• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    2014-10-14 03:44:04XUHaoLUFangFUZhengWen
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:磁控濺射遷移率載流子

    XU Hao LU Fang FU Zheng-Wen

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    XU Hao1,2LU Fang1FU Zheng-Wen2,*

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Abstract: Transparent conductive Al-doped ZnO(AZO)and Si-codoped AZO(AZO:Si)films were deposited on square quartz substrates by radio frequency(RF)magnetron sputtering.The effect of distance between the substrate and target(Dst)and the effect of co-doping Si on the electrical and optical properties of theAZO films were systematically investigated.The resistivity,carrier concentration,and mobility were found to be strongly dependent on theDstvalues.With a decrease inDst,the carrier concentration and mobility increased significantly,which resulted in improved conductivity.The lowest resistivity of 4.94×10-4Ω·cm was obtained at aDstof 4.5 cm,and this was associated with a carrier concentration of 3.75×1020cm-3and a mobility of 33.7 cm2·V-1·s-1.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy,and grain boundary scattering models were used to analyze the relationship between the carrier concentration and the mobility at different deposition(Dst)values.Transmittance spectra showed an average transmittance of>93%in the visible-near infrared range for all the samples and a blue shift of the absorption edge with a decrease inDst.AZO:Si films had high-conductance and high-transmittance optical properties compared with AZO films,and they had better resistivity stability than the AZO films when exposed to a hot and damp atmosphere,which is practically meaningful.

    Key Words:AZO;AZO:Si;Substrate-target distance;Radio frequency magnetron sputtering

    1 Introduction

    Aluminum-doped zinc oxide(AZO)is a promising transparent conductive oxide material for application as transparent electrode in thin film solar cells,flat panel display,and optoelectronic devices.Besides high conductivity and optical transmittance in visible region,AZO film has a lot of advantages,such as non-toxicity,low cost,material abundance,relatively low deposition temperature,and high stability against hydrogen plasma compared to ITO and SnO2films.1For the fabrication of AZO thin films,there are many deposition techniques currently in use,for example,magnetron sputtering,2-5pulsed laser deposition,6,7metal organic chemical vapor deposition,8and sol-gel process.9Among all these methods,conventional RF magnetron sputtering has become widely recognized as a promising versatile technique for the fabrication of metal oxides.Its advantages over other deposition methods are its ability to obtain high quality films even at low substrate temperature with the low cost,high deposition efficiency,and large deposition area.Previous results showed that the electrical and optical properties of AZO films were strongly dependent on the growth parameters,such as work pressure,2,10RF power,5,11impurity percent,2,6substrate temperature,3,10,11and annealing.4,12In fact,the distance between the target and substrate(Dst)is also one of important parameters for depositing high quality films during sputtering process.However,up to now,there were only a few papers concerning on the relationship between the properties of AZO films and Dst.Jeong et al.13suggested that the resistivity of AZO films was related to the Dstand increased rapidly with the increase of Dst,using Al(OH)3doped ZnO targets,they got the lowest resistivity of 9.8×10-2Ω·cm at 4.5 cm.Recently,Yang et al.14reported the lowest resistivity of 4.62×10-4Ω·cm and the highest Hall mobility of 15.6 cm2·V-1·s-1obtained at the Dstof 7 cm.Apparently,the relationship between the electrical properties of AZO films and Dstis complicated and data is still scarce.More work must be done to elucidate the electrical and physical intrinsic of AZO films associated with growth condition of Dst.In addition,it has been expected that the co-doping Si into AZO is effective in improving its chemical stability and resistivity stability,15,16but do not significantly influence the high-conductance and high-transmittance properties ofAZO films.

    Here,AZO and AZO:Si films were deposited by RF magnetron sputtering.The structural,chemical composition,optical transmittance,electrical properties,and resistivity stability of deposited films were examined by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),UV-Vis spectrophotometer,Hall measurements,and hot humidity environment test(air at relative humidity of 90%and temperature of 60°C).Our purpose is to clarify the effect of Dstand Si addition on the properties of Al-doped ZnO films prepared by magnetron sputtering.

    2 Experimental

    The sputtering targetsused in thisexperimentwere home-made with high purity ZnO(99.9%,Alfa Aesar),Al2O3(99.9%,Alfa Aesar),and SiO2(99.9%,Alfa Aesar)powders.Three ceramic targets with different mass fractions of Al2O3(1%,2%,3%)were prepared for the deposition of AZO films.In addition,two mixtures of ZnO,Al2O3,and SiO2powder targets were also prepared for the deposition of AZO:Si films,which contents are(1%Al2O3,1%SiO2)and(2%Al2O3,0.5%SiO2),respectively.All targets have a common diameter of 5 cm.Thin films were all deposited on flat quartz substrates(1 cm×1 cm×1 mm),which had been ultrasonically cleaned in de-ionized water,acetone,alcohol,and de-ionized water,sequentially,and finally dried with argon flow.

    Before deposition,chamber was evacuated to an ultimate background pressure of 10-4Pa using a turbo molecular pump.Then high-purity(99.99%)Ar gas was introduced into the chamber at a fixed flow rate of 28 cm3·min-1,working pressure was maintained on 1.2 Pa.Then 5 min pre-sputtering with the quartz substrate covered by a closely mounted shutter was employed to clean contamination on the target surface,followed by true sputtering.During deposition,RF power is fixed at 100 W,and substrate temperature was maintained at ca 150°C.Dstis varied from 4.5 to 7 cm,so sputtering time was different(from 6 to 15 min)for different Dst(different deposition rates),which makes sure that all films have thickness of 380-400 nm.Atlast,allfilmswereannealedinvacuumat500°Cfor 2h.

    The thicknesses of films were measured by a conventional surface-roughness detector with stylus(Vecoo Dektak 150),and the crystal structure was examined by XRD using a Bruker D8 advance diffractometer equipped with Cu Kαradiation(λ=0.1540562 nm).XPS experiment,which was carried out on a PHI-5000C ESCA system(Perkin Elmer)with Al Kαradiation(hν=1486.6 eV),was utilized to analyze the composition and the chemical states of the AZO films.Electrical properties,such as resistivity,carrier concentration,and mobility,were measured by Hall-measurement system(ECOPIA HMS-5000),4 Au pins were pressed on 4 corners of films after 4 indium points were added to make sure ohmic contact,then constant current of 10 mA and magnetron field of 0.55 T were applied.The optical transmittance of films was measured by ultravioletvisible(UV-Vis)spectrophotometer,and the transmittance wascalibrated against a bare quartz glass as reference sample.Resistivity stability tests were carried out in a hot humidity environment,in which relative humidity of air was 90%and temperature was fixed at 60°C.

    3 Results and discussion

    Fig.1(a)shows typical XRD patterns of AZO(2%Al2O3)films deposited at different Dst.All measurements were taken on the central region of the films.Only strong(002)peak is observed at 2θ ≈34.47°,which indicates a hexagonal wurtzite structure and an oriented film growth with c-axis perpendicular to the substrate surface.As shown in Fig.1(b),the full width at half maximum(FWHM)decreases from 0.323°to 0.264°with the decrease of Dst.The observed increase in the XRD intensity and decrease in FWHM with the decrease of Dstreveals that the crystallinity is improved with decreasing Dst.AZO films of other mass percents(1%Al2O3,3%Al2O3)have also shown similar characteristic.Using FWHM value,the grain size(g)can also be estimated by Scherrer formula17

    where λ=0.1540562 nm,is the wavelength of the X-ray,θ is the Bragg diffraction angle at the peak position,and Δ(2θ)is the FWHM in radian.An estimated grain size in the range of 26-33 nm can be obtained with the corresponding FWHM value in Fig.1(b).

    Fig.2(a)shows the relationship between resistivity and Dstin three different Al contents obtained by Hall measurement.All films were deposited in a small area of 1 cm×1 cm,in order to avoid the spatial resistivity distribution.5It is clear that,film resistivity decreases significantly with the decrease of Dstfrom 1.63×10-3to 4.94×10-4Ω·cm(2%Al2O3).Fig.2(b,c)show the relationship of free electron carrier concentration and mobility versus Dst.Obviously,it is the larger carrier concentration and mobility at closer deposition distance that produced lower resistivity of film observed in Fig.2(a).With 2%as a case,carrier concentration and mobility at Dst=4.5 cm are 3.75×1020cm-3and 33.7 cm2·V-1·s-1respectively,but they drop to 2.35 × 1020cm-3and 16.3 cm2·V-1·s-1in Dst=7 cm.Yang et al.14reported similar results,as the decrease of Dst,the resistivity decreased to the lowest point,while further decrease of Dstgave negative effects on resistivity.In our experiments,the minimum and optimal Dstis 4.5 cm,which is limited by the position of pre-sputtering shutter,maybe further closed Dstwill show the same phenomenon as that of Yang.In addition,the highest concentration in our films is only 3.75×1020cm-3,which is less than ~8×1020cm-3in other literature.2,3,11,12This may be due to part of powder loss in target-made process and improper Al2O3content,the optimal impurity percent may be between 2%and 2.5%.

    According to the data from Fig.1,closer distance means relatively higher energy of the sputtered particles,which lead to an improvement of crystallinity and lattice structure,thus producing higher lattice limited mobility,and closer Dst(smaller FWHM value)yielded larger grain size.According to a classical model suggested by Seto18in ploycrystalline,depending on the charge carrier trap density at the boundary(Qt)and carrier density(N),the trap can be partly or completely filled,leading to variation barrier heights Eb.Electrons can surmount these barriers by thermionic emission.In the case of AZO(L×N>Qt),the grain boundary limited mobility(μs)is given by

    μs=μ0·exp(-Eb/kT)

    whereμ0can be defined as the mobility inside a grain,εε0is the static dielectric constant,eiselementary charge,kis Boltzmann constant,m*is effective mass in ZnO,Tis Kelvin temperature,Nis the carrier density in the bulk of the grain andLis the grain size,which had already been estimated by Scherrer formula using FWHM value.Since AZO films in closerDsthave relatively larger grain size,less scattering frequency and relatively larger grain boundary limited mobility will be obtained.Since lattice structure and grain boundary scattering are two important factors in determining the mobility of AZO films,thus,the AZO films grown at closerDstwill have higher mobility than that gown at longerDst,which is consistent with what we observed in Fig.2.However,Yanget al.14reported that,over higher energy(further closerDst)may cause degradation of crystallinity and lattice structure,which can be supported by their XRD patterns,thus producing lower mobility.This was also not observed in present case because of limited distance between target and pre-sputtering shutter.

    In order to explain the relationship between carrier concentration andDst,XPS spectra were taken to detect the content of O and Al in AZO films.As reported,2,13Al on substitutional site of Zn and O vacancy are two important donors in AZO film.Minamiet al.3,15got a electron concentration of ca 2×1020cm-3with pure ZnO target by magnetron sputtering,implying that deposited ZnO films were degenerated even without Al dopant.Kimet al.2also got concentration of ca 8.7×1019cm-3in deposited ZnO films.Briefly,we can get the conclusion that,O vacancy is also a non-ignorable donor of AZO in generating the free carriers.Figs.3-5 shows our XPS spectra of three AZO films(2%Al2O3)deposited at differentDst.Using Gaussian fitting,the observed O 1speak can be devoluted into two components.The lower binding energy peak(OI)located at(530.20±0.10)eV is attributed to stoichiometric O2-within wurzite structure of ZnO.While the higher binding energy peak(OII)at(531.83±0.10)eV can be assigned to chemisorbed oxygen atgrain boundaries and surface,such as O2.1,14The stoichiometric atomic ratio of O/Zn can be gotten by integrating the peak area divided by their sensitivity factors(O:0.733,Zn:2.768,Al:0.256).Our results show that,the O/Zn ratio in film(2%,Dst=4.5 cm)is 0.87,while the ratios are 0.92 and 1.02 in film(2%,Dst=6 cm)and film(2%,Dst=7 cm),respectively.This indicates that the AZO film grown at closer Dsthas higher oxygen vacancy than that grown at farther Dst.From XPS spectra,it can also be calculated the atomic ratio of Al/Zn is 0.0308 in the film deposited at 4.5 cm,which is almost equal to 0.0311 in the film deposited at 7 cm.Apparently,AZO film grown at shorter Dst(higher growth rate)may have higher oxygen vacancy rather than that grown at longer Dst(lower growth rate),suggesting that free electron carrier concentration in the AZO film of shorter Dstis higher than that grown at longer Dst,which is consistent with the variation of free electron concentration in Fig.2.

    Fig.6 presents all data for different Dstand different Al contents in a plot of the mobility versus carrier concentration.Thick solid line is a semi-empirical model in ZnO single crystal presented by Masetti et al.,19and the thin solid line is grain boundary scattering limited transport model(formula 2)of Seto.18Dash line is the fitting curve for combined single crystal and grain boundary scattering model,1,4yielding the grain boundary trap density Qt=2.09×1013cm-2.This is in good agreement with data reported by other scholars,for example,1.3×1013cm-2by Ellmer et al.1,4and 1.75×1013cm-2by Cornelius et al..20

    Fig.7(a)shows transmittance spectra of AZO films prepared with targets having 2%Al2O3content with different Dst.The average transmittance in the range of visible-near infrared is above 93%for all samples regardless of Dst.As the decrease of Dst,the absorption edge shifts to the shorter wavelength region,and this movement of the absorption edge is known as the Burstein-Moss shift.21,22It is known that AZO films with carrier concentration above 1020cm-3degenerate and Fermi energy level penetrates into the conduction band,thus the optical band gap Egwill increase with the increased carrier concentration.The optical band gap(Eg)and absorption coefficient(α)in direct transition semiconductor are related by following equation2,23

    where h is Planck′s constant,and ν is the frequency of the incident photon,α is the optical absorption coefficient defined by

    where I is the intensity of transmitted light,I0is the intensity of incident light,and t is the thickness of the AZO films.Fig.7(b)is the plot of α2versus hν,the extrapolation line gives Egfor samples prepared at different Dst.The absorption edge moves from 3.52 to 3.55 eV when Dstvaries from 7 to 4.5 cm,which is also consistent with the variation of free electron carrier concentration in Fig.2.

    Based on the optimal conditions for the deposition of AZO films at Dstof 4.5 cm,the same distance between target and the substrate is employed for the preparation of Si-doped ZnO films.It has been reported that Si atom in Si-doped ZnO films can act as effective donors in the same manner as Al15,16.Fig.8 shows electrical properties of AZO:Si films,in which the data from AZO films are used for comparison.It can be seen that the additional 1%SiO2cause the decrease of resistivity from 7.256×10-4to 4.977×10-4Ω·cm,while 0.5%SiO2added into the target of 2.%Al2O3cause the resistivity increasing from 4.938×10-4to 8.333×10-4Ω·cm.The variety of conductivity can be attributable to varieties in both carrier concentration andmobility as also shown in Fig.8,the carrier concentrations of two AZO:Si films are 6.121×1020and 4.813×1020cm-3,respectively,doped SiO2induces significant increase in carrier concentration,which can be attributed to an increase in additional effective donor.However,compared with AZO films,AZO:Si films have much lower mobilities 20.513 and 15.584 cm2·V-1·s-1,doped-Si may cause enhanced impurity scattering,which results in a certain decrease of mobility.

    Fig.9(a)shows transmittance spectra of AZO:Si films.It can be seen that the added Si does not significantly reduce the optical transmittance in region of 190-900 nm.Comparing with AZO films(2%),the absorption edges of AZO:Si films show slight blue-shift to shorter wavelength.As shown in Fig.9(b),this phenomenon can also be explained by the increased carrier concentration in Fig.8 with the theory of Burstein-Moss.21,22

    Fig.10 shows resistivity as a function of exposure time for AZO:Si films and AZO films.Such tests were carried out in high hot humidity environment(air at 90%relative humidity and 60°C).It is clearly that,after 1000 h exposure in atmosphere,the resistivities of all films increase to different extent,but AZO:Si films show better resistivity stability than AZO films.The resistivity of AZO:Si(1%Al2O3,1%SiO2)slightly rises from 4.977×10-4to 7.013×10-4Ω·cm.However the resistivity of AZO(2%Al2O3)films rise from 4.938×10-4to 9.689×10-4Ω·cm.This increase of resistivity,when films are exposed in atmosphere,may mainly be due to the decrease in carrier concentration,which should be attributed to the oxygen chemisorptions and oxidation of oxygen vacancy.Thus,the resistivity stability of AZO films can be improved by co-doping Si impurity,similar studies have also been reported by other scholars,such as co-doping Si by Nomoto et al.16and co-doping V by Minami et al.24The improvement in resistivity stability of AZO:Si films may mainly be related to that of carrier concentration stability.In AZO films,Al and oxygen vacancy can act as donors,but oxygen vacancy is easy to be oxidized,while in AZO:Si films,co-doped Si acting as additional effective donors increases carrier concentration and can not be oxidized.As practical requirement,transparent electrodes used in optoelectronic devices must be a stable enough when exposured in atmosphere.Co-doping silicon may be a feasible and promising method to improve stability of conductivity,and at the same time do not significantly influence the high-conductance electrical and high-transmittance optical properties of AZO films.

    4 Conclusions

    AZO and AZO:Si films were prepared by RF magnetron sputtering with the home-made ZnO targets containing different contents of Al2O3and SiO2powders as doping source.Alltransparent conductive films were grown on 1 cm×1 cm flat quartz substrates in order to avoid the phenomenon of spatial resistivity distribution.Two parameters of substrate-target distance(Dst)and co-doping Si that can influence the property of AZO films were investigated.The structural properties,electrical properties,and optical properties of AZO films are strongly dependent on the deposited distance between substrate and target.As the decrease of Dst,carrier concentration and mobility all show a significant increase,which result an improved conductivity in AZO films.Optical experiment shows average transmittance>93%in visible-near infrared range for all samples and blue shift of absorption edge with the decrease of Dst.In addition,our experiments have demonstrated that AZO:Si films have comparable electrical and optical properties with AZO films,but better resistivity stability than AZO films in hot and damp atmosphere,which is meaningful in practical use.In summary,Dstand co-doping Si are two important but always easily neglected parameters in deposition process,proper Dstand co-doping Si may help us fabricate high-quality AZO films.

    (1) Ellmer,K.Transparent Conductive Zinc Oxide;Springer Press:Heidelberg,2008;pp 35-78.

    (2)Kim,K.H.;Park,K.C.;Ma,D.Y.J.Appl.Phys.1997,81,7764.

    (3) Minami,T.;Sato,H.;Ohashi,K.;Tomofuji,T.;Takata,S.J.Cryst.Growth 1992,117,370.

    (4) Ellmer,K.;Mientus,R.Thin Solid Films 2008,516,4620.

    (5)Song,D.Y.;Widenborg,P.;Chin,W.;Aberle,A.G.Sol.Energy Mater.Sol.Cells 2002,73,1.

    (6)Lorenz,M.;Kaidashev,E.M.;von Wenckstern,H.;Riede,V.;Bundesmann,C.;Spemann,D.;Benndorf,G.;Hochmuth,H.;Rahm,A.;Semmelhack,H.C.;Grundmann,M.Solid-State Electronics 2003,47,2205.

    (7)Singh,A.V.;Mehra,R.M.;Buthrath,N.;Wakahara,A.;Yoshida,A.J.Appl.Phys.2001,90,5661.

    (8) Hu,J.;Gordon,R.G.J.Appl.Phys.1992,71,880.

    (9)Xue,S.W.;Zu,X.T.;Zheng,W.G.;Chen,M.Y.;Xiang,X.Physica B 2006,382,201.

    (10) Lee,J.C.;Kang,K.H.;Kim,S.K.;Yoon,K.H.;Park,I.J.;Song,J.Sol.Energy Mater.Sol.Cells 2000,64,185.

    (11) Kim,Y.H.;Lee,K.S.;Lee,T.S.;Cheong,B.;Seong,T.Y.;Kim,W.M.Appl.Surf.Sci.2009,255,7251.

    (12) Ellmer,K.;Vollweiler,G.Thin Solid Films 2006,496,104.

    (13) Jeong,S.H.;Lee,J.W.;Lee,S.B.;Boo,J.H.Thin Solid Films 2003,435,78.

    (14)Yang,W.F.;Liu,Z.G.;Peng,D.L.;Zhang,F.;Huang,H.L.;Xie,Y.N.;Wu,Z.Y.Appl.Surf.Sci.2009,255,5669.

    (15) Minami,T.;Sato,H.;Nanto,H.;Takata,S.Jpn.J.Appl.Phys.1986,25,L776.

    (16) Nomoto,J.;Miyata,T.;Minami,T.J.Vac.Sci.Technol.A 2009,27,1001.

    (17)Azaroff,L.V.Elements of X-ray Crystallography;McGraw-Hill:New York,1968.

    (18) Seto,J.Y.W.J.Appl.Phys.1975,46,5247.

    (19) Masetti,G.;Severi,M.;Solmi,S.IEEE Trans.Electron Devices 1983,30,764.

    (20) Cornelius,S.;Vinnichenko,M.;Shevchenko,N.;Rogozin,A.;Kolitsch,A.;M?ller,W.Appl.Phys.Lett.2009,94,042103.

    (21) Burstein,E.Phys.Rev.1954,93,775.

    (22) Moss,T.S.Proceedings of the Physical Society of London Section B 1954,67,775.

    (23) Ziegler,E.;Heinrich,A.;Oppermann,H.;St?ver G.Phys.Status Solidi A 1981,66,635.

    (24) Minami,T.;Miyata,T.Thin Solid Films 2008,517,1474.

    磁控濺射中靶-基底距離與Si共摻對ZnO:Al薄膜性質(zhì)的影響

    徐 浩1,2陸 昉1傅正文2,*

    (1上海市分子催化和功能材料重點實驗室,表面物理實驗室和物理系,復(fù)旦大學(xué),上海200433;2化學(xué)系和激光化學(xué)研究所,復(fù)旦大學(xué),上海200433)

    使用射頻磁控濺射,在正方形石英襯底上沉積透明導(dǎo)電摻Al的ZnO(AZO)和Si共摻AZO(AZO:Si)薄膜.系統(tǒng)研究了靶-基底距離(Dst)和Si共摻對AZO薄膜電學(xué)、光學(xué)性質(zhì)的影響.電阻率、載流子濃度和遷移率都強烈地依賴于靶-基底距離,隨著靶-基底距離的減少,載流子濃度和遷移率都有顯著的增加,電導(dǎo)率也隨之提高.在靶-基底距離為4.5 cm處,得到最低電阻率4.94×10-4Ω·cm,此時的載流子濃度和遷移率分別是3.75×1020cm-3和33.7 cm2·V-1·s-1.X射線光電子能譜(XPS)、X射線衍射(XRD)和邊界散射模型被用于分析載流子濃度、遷移率和靶-基底距離的關(guān)系.透射譜顯示,在可見-近紅外范圍內(nèi)所有樣品均有大于93%的平均透射率,同時隨著靶基距離的減少,吸收邊藍移.AZO:Si表現(xiàn)出可與AZO相比擬的高電導(dǎo)和高透射光學(xué)特性,但在熱濕環(huán)境中卻有著更好的電阻穩(wěn)定性,這在實際使用中很有意義.

    AZO;AZO:Si; 靶-基底距離; 射頻磁控濺射

    O649

    Received:December 20,2010;Revised:March 4,2011;Published on Web:March 10,2011.

    *Corresponding author.Email:zhengwen@sh163.net;Tel:+86-21-65642522.

    The project was supported by the Science&Technology Commission of Shanghai Municipality(08DZ2270500,09JC1401300),National Natural Science Foundation of China(20773031),National Key Basic Research Program of China(973)(2007CB209702),and National High-Tech Research and Development Program of China(863)(2007AA03Z322).

    上海科學(xué)技術(shù)委員會(08DZ2270500,09JC1401300),國家自然科學(xué)基金(20773031),國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB209702),國家高技術(shù)研究發(fā)展計劃(863)(2007AA03Z322)資助項目

    猜你喜歡
    磁控濺射遷移率載流子
    Cd0.96Zn0.04Te 光致載流子動力學(xué)特性的太赫茲光譜研究*
    Sb2Se3 薄膜表面和界面超快載流子動力學(xué)的瞬態(tài)反射光譜分析*
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    SiC/SiO2界面形貌對SiC MOS器件溝道遷移率的影響
    利用CASTEP計算載流子有效質(zhì)量的可靠性分析
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    濾棒吸阻和濾嘴長度對卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    高遷移率族蛋白B1對16HBE細胞血管內(nèi)皮生長因子表達和分泌的影響
    基于六普數(shù)據(jù)的年齡—遷移率模型研究
    性插视频无遮挡在线免费观看| 国产三级在线视频| 日韩国内少妇激情av| 中国美白少妇内射xxxbb| 日韩电影二区| 亚洲人成网站高清观看| av在线老鸭窝| 精品人妻一区二区三区麻豆| 日本黄色片子视频| 啦啦啦啦在线视频资源| 欧美 日韩 精品 国产| 亚洲图色成人| 日日啪夜夜爽| 久久精品国产亚洲av涩爱| 亚洲精品亚洲一区二区| 色综合站精品国产| 成人av在线播放网站| 日本一本二区三区精品| 国产免费福利视频在线观看| 天堂√8在线中文| 日本一二三区视频观看| 日韩视频在线欧美| av在线蜜桃| 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 欧美成人精品欧美一级黄| 中文资源天堂在线| 只有这里有精品99| 综合色丁香网| 非洲黑人性xxxx精品又粗又长| 美女被艹到高潮喷水动态| 永久网站在线| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一级黄片播放器| 成人欧美大片| 国产黄色免费在线视频| 一级二级三级毛片免费看| 亚洲精品成人av观看孕妇| 久久久精品免费免费高清| 91久久精品电影网| 亚洲最大成人av| 国产成人aa在线观看| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 国产女主播在线喷水免费视频网站 | 亚洲精品456在线播放app| 日韩在线高清观看一区二区三区| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 岛国毛片在线播放| 亚洲综合色惰| 2021少妇久久久久久久久久久| 真实男女啪啪啪动态图| 你懂的网址亚洲精品在线观看| 国产伦精品一区二区三区视频9| 国产免费视频播放在线视频 | 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 观看美女的网站| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 亚洲精品视频女| 床上黄色一级片| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 国产乱人视频| 日本免费a在线| 婷婷色av中文字幕| 网址你懂的国产日韩在线| 久久久久精品久久久久真实原创| 日韩av在线大香蕉| 亚洲av免费高清在线观看| 99热6这里只有精品| 成人亚洲精品av一区二区| 国产成人精品一,二区| 99re6热这里在线精品视频| 白带黄色成豆腐渣| 一区二区三区高清视频在线| 五月伊人婷婷丁香| 亚洲自偷自拍三级| 美女xxoo啪啪120秒动态图| 亚洲高清免费不卡视频| 最近的中文字幕免费完整| 亚洲av在线观看美女高潮| 午夜视频国产福利| 99视频精品全部免费 在线| 亚洲av男天堂| 久久精品夜色国产| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 深爱激情五月婷婷| 亚洲不卡免费看| .国产精品久久| 最近最新中文字幕免费大全7| 国产亚洲精品久久久com| 中文字幕久久专区| 亚洲乱码一区二区免费版| 国产黄片视频在线免费观看| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 国产亚洲av片在线观看秒播厂 | 69人妻影院| 午夜福利成人在线免费观看| 亚洲欧美一区二区三区黑人 | 一区二区三区免费毛片| 亚洲图色成人| 你懂的网址亚洲精品在线观看| 777米奇影视久久| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 人人妻人人澡欧美一区二区| 国产精品久久久久久av不卡| 老师上课跳d突然被开到最大视频| 成人亚洲精品一区在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 六月丁香七月| 秋霞伦理黄片| 只有这里有精品99| 欧美日韩国产mv在线观看视频 | 国产久久久一区二区三区| 在线a可以看的网站| 国产成年人精品一区二区| 亚洲国产精品成人久久小说| 中文字幕av在线有码专区| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| av在线老鸭窝| 亚洲精品日韩av片在线观看| 国产亚洲av嫩草精品影院| 国产伦精品一区二区三区四那| 午夜福利在线在线| 国产精品久久视频播放| 少妇的逼水好多| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 极品少妇高潮喷水抽搐| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 国产精品福利在线免费观看| 精品久久久久久久末码| 看黄色毛片网站| 欧美日韩在线观看h| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 男人舔奶头视频| 日本免费a在线| 日日啪夜夜爽| 国产精品福利在线免费观看| 99久久精品国产国产毛片| a级一级毛片免费在线观看| 亚洲成人精品中文字幕电影| 一本一本综合久久| 国产精品不卡视频一区二区| 国产精品一及| 成人二区视频| 纵有疾风起免费观看全集完整版 | 免费观看精品视频网站| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线| 欧美日本视频| 在线免费观看的www视频| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 日韩精品有码人妻一区| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 亚洲怡红院男人天堂| 简卡轻食公司| 成人亚洲欧美一区二区av| 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| av.在线天堂| 搡老乐熟女国产| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 免费看美女性在线毛片视频| 联通29元200g的流量卡| 看非洲黑人一级黄片| 高清欧美精品videossex| 91精品一卡2卡3卡4卡| 日本wwww免费看| 水蜜桃什么品种好| 色网站视频免费| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看| 久久久久久国产a免费观看| 极品教师在线视频| av.在线天堂| 国产亚洲最大av| 亚洲人成网站在线播| 亚洲欧美一区二区三区黑人 | 夜夜看夜夜爽夜夜摸| 我要看日韩黄色一级片| 在线观看人妻少妇| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说 | 亚洲四区av| 国产伦在线观看视频一区| 亚洲av男天堂| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 高清欧美精品videossex| 国产午夜精品论理片| 七月丁香在线播放| 国产69精品久久久久777片| 亚洲成人av在线免费| 成人特级av手机在线观看| 午夜精品国产一区二区电影 | 亚洲成人精品中文字幕电影| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 日本猛色少妇xxxxx猛交久久| 狠狠精品人妻久久久久久综合| 边亲边吃奶的免费视频| 亚洲av一区综合| 真实男女啪啪啪动态图| 亚洲熟女精品中文字幕| 狂野欧美白嫩少妇大欣赏| 国产精品.久久久| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 蜜臀久久99精品久久宅男| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 国产成人免费观看mmmm| 欧美成人精品欧美一级黄| 日韩欧美 国产精品| 69av精品久久久久久| 波多野结衣巨乳人妻| 少妇丰满av| 能在线免费观看的黄片| 一级毛片黄色毛片免费观看视频| 免费大片18禁| 欧美潮喷喷水| 日韩欧美精品v在线| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 久久99精品国语久久久| 欧美日韩国产mv在线观看视频 | av专区在线播放| 又大又黄又爽视频免费| 男人狂女人下面高潮的视频| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 欧美日本视频| 色综合站精品国产| 国产淫语在线视频| 亚洲18禁久久av| 国产69精品久久久久777片| 精品一区二区三区人妻视频| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 欧美日韩在线观看h| 麻豆成人午夜福利视频| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 啦啦啦啦在线视频资源| 小蜜桃在线观看免费完整版高清| 禁无遮挡网站| 久久久久久久久中文| 日韩av不卡免费在线播放| 我的女老师完整版在线观看| 一级黄片播放器| 久久久久久久久久人人人人人人| 午夜激情久久久久久久| 久久草成人影院| 亚洲电影在线观看av| 国国产精品蜜臀av免费| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 国产精品一区二区三区四区久久| 韩国高清视频一区二区三区| 内射极品少妇av片p| 亚洲国产精品专区欧美| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 男人舔女人下体高潮全视频| 成年人午夜在线观看视频 | 国产成人一区二区在线| 国产真实伦视频高清在线观看| 老司机影院成人| 老司机影院毛片| 午夜亚洲福利在线播放| 秋霞伦理黄片| 麻豆国产97在线/欧美| 伊人久久国产一区二区| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| 日韩精品有码人妻一区| 亚洲人成网站在线播| av播播在线观看一区| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 久久久久九九精品影院| 久久久久久久久久人人人人人人| 精品久久久久久久末码| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 伦精品一区二区三区| 国产一区二区亚洲精品在线观看| av专区在线播放| 国产欧美另类精品又又久久亚洲欧美| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 欧美 日韩 精品 国产| av在线观看视频网站免费| 国产美女午夜福利| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| av网站免费在线观看视频 | 欧美不卡视频在线免费观看| 日韩av在线大香蕉| 看十八女毛片水多多多| 免费观看无遮挡的男女| 九草在线视频观看| 亚洲国产精品成人综合色| 特级一级黄色大片| 亚洲精品久久午夜乱码| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 久久久久久久久久成人| 激情 狠狠 欧美| 成年女人在线观看亚洲视频 | 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看 | 久久精品人妻少妇| 51国产日韩欧美| 高清午夜精品一区二区三区| 国产免费视频播放在线视频 | 亚洲四区av| 全区人妻精品视频| 日本一二三区视频观看| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 亚洲精品自拍成人| 一级黄片播放器| 亚洲精品乱码久久久久久按摩| av女优亚洲男人天堂| 亚洲成人av在线免费| 精品久久久久久久末码| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 老司机影院成人| 寂寞人妻少妇视频99o| 一本久久精品| 一级毛片黄色毛片免费观看视频| 久久久色成人| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 国产黄频视频在线观看| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 男人狂女人下面高潮的视频| 3wmmmm亚洲av在线观看| 99久久人妻综合| 久久99热这里只有精品18| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 亚洲怡红院男人天堂| 色尼玛亚洲综合影院| 亚洲国产av新网站| 最近最新中文字幕大全电影3| 国产 亚洲一区二区三区 | 99久久人妻综合| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 亚洲美女视频黄频| av黄色大香蕉| 亚洲熟妇中文字幕五十中出| 久久久精品免费免费高清| a级毛片免费高清观看在线播放| 看黄色毛片网站| 舔av片在线| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 色播亚洲综合网| 老司机影院毛片| 插阴视频在线观看视频| 亚洲精品aⅴ在线观看| 成人性生交大片免费视频hd| 日日啪夜夜撸| 超碰97精品在线观看| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 一级a做视频免费观看| 国产伦精品一区二区三区四那| 国产亚洲最大av| 亚洲无线观看免费| 久久97久久精品| 亚洲av二区三区四区| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 亚洲精品国产av蜜桃| 日韩不卡一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 亚洲av福利一区| 国产激情偷乱视频一区二区| 偷拍熟女少妇极品色| 国内精品一区二区在线观看| 国产精品久久视频播放| 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 国产精品av视频在线免费观看| 在线观看人妻少妇| 国产一区二区亚洲精品在线观看| 高清视频免费观看一区二区 | 三级国产精品欧美在线观看| 韩国av在线不卡| 97人妻精品一区二区三区麻豆| 中文字幕亚洲精品专区| 国产精品国产三级国产av玫瑰| 天堂网av新在线| 激情五月婷婷亚洲| 国产探花极品一区二区| 午夜福利视频精品| 大话2 男鬼变身卡| 久久人人爽人人片av| 少妇人妻一区二区三区视频| 九九爱精品视频在线观看| 久久久久久伊人网av| 国产日韩欧美在线精品| 青春草亚洲视频在线观看| 免费看光身美女| 大片免费播放器 马上看| 嫩草影院新地址| 网址你懂的国产日韩在线| 禁无遮挡网站| 日日啪夜夜撸| 九九爱精品视频在线观看| 亚州av有码| 欧美变态另类bdsm刘玥| 两个人视频免费观看高清| 国产老妇女一区| 国产精品久久久久久精品电影小说 | 免费人成在线观看视频色| 中国国产av一级| 国产精品一区二区三区四区免费观看| 2021少妇久久久久久久久久久| 亚洲精品乱码久久久久久按摩| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久精品电影| 日韩电影二区| 搡老妇女老女人老熟妇| 高清午夜精品一区二区三区| 少妇熟女欧美另类| 草草在线视频免费看| 免费观看精品视频网站| 观看美女的网站| 在线a可以看的网站| 男人爽女人下面视频在线观看| 日日啪夜夜撸| 99久久人妻综合| 少妇的逼好多水| 日韩成人伦理影院| videossex国产| ponron亚洲| 国产精品久久久久久久久免| 亚洲精品色激情综合| 国产在线男女| 卡戴珊不雅视频在线播放| 大话2 男鬼变身卡| 亚洲精品中文字幕在线视频 | 成人鲁丝片一二三区免费| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 免费观看无遮挡的男女| 两个人的视频大全免费| 国产v大片淫在线免费观看| 国产精品国产三级国产av玫瑰| 免费看不卡的av| 男女视频在线观看网站免费| 午夜福利高清视频| 99久国产av精品| 国产欧美另类精品又又久久亚洲欧美| 91狼人影院| 美女内射精品一级片tv| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 亚洲av免费在线观看| 免费看不卡的av| 天天躁日日操中文字幕| 日韩一本色道免费dvd| 狠狠精品人妻久久久久久综合| 国产成人精品婷婷| 人妻制服诱惑在线中文字幕| 亚洲四区av| 国产午夜精品久久久久久一区二区三区| 伊人久久国产一区二区| 日韩强制内射视频| 国产精品1区2区在线观看.| 国产精品久久久久久精品电影小说 | av在线亚洲专区| 最后的刺客免费高清国语| 男女啪啪激烈高潮av片| 久久精品国产亚洲av天美| 97在线视频观看| 三级经典国产精品| 最近的中文字幕免费完整| 成人国产麻豆网| 久久这里有精品视频免费| 亚洲aⅴ乱码一区二区在线播放| 成人毛片60女人毛片免费| 如何舔出高潮| 九色成人免费人妻av| www.av在线官网国产| 久久久久网色| 男人舔女人下体高潮全视频| 日韩一区二区视频免费看| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 啦啦啦啦在线视频资源| 亚洲自偷自拍三级| 国产一区二区三区综合在线观看 | 亚洲婷婷狠狠爱综合网| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 成人漫画全彩无遮挡| 精品国产露脸久久av麻豆 | 日本wwww免费看| 少妇的逼水好多| 欧美成人一区二区免费高清观看| 国产av在哪里看| 丝袜喷水一区| 日本免费a在线| 亚洲av日韩在线播放| 欧美 日韩 精品 国产| 日韩av免费高清视频| 女人久久www免费人成看片| 在线 av 中文字幕| 91av网一区二区| 精品国内亚洲2022精品成人| 国产av国产精品国产| 久久久久久九九精品二区国产| 亚洲久久久久久中文字幕| 成人特级av手机在线观看| 大陆偷拍与自拍| 久久精品久久久久久久性| av又黄又爽大尺度在线免费看| 99re6热这里在线精品视频| 五月天丁香电影| 久久精品久久久久久噜噜老黄| 天堂av国产一区二区熟女人妻| 国产精品久久视频播放| 日本与韩国留学比较| 午夜精品一区二区三区免费看| 久久6这里有精品| 日韩av在线免费看完整版不卡| 久久久久久久久久久丰满| 成人漫画全彩无遮挡| 欧美xxⅹ黑人| 精品久久久久久成人av| 舔av片在线| 国产午夜福利久久久久久| 日本黄色片子视频| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 国产淫片久久久久久久久| 最新中文字幕久久久久| 国产在线男女| 春色校园在线视频观看| 日韩中字成人| 免费看不卡的av| 国产亚洲精品久久久com| 少妇被粗大猛烈的视频| 国产成人午夜福利电影在线观看| 日本一二三区视频观看| 国产不卡一卡二| 国产伦精品一区二区三区四那| 欧美成人一区二区免费高清观看| 国产一区二区三区av在线| 成人欧美大片| 最后的刺客免费高清国语| 亚洲成人中文字幕在线播放| 精品久久久久久久人妻蜜臀av| 久久韩国三级中文字幕| 自拍偷自拍亚洲精品老妇| 国产淫语在线视频| 欧美成人一区二区免费高清观看| 精品人妻视频免费看| 成人午夜精彩视频在线观看| 亚洲精品国产av成人精品| 男人舔女人下体高潮全视频| 亚洲精品一二三| 国产片特级美女逼逼视频| 国产精品av视频在线免费观看| 高清视频免费观看一区二区 |