as the only bridge between Co(1)and Co(2)with the bond angleCo(1)-N(11)-Co(2), 131.89° and the Co(1)…Co(2)distance,0.374 7 nm.The two phenolate oxygens of H2salhn are deprotonated acting as a quadridentate (N2O2)dianion containing two nitrogen atoms from diazine (=N-N=)binding two metal ions Co(2)and Co(3).The other two sites for Co(2)and Co (3)have been taken up by nitrogen atoms from azido anions.It is worth noting that a reference of charge balance as well as an analysis of the Co-N and Co-O bond lengths,which are longer for Co(1)(with 0.213 5 and 0.207 2~0.207 9 nm,respectively)than for Co(2)and Co(3)(with 0.191 4~0.196 7 nm and 0.187 9~0.189 8 nm,respectively),clearly indicate the presence of mixed valence cobalt ions.The+2 valence state is assigned to Co(1),while the+3 valence state is assigned to Co(2)/Co(3)and their symmetry related Co(2)#1/Co(3)#1,which are also confirmed by bond valence sum (BVS)calculations[20,40-41].

    2.2.2 Structural analyses of 2

    Complex 2 crystallizes in the monoclinic space group P21/n,and the asymmetric unit consists of two crystallographically independent Cu atoms,one salhn2-ligand,and two N3-groups (Fig.2a).Ligand H2salhn acts as a quadridentate (N2O2)bianion (salhn2-)linked through two imine N atoms and two deprotonated phenoxide O atoms.In the dimer unit,each Cu ion is penta-coordinate to form a distorted square pyramidal coordination environment.The Addison parameter (τ)is 0.06 for Cu(1)and 0.22 for Cu(2)(τ is equal to zero for a perfect square-pyramidal geometry,while it is one for an ideal trigonal bipyramidal geometry)[42].Each Cu ion is coordinated by two N atoms from two different azido groups,one N atom from one salhn2-ligand,and two oxygen atoms from two different salhn2-ligands.Within the dimer,a triplicate bridge between Cu(1)and Cu(2)is made by two phenoxide O atoms(O(1),O(2))from two salhn2-ligands and one EO(μ-1,1)azido N atom N(6).The two phenoxide-O (O(1),O(2))show different bridge angles (∠Cu(1)-O(1)-Cu(2)=83.48°and ∠Cu(1)-O(2)-Cu(2)=79.11°).The bridge anglethrough azido N atom (Cu (1)-N (6)-Cu (2))is 89.77°.The Cu(1)…Cu(2)distance within the dimer is 0.285 4(6)nm,but the inter-dimer Cu…Cu distance is 0.336 9 nm.The Cu-O and Cu-N bond distances lie in the range of 0.192 0(2)~0.234 1(2)nm and 0.194 8(3)~0.202 9(3)nm, respectively. The selected bond distances and bond angles are given in Table S2.

    Fig.2 Structure of complex 2:ellipsoid of the dimer and the numbering scheme with probability of 50%(a);1D chain along a axis (b),or c axis (c)

    Inspection of the structure of the 1D chain shows a scissor-shaped structure running along a axis(Fig.2b and 2c).The adjacent chains are packing along a axis through C(3)-H(3)…O(2)and C(14)-H(14)… N(5)hydrogen bonding interactions (Fig.3).The hydrogen bond C(3)-H(3)… O(2)involves C-H fragment of a benzene ring and the O-atom of phenolate with C(3)…O(2)distance of 0.343 1 nm and C(3)-H(3)… O (2)angle of 135.61°.The another hydrogen bond C (14)-H(14)…N(5)involves C-H fragment of methylene group and the N-atom of azido group with C(14)…N(5)distance of 0.345 9 nm and C(14)-H(14)…N(5)angle of 177.0°.

    Fig.3 Packing view of 2 formed by interchain hydrogen bond C(3)-H(3)…O(2)and C(14)-H(14)…N(5)along a axis

    2.2 IR spectroscopy and PXRD properties

    As depicted in Fig.S1,a strong stretching band at 1 625 cm-1indicates the presence of imine group C=N stretching for ligand H2salhn,which is in agreement with the crystalstructure.However,the imine stretching appears at 1 603 cm-1for 1 and 1 604 cm-1for 2,which may be resulted from the effect of N atom coordination with metal.The similar trend can be found in the reported other metal coordination complexes possessing the same ligand[19-20].The characteristic azido stretching bands are found at 2 023 and 2 077 cm-1for 1 as well as 2 101 and 2 046 cm-1for 2,which are typical for EO(μ-1,1)azido bridging[32,43].The purity of bulky samples of 1 (Fig.S2)and 2 (Fig.S3)were corroborated by the similarities between simulated and experimental PXRD patterns.

    2.4 Magnet behaviour

    Variable temperature dc susceptibility measurements of 1 and 2 were collected in the temperature range of 300~2 K under an applied field of 1 000 and 5 000 Oe,respectively.From a magnetic point of view,complex 1 is effectively mononuclear Co(Ⅱ)system because the Coバsites are diamagnetic.As shown in Fig.4a,the χmT value at room temperature for 1 is 2.97 cm3·mol-1·K,much higher than the spin-only high spin Co(Ⅱ) (S=3/2)value of 1.875 cm3·mol-1·K with g=2.0.This is probably induced by the presence of orbital contribution in octahedral Co(Ⅱ)ion[44-45].Upon cooling,the χmT value first slightly decreases to a minimum value of 2.15 cm3·mol-1·K at 22 K.Below 22 K,χmT value increases slightly to reach a maximum of 2.19 cm3·mol-1·K at 14 K,and secondly drops abruptly to a minimum value of 1.57 cm3·mol-1·K at 2 K.Fitting the data above 100 K with the Curie-Weiss law gives the Curie constant C=3.23 cm3·mol-1·K and Weiss temperature θ=-22.35 K (line in Fig.4a).The large negative Weiss constant value and the first decreaseofχmT above22 K both indicatethe occurrence of significant spin-orbital coupling and zero field splitting (ZFS)of the anisotropic HS Co(Ⅱ)ion[46-48].The sharp increase between 22 and 14 K could be due to the presence of impurity and the second decrease of χmT below 14 K suggests the intermolecular antiferromagnetic interaction. The magnetization versus field plot at 2 K also confirms the observed antiferromagnetism (Fig.4b).At 5 T,the magnetization amounts to 1.68Nβ,which is not saturated and is away from the theoretical value of 3Nβ assuming g=2.

    Fig.4 (a)χmT vs T and χmvs T plots in the temperature range of 2~300 K under a 1 000 Oe applied field;(b)Magnetization vs field plot at 2.0 K among 0~7 T for 1

    The χmT value of complex 2 at room temperature is 0.99 cm3·mol-1·K,which is larger than the spinonly value of 0.75 cm3·mol-1·K calculated for two Cu(Ⅱ) ions with g=2 (Fig.5a).As the temperature is decreased,the χmT value shows a slight decrease to a value of 0.93 cm3·mol-1·K at 100 K,before an abrupt decrease to reach a value of ca.0.046 cm3·mol-1·K at 2.0 K.A fitting of the data above 100 K to Curie-Weiss law gives C=1.03 cm3·mol-1·K and θ=-11.34 K(line in the lower part of Fig.5a).The negative Weiss temperature and the decrease of χmT both indicate a predominant antiferromagnetic interaction.Inspection of the structure suggests two different Cu…Cu interactions combining with two different Cu…NEO…Cu angles (detailed describing in the structure part).We try to use two models:(i)alternating S=1/2 antiferromagnetic chain; (ii)regular S=1/2 antiferromagnetic chain model[42,49].Unfortunately,these two models are not able to reproduce the magnetic properties adequately.Finally we have fitted the magnetic properties to the Ising model for 1D chain[49](line in the upper part top of Fig.5a).This model reproduces the magnetic property of 2 extremely well with g=2.32 and J=-23.49 cm-1.The field dependence of the magnetization for 2 is displayed in Fig.5b.The magnetization data does not reach to the saturation value of 2.0Nβ at 5 T,but equals 0.15Nβ,which further confirms the strong antiferromagnetic interaction.Divergence of the ZFC and FC susceptibilities was observed below 50 K indicating a possible long-range ordered (Fig.6).

    Fig.5 (a)χmT vs T and χmvs T plots in the temperature range of 2~300 K under a 5 000 Oe applied field;(b)Magnetization vs field plot at 2.0 K among 0~7 T for 2

    Fig.6 ZFC and FC as function of temperature at H=100 Oe for 2

    For copper(Ⅱ)azido complexes,the different azido bridged fashion may mediate the different magnetic interaction.There are two cases for end-on azido bridged[29,34,36,50]:(i)the Cu-NEO-Cu angle is lower than 104°(theory)or 108°(experiment),which prop-agates ferromagnetic;otherwise,it is antiferromag-netic. (ii)The longer bond distance of Cu-N3(EO)may lead to the weaker ferromagnetic interaction.In complex 2,there are two different transition angle (∠Cu(1)-N(6)-Cu(2)=89.77°and ∠Cu(1)-N(3)-Cu(2)#1=117.02°),which may propagate ferromagnetic and antiferromagnetic coupling,respectively.But the long bond distance (Cu(1)-N(6)0.201 5 nm and Cu(2)-N(6)0.202 9 nm)may weaken the ferromagnetic coupling.Therefore,the whole 1D chain behaves antiferromagnetic interaction.

    3 Conclusions

    In conclusion,we used azide as bridging group and successfully assembled two EO azido bridged complexes 1 and 2,which both show antiferromagnetic behaviors.Compared with the reported metal-H2salhn complexes[20,22],the azido groups within the complex successfully bridge the metalions to form the extended structure and mediate the magnetic interaction.Further investigating other bridging ligand,such as cyano,oxalate,nitride,etc,which mediate magnetic interaction of other metal Schiff base complexes,is in progress in our group.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Mazzanti M.Nat.Chem.,2011,3:426-427

    [2]Li B,Zhang J P,Zhang Y,et al.CrystEngComm,2011,13:418-420

    [3]Mougel V,Chatelain L,Pécaut J,et al.Nat.Chem.,2012,4:1011-1017

    [4]Mills D P,Moro F,McMaster J,et al.Nat.Chem.,2011,3:454-460

    [5]Das A,Gieb K,Krupskaya Y,et al.J.Am.Chem.Soc.,2011,133:3433-3443

    [6]Sanvito S.Chem.Soc.Rev.,2011,40:3336-3355

    [7]Peng J B,Zhang Q C,Kong X J,et al.Angew.Chem.Int.Ed.,2011,50:10649-10652

    [8]Peng J B,Zhang Q C,Kong X J,et al.J.Am.Chem.Soc.,2012,134:3314-3317

    [9]Coronado E,Giménez-Marqués M,Espallargas G M,et al.Nat.Commun.,2012,3:828-835

    [10]Yoshida H,Yamaura J,Isobe M,et al.Nat.Commun.,2012,3:860-864

    [11]Choubey S,Bhar K,Chattopadhyay S,et al.Dalton Trans.,2012,41:11551-11554

    [12]CHEN Yan-Min(陳延民),JIANG Yan(姜巖),HONG Si-Yu(洪 思 雨),et al.Chinese J.Inorg.Chem.(無 機 化 學 學 報),2017,33(6):1023-1029

    [13]Seki H,Hosaka Y,Saito T,et al.Angew.Chem.Int.Ed.,2016,55:1360-1363

    [14]Talham D R,Meisel M W.Chem.Soc.Rev.,2011,40:3356-3365

    [15]HU Peng(胡 鵬),XIAO Feng-Ping(肖 鳳 屏 ),ZHI Zhong-Qiang(植中強),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(7):1273-1279

    [16]Li Z Y,Ohtsu H,Kojima T,et al.Angew.Chem.Int.Ed.,2016,55:5184-5189

    [17]Friedl?nder S,Liu J,Addicoat M,et al.Angew.Chem.Int.Ed.,2016,55:12683-12687

    [18]Jian F F,Zhu C Y,Xiao H L,et al.Z.Anorg.Allg.Chem.,2005,631:769-772

    [19]Saroja J,Manivannan V,Chakraborty P,et al.Inorg.Chem.,1995,34:3099-3101

    [20]Sreerama S G,Pal S.Inorg.Chem.,2005,44:6299-6307

    [21]Mo H,Fang C J,Duan C Y,et al.Dalton Trans.,2003:1229-1234

    [22]Aggarwal R C,Singh N K,Singh R P.J.Indian Chem.Soc.,1986,63:466

    [23]Trivedi M,Chandra M,Pandey D S,et al.J.Organomet.Chem.,2004,689:879-882

    [24]Singh S K,Chandra M,Pandey D S.J.Organomet.Chem.,2004,689:2073-2079

    [25]Gopinathan S,Pardhy S A,Gopinathan C,et al.Inorg.Chim.Acta,1986,111:133-138

    [26]Cui S X,Zhao Y L,Zhang J P,et al.Polyhedron,2009,28:980-986

    [27]Cui S X,Zhao Y L,Zhang J P,et al.Synth.Met.,2009,159:2191-2193

    [28]Hao Z M,Zhang X M.Dalton Trans.,2011,40:2092-2098

    [29]Zeng Y F,Hu X,Liu F C,et al.Chem.Soc.Rev.,2009,38:469-480

    [30]Kang L C,Chen X,Wang X S,et al.Dalton Trans.,2011,40:5200-5209

    [31]Naiya S,Biswas C,Drew M G B,et al.Inorg.Chem.,2010,49:6616-6627

    [32]Tandon S S,Bunge S D,Motry D,et al.Inorg.Chem.,2009,48:4873-4881

    [33]Mukherjee S,Gole B,Chakrabarty R,et al.Inorg.Chem.,2009,48:11325-11334

    [34]Tian C B,Li Z H,Lin J D,et al.Eur.J.Inorg.Chem.,2010:427-437

    [35]Zhang L F,Yu M M,Ni Z H,et al.J.Mol.Struct.,2011,1006:629-634

    [36]Gao Q,Xie Y B,Thorstad M,et al.CrystEngComm,2011,13:6787-6793

    [37]Weng D F,Wang Z M,Gao S.Chem.Soc.Rev.,2011,40:3157-3181

    [38]Wang S,Zuo J L,Gao S,et al.J.Am.Chem.Soc.,2004,126:8900-8901

    [39]Sheldrick G M.SHELXS-97 and SHELXL-97,University of G?ttingen,Germany,1997.

    [40]Tandon S S,Bunge S D,Rakosi R,et al.Dalton Trans.,2009:6536-6551

    [41]Alley K G,Bircher R,Waldmann O,et al.Inorg.Chem.,2006,45:8950-8957

    [42]Adhikary C,Koner S.Coord.Chem.Rev.,2010,254:2933-2958

    [43]Demeshko S,Leibeling G,Maringgele W,et al.Inorg.Chem.,2005,44:519-528

    [44]Nagaraja C M,Kumar N,Maji T K,et al.Eur.J.Inorg.Chem.,2011:2057-2063

    [45]Karasawa S,Koga N.Inorg.Chem.,2011,50:2055-2057

    [46]Li B,Zhang J P,Yong X,et al.Dalton Trans.,2011,40:4459-4464

    [47]Vallejo J,Castro I,Ruiz-García R,et al.J.Am.Chem.Soc.,2012,134:15704-15707

    [48]Han Y,Xu H,Liu Y,et al.Chem.Eur.J.,2012,18:13954-13958

    [49]Kahn O.Molecular Magnetism.New York:Wiley-VCH,1993.

    [50]Zeng Y F,Zhao J P,Hu B W,et al.Chem.Eur.J.,2007,13:9924-9930

    猜你喜歡
    席夫堿疊氮口腔醫(yī)學
    《口腔醫(yī)學》2022年雜志征稿及征訂啟事
    2019第14屆口腔醫(yī)學十大新聞評選
    降低乏燃料后處理工藝中HN3 含量的方法研究
    兩種不同結(jié)構(gòu)納米疊氮化銅的含能特性研究
    火工品(2018年1期)2018-05-03 02:27:56
    齊多夫定生產(chǎn)中疊氮化工藝優(yōu)化
    口腔醫(yī)學訊息
    鈮在口腔醫(yī)學中的應(yīng)用
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    席夫堿基雙子表面活性劑的制備及緩蝕應(yīng)用
    稀土釤鄰香草醛縮甘氨酸席夫堿配合物的合成及表征
    高清不卡的av网站| 日韩精品免费视频一区二区三区| 亚洲经典国产精华液单| 国产 一区精品| 国产亚洲午夜精品一区二区久久| av不卡在线播放| 女人被躁到高潮嗷嗷叫费观| 成年人免费黄色播放视频| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 午夜福利视频精品| 99久久人妻综合| 免费在线观看完整版高清| 亚洲av日韩在线播放| 一级毛片 在线播放| 美女福利国产在线| 蜜桃国产av成人99| 亚洲视频免费观看视频| 亚洲av日韩在线播放| 中国三级夫妇交换| 亚洲成人手机| 国产日韩欧美亚洲二区| av有码第一页| 性少妇av在线| 婷婷色综合www| 亚洲伊人色综图| 国产在线免费精品| 国产精品无大码| 制服人妻中文乱码| 国产 精品1| av线在线观看网站| 欧美在线黄色| av有码第一页| 中文欧美无线码| 91久久精品国产一区二区三区| 国产精品蜜桃在线观看| 久久午夜综合久久蜜桃| 精品卡一卡二卡四卡免费| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美精品济南到 | 在线观看免费日韩欧美大片| 久久久久久久久免费视频了| 国产精品国产三级国产专区5o| 另类亚洲欧美激情| 久久免费观看电影| 多毛熟女@视频| av女优亚洲男人天堂| 精品国产一区二区三区四区第35| 午夜日本视频在线| 丰满乱子伦码专区| 一本久久精品| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 在线 av 中文字幕| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 午夜福利乱码中文字幕| 母亲3免费完整高清在线观看 | 乱人伦中国视频| 久久久国产精品麻豆| 日韩伦理黄色片| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 十八禁网站网址无遮挡| 国产 一区精品| 亚洲,一卡二卡三卡| 蜜桃国产av成人99| 九草在线视频观看| 免费播放大片免费观看视频在线观看| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 99久久中文字幕三级久久日本| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 亚洲一区中文字幕在线| 美女午夜性视频免费| 纵有疾风起免费观看全集完整版| 成人漫画全彩无遮挡| 妹子高潮喷水视频| 亚洲精品美女久久av网站| 婷婷色综合大香蕉| 午夜福利视频精品| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久男人| 爱豆传媒免费全集在线观看| 午夜激情av网站| kizo精华| 日韩不卡一区二区三区视频在线| av电影中文网址| 巨乳人妻的诱惑在线观看| 边亲边吃奶的免费视频| 一级毛片电影观看| 一边摸一边做爽爽视频免费| 国产白丝娇喘喷水9色精品| 国产麻豆69| 性色avwww在线观看| 丝袜喷水一区| 亚洲人成电影观看| 久久精品久久精品一区二区三区| 日本91视频免费播放| 黄频高清免费视频| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 免费看不卡的av| 制服诱惑二区| 中文字幕精品免费在线观看视频| 亚洲视频免费观看视频| 一区在线观看完整版| 久久97久久精品| 国产在线一区二区三区精| 精品国产乱码久久久久久男人| 午夜激情久久久久久久| 侵犯人妻中文字幕一二三四区| 久久亚洲国产成人精品v| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 国产精品成人在线| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 精品一区在线观看国产| 亚洲成人一二三区av| 国产一区二区激情短视频 | 1024香蕉在线观看| 国产精品无大码| 国产精品久久久久久av不卡| 精品人妻在线不人妻| av在线观看视频网站免费| 看免费av毛片| 国产日韩欧美在线精品| 日韩人妻精品一区2区三区| 久久久久久久久免费视频了| 国产深夜福利视频在线观看| 一级片免费观看大全| 精品第一国产精品| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 午夜久久久在线观看| 青春草国产在线视频| 国产在线免费精品| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 少妇人妻精品综合一区二区| 十分钟在线观看高清视频www| 最近手机中文字幕大全| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 日本av手机在线免费观看| 97在线人人人人妻| 日韩av在线免费看完整版不卡| 亚洲精品久久午夜乱码| 午夜福利视频在线观看免费| 一区二区三区精品91| av卡一久久| 美女午夜性视频免费| 国产精品无大码| 一二三四中文在线观看免费高清| 一区福利在线观看| 男人操女人黄网站| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 搡女人真爽免费视频火全软件| 国产精品嫩草影院av在线观看| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 亚洲五月色婷婷综合| 国产在线免费精品| 2018国产大陆天天弄谢| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线| 观看美女的网站| 男女午夜视频在线观看| 91午夜精品亚洲一区二区三区| 久久青草综合色| 少妇精品久久久久久久| 国产精品国产三级专区第一集| 好男人视频免费观看在线| av视频免费观看在线观看| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 国产男人的电影天堂91| 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 亚洲精品日本国产第一区| 不卡视频在线观看欧美| 亚洲av福利一区| 欧美亚洲日本最大视频资源| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 精品一品国产午夜福利视频| 中文字幕人妻熟女乱码| 国产精品久久久久久精品电影小说| 91成人精品电影| av视频免费观看在线观看| 无人区码免费观看不卡| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 日韩欧美在线二视频| 男人舔女人的私密视频| 亚洲aⅴ乱码一区二区在线播放 | 99国产精品免费福利视频| 国产精品亚洲av一区麻豆| 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 制服诱惑二区| 国产免费男女视频| 99精品欧美一区二区三区四区| 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 欧美激情高清一区二区三区| 看片在线看免费视频| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 制服诱惑二区| 中文亚洲av片在线观看爽| 国产亚洲精品久久久久5区| 一级毛片女人18水好多| 久久狼人影院| www国产在线视频色| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放 | 久久精品亚洲av国产电影网| 又黄又粗又硬又大视频| 十八禁网站免费在线| 精品午夜福利视频在线观看一区| 涩涩av久久男人的天堂| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 日韩视频一区二区在线观看| 一级毛片高清免费大全| 亚洲第一青青草原| 婷婷丁香在线五月| 日韩精品青青久久久久久| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 国产精品日韩av在线免费观看 | 一区二区三区激情视频| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| 国产亚洲欧美98| 亚洲国产欧美日韩在线播放| 成年人黄色毛片网站| 老司机在亚洲福利影院| 日韩视频一区二区在线观看| 真人做人爱边吃奶动态| 午夜免费观看网址| 亚洲第一欧美日韩一区二区三区| 亚洲伊人色综图| 一区在线观看完整版| 老司机在亚洲福利影院| 91av网站免费观看| 黄色毛片三级朝国网站| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 一级片免费观看大全| 亚洲自偷自拍图片 自拍| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 在线视频色国产色| 精品无人区乱码1区二区| 国产99白浆流出| 中亚洲国语对白在线视频| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品综合一区在线观看 | 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 在线国产一区二区在线| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 美女国产高潮福利片在线看| а√天堂www在线а√下载| 咕卡用的链子| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 制服人妻中文乱码| 午夜福利一区二区在线看| 91麻豆av在线| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 国产成人系列免费观看| 十分钟在线观看高清视频www| 欧美+亚洲+日韩+国产| tocl精华| 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 国产精品1区2区在线观看.| 男女下面插进去视频免费观看| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 看黄色毛片网站| 长腿黑丝高跟| 丁香六月欧美| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 啦啦啦 在线观看视频| 91老司机精品| 日本黄色日本黄色录像| 国产成人av激情在线播放| 亚洲视频免费观看视频| 多毛熟女@视频| 国产不卡一卡二| 欧美一级毛片孕妇| 色在线成人网| 亚洲欧美精品综合久久99| 亚洲国产精品999在线| 成人国语在线视频| 村上凉子中文字幕在线| 亚洲欧美激情综合另类| www.自偷自拍.com| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 别揉我奶头~嗯~啊~动态视频| 999精品在线视频| 久久九九热精品免费| 亚洲欧美激情在线| 久久久久国内视频| 亚洲欧美激情在线| 亚洲五月婷婷丁香| 欧美日韩黄片免| 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费 | 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| a级片在线免费高清观看视频| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 婷婷六月久久综合丁香| svipshipincom国产片| 男女做爰动态图高潮gif福利片 | 亚洲中文日韩欧美视频| 国产精品爽爽va在线观看网站 | 国产区一区二久久| 无遮挡黄片免费观看| 中文字幕色久视频| 欧美在线黄色| 伦理电影免费视频| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 国产精品野战在线观看 | 欧美日韩瑟瑟在线播放| av网站免费在线观看视频| 国产乱人伦免费视频| 亚洲黑人精品在线| av免费在线观看网站| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 激情视频va一区二区三区| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 香蕉国产在线看| 妹子高潮喷水视频| 日韩有码中文字幕| av中文乱码字幕在线| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 免费久久久久久久精品成人欧美视频| 国产91精品成人一区二区三区| 两个人看的免费小视频| www.999成人在线观看| 日韩大尺度精品在线看网址 | 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| 国产精品永久免费网站| 亚洲av美国av| 麻豆一二三区av精品| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| 电影成人av| 夜夜看夜夜爽夜夜摸 | 国产亚洲av高清不卡| 中文欧美无线码| 午夜视频精品福利| 日本wwww免费看| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情 高清一区二区三区| 久久青草综合色| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 色在线成人网| 成人国语在线视频| 日韩欧美一区二区三区在线观看| 免费观看精品视频网站| 久久久国产精品麻豆| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 一区在线观看完整版| 99久久人妻综合| 久久久久国产一级毛片高清牌| 男女下面进入的视频免费午夜 | av有码第一页| xxxhd国产人妻xxx| 黄片小视频在线播放| 久久国产精品人妻蜜桃| 久久久久久大精品| 国产精品国产高清国产av| 麻豆av在线久日| 亚洲精品中文字幕在线视频| 日本vs欧美在线观看视频| 日韩 欧美 亚洲 中文字幕| 天堂影院成人在线观看| 女性生殖器流出的白浆| 亚洲国产精品合色在线| 中文欧美无线码| 国产深夜福利视频在线观看| 高清av免费在线| 国产91精品成人一区二区三区| 日日爽夜夜爽网站| 性少妇av在线| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| www.熟女人妻精品国产| 一区福利在线观看| 精品久久蜜臀av无| 精品人妻在线不人妻| 搡老乐熟女国产| 另类亚洲欧美激情| av国产精品久久久久影院| 中文字幕人妻丝袜一区二区| 麻豆一二三区av精品| 成人亚洲精品一区在线观看| 日韩精品中文字幕看吧| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品亚洲一区二区| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区蜜桃| 十分钟在线观看高清视频www| 国产主播在线观看一区二区| 国产在线精品亚洲第一网站| 久久久久久久午夜电影 | 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 午夜免费观看网址| 免费一级毛片在线播放高清视频 | 亚洲一区高清亚洲精品| 久热这里只有精品99| 精品一区二区三区av网在线观看| 免费高清在线观看日韩| 一级a爱视频在线免费观看| 后天国语完整版免费观看| 男人舔女人的私密视频| 国产麻豆69| 国产在线观看jvid| 两个人看的免费小视频| 亚洲人成77777在线视频| 亚洲一区中文字幕在线| 亚洲人成电影观看| 国产深夜福利视频在线观看| 亚洲avbb在线观看| 亚洲av成人av| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 超碰97精品在线观看| 性少妇av在线| 他把我摸到了高潮在线观看| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 麻豆久久精品国产亚洲av | 在线永久观看黄色视频| 久久青草综合色| 日韩欧美免费精品| 成人特级黄色片久久久久久久| 国产成人av教育| 久久狼人影院| 黄色怎么调成土黄色| 日本免费a在线| 在线观看免费视频日本深夜| 很黄的视频免费| 婷婷六月久久综合丁香| 亚洲精品av麻豆狂野| 51午夜福利影视在线观看| 国产精品亚洲一级av第二区| 极品人妻少妇av视频| 婷婷六月久久综合丁香| 看黄色毛片网站| 日韩av在线大香蕉| 欧美日韩亚洲高清精品| 老司机福利观看| 19禁男女啪啪无遮挡网站| 亚洲一区中文字幕在线| 国产极品粉嫩免费观看在线| 久久亚洲精品不卡| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 色哟哟哟哟哟哟| 久久草成人影院| 国产成年人精品一区二区 | 成年人黄色毛片网站| 亚洲自拍偷在线| 9色porny在线观看| 欧美激情高清一区二区三区| 精品国产亚洲在线| 可以免费在线观看a视频的电影网站| 亚洲男人天堂网一区| 一本大道久久a久久精品| 黄片大片在线免费观看| 国产野战对白在线观看| 欧美久久黑人一区二区| 日韩欧美免费精品| 国产成人欧美| 精品午夜福利视频在线观看一区| 国产欧美日韩精品亚洲av| 欧美精品啪啪一区二区三区| 麻豆国产av国片精品| 日本欧美视频一区| 一级毛片女人18水好多| 大型av网站在线播放| 亚洲 国产 在线| 高清在线国产一区| 露出奶头的视频| 少妇 在线观看| 精品一区二区三区四区五区乱码| 欧美午夜高清在线| 午夜福利影视在线免费观看| 成年人黄色毛片网站| 一a级毛片在线观看| 日日爽夜夜爽网站| av网站免费在线观看视频| 精品电影一区二区在线| 夫妻午夜视频| 亚洲性夜色夜夜综合| 亚洲人成网站在线播放欧美日韩| 女人精品久久久久毛片| 长腿黑丝高跟| 欧美激情久久久久久爽电影 | 热re99久久国产66热| 日韩高清综合在线| 亚洲成人免费av在线播放| 精品久久久久久久久久免费视频 | 好看av亚洲va欧美ⅴa在| 国产精品偷伦视频观看了| 亚洲国产精品999在线| 啦啦啦在线免费观看视频4| 一个人观看的视频www高清免费观看 | 最新美女视频免费是黄的| 精品免费久久久久久久清纯| 少妇粗大呻吟视频| 国产片内射在线| 丝袜美腿诱惑在线| 不卡一级毛片| 校园春色视频在线观看| 视频区欧美日本亚洲| 亚洲欧美日韩另类电影网站| 亚洲免费av在线视频| 天堂√8在线中文| 久久国产精品影院| 女人精品久久久久毛片| 99在线人妻在线中文字幕| 久久国产精品影院| 老司机午夜福利在线观看视频| 琪琪午夜伦伦电影理论片6080| 亚洲五月色婷婷综合| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 久久久久亚洲av毛片大全| 精品第一国产精品| 交换朋友夫妻互换小说|