• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    結(jié)晶性和粒子尺寸對(duì)C60薄膜晶體管遷移率的影響

    2018-03-14 06:35:27孫志鵬馬延文
    關(guān)鍵詞:郵電大學(xué)遷移率材料科學(xué)

    李 誼 韓 笑 孫志鵬 馬延文

    (南京郵電大學(xué)材料科學(xué)與工程學(xué)院,南京 210023)

    0 Introduction

    In recent decades,organic thin film transistors(OTFTs)have received considerable attention owing to their low cost,low temperature process,compatibility with plastic substrate,and wide potential applications in large-area,lightweight,flexible electronics devices such as electronic displays,organic memories,and sensors[1-5].Much research work has been focused on obtaining high performance OTFTs comparable to those of amorphous silicon thin film transistors (TFTs)[6-10].In addition to the optimization of device structure and performance,the correlation of the charge transport with the thin-film microstructure hasalso been extensively studied.It is well known that the charge transfer in OTFTs highly rely on the crystallinity,molecular ordering and crystal grain sizes,which in turn depend on the molecular structures of the organic semiconductors[11-12],deposition process[13-16],and substrates[17-18].For the most planar organic semiconducrors molecules,such as CuPc,F16CuPc,pentacene,perylene bisimide and oligothiophene,increasing substrate temperature (Ts), decreasing deposition rate, and incre-asing deposition pressure in vacuum deposition process normally leads to a highly ordered film with larger grain sizes and fewer grain boundaries,which is regarded as the most effective way to obtain highmobility devices[14-25].However,for the spherical C60semiconductor,which is an important n-type semiconductor material with high mobility,the mechanism of charge transport in C60films is still unclear,and the relationship between mobility and microstructure of the C60films is controversial[20,26-28].Therefore,it is essential to investigate the effect of morphology and structure,which are quite sensitive to growth conditions,on the performance of the C60films in-depth.In this study,the crystallinity and grain size of the C60films have been regulated by changing the Tsand deposition pressure in the vacuum deposition process.X-ray diffraction (XRD)and atomic force microscopy(AFM)were used to investigate the morphology and crystalline structure of thin films.Furthermore,the mobilities of the films are obtained by field-effect measurements,and the correlations of mobility with crystallinity and grain size of the C60films are established.

    1 Experimental

    1.1 Fabrication of C60TFTs

    Fig.1 showsthe schematic diagram ofthe fabricated C60TFTs.C60(99.9%)is purchased from Aldrich and used without further purification.The substrate is 300 nm SiO2thermally grown on a heavily doped n-Si wafer,which were ultrasonically cleaned with acetone,isopropyl alcohol,and ultrapurified water,successively.A bottom-gate,top-contact device configuration of C60TFTs was adopted.First,the substrate was set in the chamber and maintained at 4×10-5Pa.Subsequently,a 40 nm thick C60active layer[16],patterned through a shadow mask,was deposited by vacuum evaporation onto the substrate under a specific Ts(i.e.,30,60,90,130,160 and 190 ℃)at the same rate of 0.01 nm·s-1recorded by a quartz crystal oscillator.Finally,the gold (Au,99.99% )electrodes,with a thickness of 50 nm,were defined on the C60film by thermal evaporation through another mask.For the samples of different deposition pressure,the films were deposited by vacuum deposition under a specific Pdep(i.e.1×10-4and 1×10-1Pa)with the rate of 0.01 nm·s-1and the Tsof 130℃.The channel length (L)and width (W)are 70 and 500 μm,respectively.

    Fig.1 Schematic diagram of the fabricated C60TFTs

    1.2 Charcterization

    The structures and surface morphologies of the films were characterized by X-ray diffraction(XRD,Philips X′pert Pro X-ray diffractometer in 2θ range of 15°~28°,Cu Kα1radiation of 0.154 nm)and atomic force microscopy (AFM,Bruker Dimension Icon,tapping Mode).The performances of the devices were evaluated by semiconductor characterization system(Keithley model 4200-SCS)under vacuum condition at room temperature.

    2 Results and discussion

    2.1 Surface morphology and structure of C60 films

    Fig.2 Characteristic XRD patterns (A)and AFM images (B)of the 40 nm C60films deposited under different Tsof 30,60,90,130,160 and 190 ℃ (a~f),respectively

    The characteristic XRD patterns and morphologies of the C60films deposited under different Tsare shown in Fig.2.The XRD patterns of the C60films show broadened (113)peaks,corresponding to the D values of ca.1.54 nm.With increasing Tsfrom 30 to 190 ℃,the intensity of(113)peaks increase,indicating the increased crystallinity of the films (Fig.2A).The morphological evolutions of the C60films with Tsare demonstrated in Fig.2B.It is clearly seen,the grain sizes keep almost unchanged for Tsbelow 90℃(Fig.2B(a~c)),and gradually increase for further increasing Tsfrom 90 to 190 ℃ (Fig.2B(d~f)).The root-meansquare roughness of all the samples obtained from the AFM measurements are about 1~3 nm,indicating the smooth surfaces of the films.

    2.2 Electronic properties of C60films

    Fig.3 shows the output characteristics of C60TFTs prepared under different Ts.The C60TFTs exhibit typical n-channel field-effect behavior,operated under a positive voltage source-drain voltage (Vd)and gate voltage (Vg),with distinct linear and saturation regions in the output curves.With increasing Tsfrom 30 to 130℃,a significant increase of saturation drain current(Id)from 1.8 to 12.3 μA is observed when they are biased at Vd=60 V and Vg=60 V (Fig.3a~d).With further increasing Tsto 160 and 190℃,Iddecreases to 4.2 μA and 2.1 μA,respectively.

    Fig.3 Output(Id-Vd)characteristics of C60TFTs prepared under different Tsof 30,60,90,130,160 and 190 ℃ (a~f)

    Fig.4 Transfer (Id-Vg)characteristics of C60TFTs prepared under different Tsof 30,60,90,130,160 and 190℃

    Fig.5 Carrier mobilities,grain sizes,and crystallinity((113)peak intensity)of C60thin films as functions of Ts

    Fig.4 shows the transfer characteristics of C60TFTs prepared under different Ts.From the transfer curves,the carrier mobility are extracted for each device,and the relationship between the mobilities and Tsare shown in Fig.6.In order to make clear of the correlation of the mobilities with the corresponding crystallinity and morphologies of the C60films,the changes of(113)peak intensity and grain sizes with Tsare re-plotted here.It is seen that,for C60films with Tsbelow 130℃,the mobilities increase from 0.026 to 0.211 cm2·V-1·s-1with increasing Ts.With further increasing Tsto 160 and 190℃,mobilities decrease to 0.082 and 0.030 cm2·V-1·s-1,respectively.Because of the unchanged grain sizes of C60films deposited under 30,60 and 90℃,the increase of mobilities could be attributed to the increased crystallinities of films.When Tsis up to 130℃,the larger mobility was achieved mainly due to the higher crystallinities despite the slightly increased grain sizes.Interestingly,for the films with Tsof 160 and 190℃,despite the increases in the crystallinities,remarkable decreased mobilities are obtained,which should be related the obviously increased grain sizes.These results suggest the different grain-boundary effect for the spherical C60molecules from that for the planar molecules,such as CuPc,pentacene,TIPS-pentacene,perylene bisimide and oligothiophene[14-25].For the planar molecules,the grain boundary is a crucial barrier for the carrier transport,since the intermolecular charge hopping across the grain boundaries is less efficient than that within the grains.Thus,reducing the grain boundaries by increasing grain sizes is a promising approach to improve charge transport and mobility.However,for the C60samples with Tsof 160 and 190℃,the larger grain sizes of spherical C60films lead to the lower mobilitis,which isinterestingand worth further investigating.

    In order to reveal the influence of grain sizes on the mobilities of C60films,the samples with similar crystallinities and different grain sizes are needed.In our previous study,we have demonstrated that higher deposition pressure in vacuum deposition could lead to the larger grain sizes of C60films with unchanged crystallinities and molecular packing[16].Thus,the C60films with deposition pressure of 1×10-1Pa and Tsof 130℃are deposited and investigated.In contrast to the C60films with deposition pressure of 1×10-4Pa(Fig.2Ad and 2Bd),the samples of 1×10-1Pa show the unchanged crystallinities and increased grain sizes,as shown in Fig.6.The C60films with deposition pressure of 1 ×10-1Pa have a mobility of 0.030 cm2·V-1·s-1,which is lower than the value of samples with deposition pressure of 1×10-4Pa.Due to the unchanged crystallinities,the decrease ofmobility should be corrected to the increased grain size.

    Fig.6 Characteristic XRD pattern (a)and AFM image (b)of the 40 nm C60films deposited under 1×10-1Pa and 130 ℃

    As known,the performance ofOTFTs is determined by the crystalline order and grain sizes of the first few molecular layers of the semiconductor near the semiconductor/dielectric interface. To ascertain the grain sizes of the C60layers at C60/SiO2interface,two C60films of 10 nm thickness were deposited on SiO2at deposition pressure of 1×10-4and 1×10-1Pa,respectively.From the corresponding AFM images in Fig.7a and b,it is seen that,the 10 nm C60films deposited under 1×10-4Pa have a lot of small grains,while some larger grains are observed for the films of 1×10-1Pa.This confirmed that larger grain sizes of C60films result in the lower mobilities.The possible mechanism for the effect of grain size on mobility of C60films is proposed in Fig.7c and d.For the spherical C60molecules,carrier could be effectively transported through nearest-neighbor hopping between molecules[26].So the films with small and close grains are advantageous to effective charge transport(Fig.7c).For the films with large grain size,it is difficult to realize the nearest-neighbor hopping between grains molecules,due to the large spacing between the grains (Fig.7d).Thus,the grain boundary is not a serious barrier for the charge transport,and the larger grain size could lead to the lower mobility in C60TFTs.

    Fig.7 AFM images of 10 nm C60films deposited under(a)1×10-4and (b)1×10-1Pa,and the possible charge transfer mechanism of C60films with different grain size (c,d)

    3 Conclusions

    In summary,C60films have been prepared on SiO2substrates by vacuum deposition under different substrate temperature ranging from ranging from 30 to 190 ℃ and deposition pressure of 1×10-4and 1×10-1Pa.The experimentalresults indicate thatthe crystallinity and grain size of the C60films thereof the mobility of the obtained TFTs could be effectively regulated by tuning substrate temperature and deposition pressure.A clear correlation of mobility with crystallinity and grain size ofthe C60film is established.It is found that,both the crystallinity and the grain size of the C60films increase with increasing substrate temperature.And the grain sizes of the films increase and the crystallinity keep almost unchanged with increasing deposition pressure.The mobilities of the C60films are closely correlated with the crystallinity and grain size.The increased crystallinity of the C60films gives the improved mobility.Different from the films of planar organic semiconducrors molecules,for the spherical C60molecules films,the larger grain size could lead to the lower mobility.This study is helpful for the understanding of the charge transfer process and improving the performance of OTFTs.

    [1]Someya T,Bao Z,Malliaras G G.Nature,2016,540:379-385

    [2]Nomura K,Ohta H,Takagi A,et al.Nature,2004,432:488-492

    [3]Baeg K,Khim D,Kim J,et al.Adv.Funct.Mater.,2012,22:2915-2926

    [4]Someya T,Sekitani T,Iba S,et al.Proc.Natl.Acad.Sci.USA,2004,101:9966-9970

    [5]Rotzoll R,Mohapatra S,Olariu V,et al.Appl.Phys.Lett.,2006,88:123502

    [6]Li Y,Liu Q,Wang X Z,et al.Sci.China.Tech.Sci.,2012,55:417-420

    [7]Sun X,Zhang L,Di C,et al.Adv.Mater.,2011,23:3128-3133

    [8]Virkar A,Mannsfeld S,Toney M F,et al.Adv.Funct.Mater.,2009,19:1962-1970

    [9]LI Yi(李誼),LIU Qi(劉琪),CAI Jing(蔡婧),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,11:2621-2625

    [10]Kelley T W,Boardman L D,Dunbar T D,et al.J.Phys.Chem.B,2003,107:5877-5881

    [11]Facchetti A,Letizia J,Yoon M H,et al.Chem.Mater.,2004,16:4715-4727

    [12]Zhang X R,Richter L J,DeLongchamp D M,et al.J.Am.Chem.Soc.,2011,133:15073-15084

    [13]Li L,Hu W,Fuchs H,et al.Adv.Energy Mater.,2011,1:188-193

    [14]Bao Z,Lovinger A J,Dodabalapur A.Adv.Mater.,1997,9:42-44

    [15]Horowitz G,Hajlaoui M E.Adv.Mater.,2000,12:1046-1050

    [16]Li Y,Chen S,Liu Q,et al.J.Phys.Chem.C,2012,116:4287-4292

    [17]Yang S Y,Shin K,Park C E.Adv.Funct.Mater.,2005,15:1806-1814

    [18]Br?uer B,Kukreja R,Virkar A,et al.Org.Electron.,2011,12:1936-1942

    [19]Ye R,Baba M,Ohishi Y,et al.Mol.Cryst.Liq.Cryst.,2006,444:203-210

    [20]Li Y,Chen S,Liu Q,et al.J.Phys.Chem.C,2014,118:14218-14226

    [21]Hu Y,Qi Q,Jiang C.Appl.Phys.Lett.,2010,96:133311

    [22]Schmidt R,Oh J H,Sun Y S,et al.J.Am.Chem.Soc.,2009,131:6215-6228

    [23]Acton O,Ting G G,Shamberger P J,et al.ACS Appl.Mater.Interfaces,2010,2:511-520

    [24]Yakuphanoglu F,Gunduz B.Synth.Met.,2012,162:1210-1239

    [25]Chen J,Tee C K,Shtein M,et al.J.Appl.Phys.,2008,103:114513

    [26]Sung C,Kekuda D,Chu L F,et al.Adv.Mater.,2009,21:4845-4849

    [27]Kobayashi S,Takenobu T,Mori S,et al.Sci.Technol.Adv.Mater.,2003,4:371-375

    [28]Anthopoulos T D,Singh B,Marjanovic N,et al.Appl.Phys.Lett.,2006,89:213504

    猜你喜歡
    郵電大學(xué)遷移率材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    材料科學(xué)與工程學(xué)科
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    SiC/SiO2界面形貌對(duì)SiC MOS器件溝道遷移率的影響
    濾棒吸阻和濾嘴長(zhǎng)度對(duì)卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    久久久久视频综合| 日韩伦理黄色片| 最近最新中文字幕免费大全7| 国产成人av激情在线播放| 亚洲国产最新在线播放| 九九爱精品视频在线观看| 国产午夜精品一二区理论片| 老司机影院毛片| 久久久亚洲精品成人影院| 欧美亚洲 丝袜 人妻 在线| 最新在线观看一区二区三区 | 国产男女超爽视频在线观看| 国产精品二区激情视频| 黄片小视频在线播放| 岛国毛片在线播放| 伊人亚洲综合成人网| 人成视频在线观看免费观看| 国产一区二区三区av在线| 高清av免费在线| netflix在线观看网站| 国产亚洲一区二区精品| 黄色 视频免费看| 最近的中文字幕免费完整| 美女视频免费永久观看网站| 精品酒店卫生间| 男人操女人黄网站| 黄色毛片三级朝国网站| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 亚洲伊人久久精品综合| 高清欧美精品videossex| 自线自在国产av| 黄色一级大片看看| 极品人妻少妇av视频| 在线观看免费高清a一片| 老汉色∧v一级毛片| 久久av网站| 午夜日本视频在线| 久久久久人妻精品一区果冻| 国产成人欧美| 亚洲av日韩精品久久久久久密 | 99久久精品国产亚洲精品| 91精品伊人久久大香线蕉| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 久久精品久久久久久久性| 国产毛片在线视频| av福利片在线| 久久精品国产综合久久久| 韩国精品一区二区三区| 香蕉丝袜av| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影 | 国产成人a∨麻豆精品| 日韩欧美精品免费久久| 夫妻午夜视频| 在线天堂中文资源库| 亚洲视频免费观看视频| 免费黄频网站在线观看国产| 丝瓜视频免费看黄片| 国产亚洲精品第一综合不卡| 亚洲少妇的诱惑av| 搡老岳熟女国产| 一级爰片在线观看| 亚洲视频免费观看视频| 黄色一级大片看看| 精品久久久精品久久久| 国语对白做爰xxxⅹ性视频网站| 乱人伦中国视频| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 国产日韩欧美视频二区| 性高湖久久久久久久久免费观看| 最近最新中文字幕免费大全7| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| a级毛片在线看网站| 国产精品三级大全| 天堂俺去俺来也www色官网| 尾随美女入室| 国产国语露脸激情在线看| 久久青草综合色| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 少妇精品久久久久久久| 日韩av不卡免费在线播放| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 欧美成人午夜精品| 亚洲国产精品999| 制服诱惑二区| 久久精品国产综合久久久| 91成人精品电影| av.在线天堂| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 一级片'在线观看视频| 亚洲精品日本国产第一区| 午夜影院在线不卡| 欧美亚洲 丝袜 人妻 在线| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 欧美日韩亚洲国产一区二区在线观看 | 99久久精品国产亚洲精品| 日韩免费高清中文字幕av| 欧美av亚洲av综合av国产av | 一区二区三区激情视频| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 精品视频人人做人人爽| 街头女战士在线观看网站| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的| 国产探花极品一区二区| e午夜精品久久久久久久| 免费日韩欧美在线观看| 午夜福利,免费看| 别揉我奶头~嗯~啊~动态视频 | 人人澡人人妻人| 蜜桃国产av成人99| 久久国产精品大桥未久av| 可以免费在线观看a视频的电影网站 | 国产成人精品在线电影| 国产激情久久老熟女| 秋霞在线观看毛片| 女性生殖器流出的白浆| 久久久国产一区二区| 亚洲欧美精品综合一区二区三区| 在线天堂中文资源库| 人人妻人人澡人人看| 国产在视频线精品| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区| 精品卡一卡二卡四卡免费| av在线老鸭窝| 亚洲一区二区三区欧美精品| 久久97久久精品| 久久久久久人妻| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站 | 国产免费福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲成人一二三区av| 19禁男女啪啪无遮挡网站| 极品人妻少妇av视频| 国产精品久久久久成人av| 美女中出高潮动态图| 日韩人妻精品一区2区三区| 久久久久人妻精品一区果冻| 99久久人妻综合| 国产伦人伦偷精品视频| 亚洲,一卡二卡三卡| 97在线人人人人妻| 国产黄色免费在线视频| 男男h啪啪无遮挡| 无遮挡黄片免费观看| 在线看a的网站| 免费av中文字幕在线| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 久久人人爽人人片av| 在线精品无人区一区二区三| 中文字幕色久视频| 国产精品久久久久久精品古装| 亚洲成色77777| 一本色道久久久久久精品综合| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 精品久久蜜臀av无| 999精品在线视频| 国产免费现黄频在线看| 男女高潮啪啪啪动态图| 亚洲av综合色区一区| 波野结衣二区三区在线| 精品第一国产精品| videos熟女内射| 久久免费观看电影| 午夜日韩欧美国产| 亚洲人成网站在线观看播放| 最近最新中文字幕免费大全7| 午夜激情av网站| 99re6热这里在线精品视频| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 免费看不卡的av| 久久久久精品久久久久真实原创| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av涩爱| 菩萨蛮人人尽说江南好唐韦庄| netflix在线观看网站| 成人亚洲欧美一区二区av| 久久久国产一区二区| 啦啦啦啦在线视频资源| 亚洲第一区二区三区不卡| 国产视频首页在线观看| 国产精品蜜桃在线观看| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 久热这里只有精品99| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 深夜精品福利| 午夜久久久在线观看| 嫩草影视91久久| 亚洲欧美精品自产自拍| 久久 成人 亚洲| 天天影视国产精品| 国产一区二区三区av在线| 天天躁日日躁夜夜躁夜夜| 久久毛片免费看一区二区三区| 欧美日韩一级在线毛片| 少妇 在线观看| av有码第一页| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 99香蕉大伊视频| 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 久久久久国产精品人妻一区二区| 国产av精品麻豆| 国产亚洲最大av| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 欧美黑人欧美精品刺激| 日本猛色少妇xxxxx猛交久久| 如何舔出高潮| 男女边摸边吃奶| 国精品久久久久久国模美| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 一级a爱视频在线免费观看| 五月开心婷婷网| 午夜激情久久久久久久| 嫩草影视91久久| 国产精品 国内视频| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 久久 成人 亚洲| 欧美黑人精品巨大| 亚洲免费av在线视频| 韩国av在线不卡| 叶爱在线成人免费视频播放| xxxhd国产人妻xxx| 午夜免费男女啪啪视频观看| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 女性被躁到高潮视频| 国产在线视频一区二区| 国产高清国产精品国产三级| 日韩一区二区视频免费看| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 久久久久久久久久久久大奶| 又黄又粗又硬又大视频| 黄色视频不卡| 久久久久久久久免费视频了| 亚洲精华国产精华液的使用体验| 国产成人91sexporn| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影 | 热re99久久精品国产66热6| 国产精品一二三区在线看| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 91老司机精品| 激情视频va一区二区三区| 免费看不卡的av| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 久久人人爽人人片av| 人妻一区二区av| 大香蕉久久成人网| 一区二区三区四区激情视频| 国产爽快片一区二区三区| 免费高清在线观看日韩| 最近最新中文字幕免费大全7| 久久精品亚洲熟妇少妇任你| 国产免费又黄又爽又色| 欧美精品人与动牲交sv欧美| 国产精品 欧美亚洲| 少妇 在线观看| 亚洲,欧美,日韩| 人人妻人人澡人人看| a级毛片黄视频| 国产精品二区激情视频| 亚洲欧洲日产国产| av在线老鸭窝| 成年女人毛片免费观看观看9 | 97精品久久久久久久久久精品| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂| 赤兔流量卡办理| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o | 国产精品久久久av美女十八| 色婷婷av一区二区三区视频| 国产精品蜜桃在线观看| 青草久久国产| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 亚洲第一青青草原| 欧美国产精品一级二级三级| 国产xxxxx性猛交| 久久这里只有精品19| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 超碰成人久久| 国产伦人伦偷精品视频| 国语对白做爰xxxⅹ性视频网站| 成年人免费黄色播放视频| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 美女主播在线视频| 亚洲精品国产区一区二| 国产精品国产三级专区第一集| 最近的中文字幕免费完整| 永久免费av网站大全| 亚洲国产最新在线播放| 五月开心婷婷网| 精品一区二区三区av网在线观看 | 少妇的丰满在线观看| 亚洲精品一区蜜桃| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 欧美日韩视频精品一区| 亚洲欧美激情在线| 久久免费观看电影| 亚洲一区中文字幕在线| 赤兔流量卡办理| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区黑人| 99久国产av精品国产电影| 一级毛片黄色毛片免费观看视频| 一级毛片我不卡| 精品酒店卫生间| 久久久久久久精品精品| 亚洲,欧美精品.| 国产激情久久老熟女| 国产精品久久久av美女十八| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 亚洲精品国产色婷婷电影| 日韩电影二区| 久久久国产一区二区| 亚洲欧美色中文字幕在线| 少妇人妻久久综合中文| 精品亚洲乱码少妇综合久久| 国产97色在线日韩免费| 亚洲第一av免费看| www.精华液| 日韩电影二区| 午夜久久久在线观看| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 一个人免费看片子| 狂野欧美激情性xxxx| 国产日韩欧美在线精品| 国产精品免费大片| 欧美变态另类bdsm刘玥| 久久久精品94久久精品| 午夜福利乱码中文字幕| 国产精品三级大全| 国产精品久久久人人做人人爽| 多毛熟女@视频| 免费少妇av软件| 亚洲国产欧美在线一区| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 青春草视频在线免费观看| 少妇的丰满在线观看| 在线观看人妻少妇| 最新在线观看一区二区三区 | 亚洲精品久久成人aⅴ小说| 亚洲欧洲日产国产| 国产伦理片在线播放av一区| 青青草视频在线视频观看| 午夜福利,免费看| 精品第一国产精品| 欧美黑人欧美精品刺激| 久久久久久久精品精品| 在线天堂中文资源库| av国产精品久久久久影院| 久久久久精品人妻al黑| 美女福利国产在线| 天天添夜夜摸| 国语对白做爰xxxⅹ性视频网站| 国产精品av久久久久免费| av国产久精品久网站免费入址| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 午夜福利视频精品| 老司机影院毛片| 美国免费a级毛片| 久久99一区二区三区| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 美女国产高潮福利片在线看| 母亲3免费完整高清在线观看| 日韩 亚洲 欧美在线| 亚洲一区二区三区欧美精品| 婷婷色av中文字幕| 国产国语露脸激情在线看| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 男女边吃奶边做爰视频| 亚洲国产精品999| 黄色毛片三级朝国网站| 精品国产露脸久久av麻豆| 无限看片的www在线观看| 制服丝袜香蕉在线| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | 老汉色∧v一级毛片| 99香蕉大伊视频| 97在线人人人人妻| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 中文字幕人妻丝袜制服| 亚洲国产欧美网| 成人亚洲精品一区在线观看| 亚洲欧美清纯卡通| 永久免费av网站大全| 久热爱精品视频在线9| 两性夫妻黄色片| 亚洲专区中文字幕在线 | 亚洲,欧美精品.| 久久久久久久精品精品| 夫妻性生交免费视频一级片| 在现免费观看毛片| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| e午夜精品久久久久久久| 青春草视频在线免费观看| av天堂久久9| 国产在线免费精品| 久久久久网色| 国产极品天堂在线| 熟妇人妻不卡中文字幕| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线观看播放| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 国产 精品1| 91aial.com中文字幕在线观看| 自线自在国产av| 大码成人一级视频| 亚洲久久久国产精品| 色播在线永久视频| 国产女主播在线喷水免费视频网站| 妹子高潮喷水视频| 操美女的视频在线观看| 久久婷婷青草| 啦啦啦中文免费视频观看日本| 欧美日韩亚洲综合一区二区三区_| 黄色视频在线播放观看不卡| 成人黄色视频免费在线看| 女人高潮潮喷娇喘18禁视频| 国产亚洲午夜精品一区二区久久| 99re6热这里在线精品视频| 亚洲国产欧美网| 天天操日日干夜夜撸| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 国产不卡av网站在线观看| 黄色毛片三级朝国网站| 在线看a的网站| 精品国产超薄肉色丝袜足j| 桃花免费在线播放| 久久天堂一区二区三区四区| av卡一久久| 男女下面插进去视频免费观看| 在线观看www视频免费| 少妇人妻久久综合中文| kizo精华| 国产成人a∨麻豆精品| 最近最新中文字幕大全免费视频 | 欧美人与善性xxx| 丰满少妇做爰视频| 日韩人妻精品一区2区三区| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 另类亚洲欧美激情| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久人妻精品电影 | 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 国产极品粉嫩免费观看在线| 一区二区日韩欧美中文字幕| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 丝袜脚勾引网站| 午夜av观看不卡| 国产亚洲av片在线观看秒播厂| 激情五月婷婷亚洲| 美女高潮到喷水免费观看| 老司机深夜福利视频在线观看 | 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 日韩大片免费观看网站| 免费看av在线观看网站| 亚洲伊人久久精品综合| 欧美老熟妇乱子伦牲交| 一区二区三区乱码不卡18| av网站免费在线观看视频| 亚洲精品在线美女| 国产成人免费观看mmmm| h视频一区二区三区| 人人澡人人妻人| 最近中文字幕2019免费版| 狂野欧美激情性bbbbbb| 久久这里只有精品19| 午夜福利一区二区在线看| 丁香六月欧美| 母亲3免费完整高清在线观看| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 尾随美女入室| 久久精品国产综合久久久| 亚洲精品日韩在线中文字幕| 国产乱人偷精品视频| 亚洲国产中文字幕在线视频| 看免费成人av毛片| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| 一个人免费看片子| 国产一区二区 视频在线| 精品免费久久久久久久清纯 | 欧美黑人欧美精品刺激| 欧美 亚洲 国产 日韩一| 免费人妻精品一区二区三区视频| 亚洲av在线观看美女高潮| 国产男女内射视频| 欧美日本中文国产一区发布| 亚洲欧美中文字幕日韩二区| 视频区图区小说| 久久毛片免费看一区二区三区| 男男h啪啪无遮挡| 亚洲av中文av极速乱| 日韩制服丝袜自拍偷拍| 中文字幕最新亚洲高清| 欧美xxⅹ黑人| 日韩 亚洲 欧美在线| 超色免费av| 亚洲国产欧美日韩在线播放| 中文字幕人妻熟女乱码| 飞空精品影院首页| 制服诱惑二区| 国产精品蜜桃在线观看| 国产极品粉嫩免费观看在线| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 亚洲精品国产区一区二| 成人国产麻豆网| 一个人免费看片子| 国产精品三级大全| 亚洲欧美成人精品一区二区| 我的亚洲天堂| 精品少妇黑人巨大在线播放| 我的亚洲天堂| 亚洲中文av在线| 精品国产国语对白av| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频 | 成年人午夜在线观看视频| 男女边摸边吃奶| 亚洲av综合色区一区| bbb黄色大片| 日本91视频免费播放| 国产成人啪精品午夜网站|