• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    2014-10-14 03:45:16DINGXiaoChunCHENXiuZHOUJianHuaWANGTaoSUNDunHEJianPing
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:南京航空航天大學(xué)建平建華

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping*

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract: Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5(carbon replicated from SBA-15 silica)by NaBH4reduction.X-ray diffraction(XRD)suggests alloy formation between Pt and Ni.X-ray photoelectron spectroscopy(XPS)shows that Pt-Ni/CMK-5(5:1)has more detectable oxidized Ni.More metallic Pt is present on Pt-Ni/CMK-5(5:1)(atomic ratio)than on Pt/CMK-5.Oxidized Ni species,such as NiO,Ni(OH)2,and NiOOH,favor the adsorption of methanol and the dissociation of methanol from the surface of Pt.Cyclic voltammetry shows that Pt-Ni/CMK-5(5:1)has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1.It has more resistance to CO poisoning than Pt/CMK-5.

    Key Words:CMK-5;Pt/CMK-5 catalyst;Pt-Ni/CMK-5 catalyst;Methanol;Electrooxidation

    1 Introduction

    Fuel cells are appealing alternative power sources as they offer high energy density with zero or low emission of pollutants.Among the diverse types of fuel cells,the proton exchange membrane fuel cells(PEMFC)and direct methanol fuel cells(DMFC)are the most suitable candidates for transportation applications,portable electronics,and residential power sources due to their relatively low operating temperature(<100°C)and fast starting-up function.However,the commercial viability of PEMFC and DMFC is still hindered by several drawbacks,including the low catalytic activity of electrodes,the high cost of the Pt-based catalysts,and the poor durability and reliability.One of the main obstacles for the application of PEMFC in vehicles is the long-term durability of the cathodecatalysts,especially when the fuel cells are operated under the cycle duty.Up to now,the carbon-supported Pt is still a conventional electro-catalyst for PEMFC and DMFC.The degradation of Pt/C cathode catalysts results from both the reduction of electrochemical active surface area(EAS)of Pt and the corrosion of carbon support.1The overpotential caused by the highly irreversible oxygen reduction reaction(ORR)and the methanol crossed over from anode poisoning cathode is the major performance limitation for cathode catalyst.2So there are two solutions to the above problems,one is to quest for alternative catalyst supports,such as carbon nanotubes,carbon spheres,graphitic carbon nanofibers,3-7which are beneficial to improve the dispersion of Pt and consequently enhance its electro-catalytic activity.The other approach is to prepare Pt-based alloy,such as Pt-Ru,Pt-Ni,Pt-Co.8-10Based upon bifunctional mechanism,CO-poisoned Pt nanoparticles can be regenerated via the reaction of surface CO with O-type species associated with a second metal yielding CO2.11Over the last two decades,various Pt-based alloy catalysts had been widely investigated,among which Pt-Ni bimetallic catalyst had attracted more interest.12-21Ni can decrease the oxidation activation potential of H2O,which can dissociate into active oxygen species at a lower potential.The formed active Ni-(OH)adscan react with CO into CO2.Besides,various oxidized Ni accelerate the reaction of Pt-CO with oxygen-containing species produced by oxidized Ni,and thus decreasing the CO-poisoning of Pt.Therefore,Pt-Ni alloy catalyst shows improved electrocatalytic activity.17

    In order to enhance the catalytic activity of the Pt-Ni alloy catalyst,the choice of the support plays a very important role in obtaining high-performance catalysts.CMK-5,a carbon replicated from SBA-15 silica,is among promising support candidates due to its large pore volume,high structural stability and large surface area.22,23Based on our previous research work,the electrochemical active surface of Pt/CMK-5 approximately equals to that of Pt/C(E-ETK).24

    In the present work,CMK-5 was applied to support catalyst nanoparticles via the NaBH4-reduction method.With the fixed total Pt-Ni loading,more Pt loading can absorb more methanol,however displaying a lower electrocatalytic activity.Because less Ni loading forms less Ni-(OH)ads,unfavorable for the oxidation activation of methanol.However a lower Pt loading provides less active sites for absorbing methanol.The present work is undertaken to determine the optimum nominal Pt-Ni atomic ratio among 1:1,3:1,5:1,and 7:1.The physical and morphological characteristics of these bimetallic catalysts were systematically investigated.And the electro-catalytic properties of the catalysts for hydrogen and methanol oxidation were evaluated by cyclic voltammetry.Furthermore,the relationship between the structure and the electrochemical performance and the mechanism interpretation for catalysts were investigated in detail.

    2 Experimental

    2.1 Synthesis of catalyst

    Nano-casting carbon of ordered large pore structure was synthesized via a nanocasting process using SBA-15 as a template,furfuryl alcohol(FA)as a carbon precursor.It was denoted as CMK-5,22,23employed as the catalyst support.The catalyst was obtained via the chemical reduction method by NaBH4.40 mg of CMK-5 was impregnated with 0.038 mol·L-1H2PtCl6in the mixture of water and isopropanol.Then the suspension was constantly stirred to obtain a homogenously dispersed solution,adjusting pH to 9 with NaOH,and subsequently the temperature was increased to 60°C.Afterwards,excessive 0.1 mol·L-1NaBH4solution(31.8 mg NaBH4added into 80 mL of 2 g·L-1NaOH solution)were added dropwise into the suspension under vigorous stirring,followed by 3 h of continuous stirring for the complete reduction of Pt(and Ni).Finally,the resulting material was washed with distilled water several times and dried in a vacuum oven at 80°C,labeled as Pt/CMK-5.The mixture of 0.038 mol·L-1H2PtCl6and 0.01 mol·L-1Ni(NO3)2solution with Pt-Ni atomic ratios of respective 1:1,3:1,5:1,7:1 was used as the Pt-Ni alloy catalyst precursor solution,the following experimental steps were the same as above.And the final samples were signified as Pt-Ni/CMK-5(1:1),Pt-Ni/CMK-5(3:1),Pt-Ni/CMK-5(5:1),and Pt-Ni/CMK-5(7:1),respectively.The metal loading(mass fraction)of all catalysts was 20%.

    2.2 Characterization

    The porous structure of the carbon support was measured by N2adsorption isotherm using Micromeritics ASAP 2010 at 77 K.X-ray diffraction(XRD)patterns of the catalysts were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm).Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and the particle size distribution of all catalysts.The samples for TEM measurement were prepared by ultrasonically suspending the powder in ethanol and placing a drop of the suspension on a carbon film supported by Cu grids.X-ray photoelectron spectroscopy(XPS)analysis was carried out on an ESCALAB 250(Thermo Electron Co.,America)spectrometer with monochromatic Al Kαradiation(150 W,15 kV).The compositions of the samples were analyzed by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Jarrell-Ash 1100).

    An electrochemical interface(Solartron 1287)and a conventional three-electrode system were employed to conduct the cyclic voltammetry of catalysts in 0.5 mol·L-1H2SO4and 1 mol·L-1H2SO4+2 mol·L-1CH3OH solutions.The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(mass fraction)Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied onto the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a platinum foil were used as the referenceelectrode and the counter electrode,respectively.The cyclic voltammograms were collected between-0.22 and 0.98 V in H2SO4system(or between 0 and 1 V in methanol system)versusSCE with a scan rate of 20 mV·s?1at room temperature.From the cyclic voltammetry curve,we can calculate the electrochemical active surface area(EASA)of Pt,which are based on Eq.(1).25,26

    where,QHis the total charge of hydrogen atoms electro-absorpted on the Pt surface,mPtis the mass of Pt andQHrefis assumed to be 0.21 mC·cm-2corresponding to a Pt surface density of 1.3×1015cm-2.

    3 Results and discussion

    3.1 Structural analysis

    Wide-angle XRD,presented in Fig.1,is utilized to characterize the crystalline structure of the catalysts.The wide peak observed at about 24°is associated with C(002)-plane diffraction.27Four diffraction peaks observed at 2θof 39°,46°,67°,and 81°are indexed to(111),(200),(220),and(311)reflections,suggesting the face-centered-cubic(fcc)structure for Pt.Furthermore,compared with pure Pt supported catalyst,there emerges a slight shift of Pt(111)-plane peak toward the higher diffraction angle in Pt-Ni alloy catalysts,indicative of the alloy formation between Pt and Ni.28As can be noted from the diffractograms,no characteristic lines of Ni fcc structure are observed.The absence of lines corresponding to metallic Ni fcc structure(along with Pt lattice)may be due to the metallic grains that are intermixed with amorphous Ni oxides such as NiO,Ni(OH)2,and NiOOH.17

    According to the wide-angle XRD patterns,Table 1 lists the corresponding parameters,including the displacement angle of Pt(111)-plane peak(DA),the mean particle size(D),and the lattice constant values(afcc),wherein,Dis evaluated by the parameters of the Pt(220)peak according to Scherrer′s equation,andafccis calculated on the assumption that the alloy particles are completely homogeneously-dispersed.29,30In Table 1,as the content of Ni in binary catalysts increases,the crystalline structure of Pt changes,showing that the adding of a foreign metal influences the crystalline structure.31It was noted that with the proportion of Ni in the Pt-Ni alloys decreasing,all diffraction peaks were shifted synchronously to lower 2θvalues.The shift is an indication of the reduction in lattice constant.According to Vegard′s law,lattice constant can be used to measure the extent of alloying.afccfor Pt-Ni/CMK-5 presents a decrease monotonically with the Ni content.The reduction ofafccin Pt-Ni/CMK-5 arose primarily from the substitution of platinum at-oms by Ni atoms,which led to the contraction of the fcc lattice,an indication of the formation of Pt-Ni alloys.17

    Table 1 Lattice parameters,particle sizes of catalysts calculated based upon XRD patterns

    X-ray photoelectron spectroscopy(XPS)analysis is performed to investigate the oxidation states of Pt and Ni.As shown in Fig.2(a),there emerges a doublet at 71.2 eV/74.6 eV indicative of metallic Pt.In Fig.2(b),Pt 4fregion of the spectrum can be deconvoluted into three pairs of doublets,which are signature of Pt(0),Pt(II)and Pt(IV),respectively.The Ni 2p3/2spectrum shows a corresponding complex structure and different nickel species,including Ni,NiO,Ni(OH)2,and NiOOH with the binding energies located at 852.6,853.78,855.5 and 857.3 eV,respectively.28Furthermore,the relative quantitative analysis can be measured by the integrated intensities of the deconvoluted XPS signals.As shown in Table 2,the Pt-Ni alloy presents a much enhanced enrichment of metallic Pt on the surface as compared with pure Pt catalyst,probably because of the electron transfer from a lower electronegativity of Ni(1.19)to a higher electronegativity of Pt(2.28),which is consistent with the abundant amorphous Ni oxides detectable in Fig.2(c).32

    The micrometric morphology of supported catalysts is generally characterized by the TEM images.In Fig.3(b),the Pt-Ni catalyst with the atomic ratio of 5:1 is small-sized and uniformly anchored onto CMK-5.Comparatively,in Fig.3(c),pure Pt catalyst presents a slight agglomeration,with some relatively large-sized nanoparticles in several regions of carbon support.Besides,as for Pt-Ni(1:1)catalyst,there appears large-area agglomeration phenomenon for alloy nanoparticles,showing the most severe agglomeration among such three alloy nanoparticles.It is known that,given a similar size,the metal having a lower sublimation tends to surface segregate in binary alloys.The heats of vaporization of Pt and Ni are 509.6 and 370.3 kJ·mol-1,respectively.28Therefore,Ni is enriched on the surface,resulting in the most severe alloy catalyst segregation among such three catalysts.Conclusively,appropriate Ni in Pt-Ni alloy catalyst facilitates dispersing nanoparticles on the support.

    Table 2 Valance states,binding energy(EB),and atomic ratios(AR)of integrated intensity of pure Pt in Pt/CMK-5,as well as Pt-Ni and Ni in Pt-Ni/CMK-5(5:1)

    3.2 Electro-catalytic performances

    To evaluate the electro-catalytic properties of supported Pt,CV curves are generally referred to as a means of electrocatalytic characterization.25,26The CV curves for different catalysts in 0.5 mol·L-1H2SO4solution are shown in Fig.4.The reversible hydrogen adsorption/desorption and preoxidation/reduction doublet peaks of Pt are clearly seen for all catalysts except for Pt-Ni/CMK-5(1:1),suggesting that excessive alloy metal is unfavorable to the formation of uniformly-dispersed catalyst particles,and thus resulting in the relative poor electro-catalytic property.

    The electrochemical active surface area(EASA)of metal nanoparticles is one most important parameter in the evaluation of hydrogen electro-oxidation properties.25,26As listed in Table 3,among the as-prepared catalysts,the EASA of Pt-Ni/CMK-5(5:1)reaches a peak value of 63.9 m2·g?1,higher than that reported in literatures(56 m2·g-1).27Compared with Pt/CMK-5,the adding of appropriate Ni can significantly increase the EASA.

    Table 3 Electrochemical active surface area of different catalysts

    Methanol electro-oxidation of all catalysts is showed in Fig.5.The Pt-Ni/CMK-5(5:1)catalyst exhibits better performance than Pt/CMK-5.As the generally accepted interpretation of bifunctional mechanism explained,33metallic Pt facilitates the adsorption/dissociation process of methanol anchored on the surface of Pt.More oxidative Ni can remove the intermediary products derived from the oxidation of methanol,and release more active sites provided by metallic Pt,28as is confirmed by the above XPS analysis.Moreover,the enhanced activity of Pt-Ni/CMK-5(5:1)catalyst can be attributed to optimized electronic properties in Pt 4fwhen it is alloyed with Ni.Electron transfer from Ni to Pt can be explained by the electronegativities of Ni(1.91)and Pt(2.28).The shift indelectron density from Ni to Pt would be expected to lower the density of states(DOS)at the Fermi level and to reduce the bond energy of Pt and CO as a byproduct of methanol electrooxidation.It has already been pointed out that Ni(hydro)oxides on the Pt/Ni nanoparticles could promote methanol oxidationviaa surface redox process.These two contributions to enhancing methanol electrooxidation would exist in the Pt/Ni based electrodes.34

    The ratio of the forward anodic peak current(If)to the backward anodic peak current(Ib)is commonly used to determine the tolerance of catalysts to carbonaceous species accumulation.35Ordinarily,a higherIf/Ibvalue implies more tolerant toward CO-poisoning.In our experiments,the ratio(listed in Table 3)was estimated to be higher for bimetallic catalyst(except Pt-Ni/CMK-5(1:1))than the pure Pt catalyst.A highIf/Ibindicates that most of the intermediate carbonaceous species were oxidized to CO2in the forward scan,further suggesting that the presence of Ni oxides(detectable in XPS)in the catalyst provides an oxygen source for CO oxidation at lower potential.9,18Therefore,Pt-Ni alloy catalyst exhibits an improved resistance to CO poisoning.TheIf/Ibvalue of Pt-Ni/CMK-5(1:1)catalyst is lowest,probably due to the poorly-dispersed Pt nanoparticles.

    4 Conclusions

    In this paper,pure Pt and Pt-Ni alloy catalysts are supported on CMK-5 by chemical reduction method.Based on XRD and XPS results,it is hypothesized that Ni is present in an oxide/hydroxid amorphous form,as confirmed by the XPS.The physical characterization shows that Pt-Ni with the atomic ratio of 5:1 possesses the best dispersity,and provides far more metallic Pt.Due to the favorable structural property,Pt-Ni/CMK-5(5:1)offers the best electro-chemical performance amongst all the as-prepared catalysts.Conclusively,the research work of doping Ni into the lattice of Pt,undoubtedly,is meaningful in solving the problems encountered by fuel cells.

    (1) Liu,X.;Chen,J.;Liu,G.;Zhang,L.;Zhang,H.M.;Yi,B.L.J.Power Sources2010,195,4098.

    (2)Li,W.Z.;Zhou,W.J.;Li,H.Q.;Zhou,Z.H.;Zhou,B.;Sun,G.Q.;Xin,Q.Electrochim.Acta2004,49,1045.

    (3)Yang,C.W.;Wang,D.L.;Hu,X.G.;Dai,C.S.;Liang,Z.J.Alloy.Compd.2008,448,109.

    (4) Wang,X.M.;Li,N.;Pfefferle,L.D.;Haller,G.L.J.Phys.Chem.,C2010,114,16996.

    (5)Tang,H.;Chen,J.H.;Nie,L.H.;Liu,D.Y.;Deng,W.;Kuang,Y.F.;Yao,S.Z.J.Colloid Interface Sci.2004,269,26.

    (6) Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Nanosci.Nanotechnol.2003,3,247.

    (7)Yen,C.H.;Shimizu,K.;Lin,Y.Y.;Bailey,F.;Cheng,I.F.;Wai,C.M.Energy Fuels2007,21,2268.

    (8)Shimazaki,Y.;Hayasaka,S.;Koyama,T.;Nagao,D.;Kobayashi,Y.;Konno,M.J.Colloid Interface Sci.2010,350,580.

    (9) Zhao,Y.;E,Y.F.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52,5873.

    (10) Do,J.S.;Chen,Y.T.;Lee,M.H.J.Power Sources2007,172,623.

    (11) Choi,J.H.;Park,K.W.;Kwon,B.K.;Sung,Y.E.J.Electrochem.Soc.2003,150,773.

    (12) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.

    (13) Jeon,T.Y.;Yoo,S.J.;Cho,Y.H.;Lee,K.S.;Kang,S.H.;Sung,Y.E.J.Phys.Chem.C2009,113,19732.

    (14)Jiang,S.J.;Ma,Y.W.;Tao,H.S.;Jian,G.Q.;Wang,X.Z.;Fan,Y.N.;Zhu,J.M.;Hu,Z.J.Nanosci.Nanotechnol.2010,10,3895.

    (15)Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe,M.Langmuir2007,23,6438.

    (16) He,C.Z.;Kunz,H.R.;Fenton,J.M.J.Electrochem.Soc.2003,150,A1071.

    (17)Mathiyarasu,J.;Remona,A.M.;Mani,A.;Phani,K.L.N.;Yegnaraman,V.J.Solid State Electrochem.2004,8,968.

    (18)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B 2004,108,8234.

    (19) Wang,Z.B.;Yin,G.P.;Shi,P.F.J.Electrochem.Soc.2005,153,A2406.

    (20) Park,K.W.;Choi,J.H.;Ahn,K.S.;Sung,Y.E.J.Phys.Chem.B 2004,108,5989.

    (21) Sun,D.;He,J.P.;Zhou,J.H.;Wang,T.;Di,Z.Y.;Ding,X.C.Acta Phys.-Chim.Sin.2010,26,1219.[孫 盾,何建平,周建華,王 濤,狄志勇,丁曉春.物理化學(xué)學(xué)報,2010,26,1219.]

    (22)Lu,A.H.;Li,W.C.;Schmidt,W.G.;Schuth,F.Microporous Mesoporous Mat.2005,80,117.

    (23) Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal.Chem.2005,580,145.

    (24)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.;Mei,T.Q.Electrochem.Solid-State Lett.2007,10,B191.

    (25) Pozio,A.;Francesco,D.M.;Cemmi,A.J.Power Sources 2002,105,13.

    (26)Yang,R.Z.;Liu,X.P.;Zhang,H.R.Carbon 2005,43,11.

    (27)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.Electrochem.Solid-State Lett.2007,10,B191.

    (28)Park,K.W.;Choi,J.H.;Kwon,B.K.;Lee,S.A.;Sung,Y.E.J.Phys.Chem.B 2002,106,1869.

    (29) Gojkovic,S.L.;Vidakovic,T.R.;Durovic,D.R.Electrochim.Acta 2003,48,3607.

    (30) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154,98.

    (31)Geng,D.S.;Lu,G.X.J.Phys.Chem.C 2007,111,11897.

    (32) Liu,F.;Lee,J.Y.;Zhou,W.J.Small 2006,2,121.

    (33)Watanabe,M.;Uchida,M.;Motoo,S.J.Electroanal.Chem.1987,229,395.

    (34) Park,K.W.;Choi,J.H.;Sung,Y.E.J.Phys.Chem.B 2003,107,5851.

    (35)Lin,Y.;Cui,X.;Yen,C.;Wai,C.M.J.Phys.Chem.B 2005,109,14410.

    CMK-5負載Pt-Ni合金催化劑及其甲醇電化學(xué)氧化性能

    丁曉春 陳 秀 周建華 王 濤 孫 盾 何建平*

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京210016)

    采用NaBH4還原法將不同原子比的鉑鎳負載于CMK-5(由SBA-15模板所得的碳載體)表面.X射線衍射(XRD)和X射線光電子能譜(XPS)測試結(jié)果表明,所得催化劑是以鉑鎳合金的形式存在,相對于Pt/CMK-5而言,這種合金化的催化劑中Pt表現(xiàn)出更多的金屬態(tài).電化學(xué)測試結(jié)果顯示,在催化劑中主要以化合態(tài)存在的鎳(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化產(chǎn)物從催化劑表面的脫附.另外,從循環(huán)伏安測試結(jié)果可知,Pt-Ni/CMK-5(5:1)(原子比)具有較大的比表面活性,其電化學(xué)活性面積高達63.9 m2·g-1,且與Pt/CMK-5相比抗CO中毒能力有明顯改善.

    CMK-5;Pt/CMK-5催化劑;Pt-Ni/CMK-5催化劑; 甲醇; 電化學(xué)氧化

    O646

    Received:October 27,2010;Revised:January 10,2011;Published on Web:February 16,2011.

    ?Corresponding author.Email:jianph@nuaa.edu.cn;Tel:+86-25-52112900;Fax:+86-25-52112626.The project was supported by the National Natural Science Foundation of China(50871053).

    國家自然科學(xué)基金(50871053)資助項目

    猜你喜歡
    南京航空航天大學(xué)建平建華
    Her dream came true她的夢想成真了
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    国内精品久久久久久久电影| 怎么达到女性高潮| 欧美潮喷喷水| 免费在线观看影片大全网站| 国产欧美日韩一区二区三| 美女xxoo啪啪120秒动态图 | 国产精品乱码一区二三区的特点| 深夜a级毛片| 淫秽高清视频在线观看| 国产真实乱freesex| 丰满人妻熟妇乱又伦精品不卡| 色5月婷婷丁香| 亚洲专区中文字幕在线| 色综合站精品国产| 可以在线观看的亚洲视频| 观看免费一级毛片| 亚洲精品在线美女| 欧美黄色片欧美黄色片| 欧美日韩福利视频一区二区| 国产欧美日韩精品一区二区| 国产乱人视频| 淫秽高清视频在线观看| 欧美3d第一页| 国产精品99久久久久久久久| 国产午夜精品久久久久久一区二区三区 | 99久久成人亚洲精品观看| 中文资源天堂在线| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频| 国产日本99.免费观看| 一本精品99久久精品77| 日本一本二区三区精品| 久久草成人影院| 欧美黄色淫秽网站| 三级毛片av免费| 国产精品嫩草影院av在线观看 | av欧美777| 国产真实伦视频高清在线观看 | 一区二区三区激情视频| 亚洲人成伊人成综合网2020| 精品一区二区免费观看| 国产精品久久久久久亚洲av鲁大| 欧美+日韩+精品| 久久久久精品国产欧美久久久| 欧美成人免费av一区二区三区| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 亚洲综合色惰| 男人和女人高潮做爰伦理| 久久人妻av系列| 黄色一级大片看看| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 老女人水多毛片| 欧美日韩综合久久久久久 | 男女床上黄色一级片免费看| 日韩有码中文字幕| 赤兔流量卡办理| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 极品教师在线视频| 国产视频一区二区在线看| 久久99热这里只有精品18| 久久亚洲真实| 午夜精品一区二区三区免费看| 夜夜看夜夜爽夜夜摸| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 国产白丝娇喘喷水9色精品| 国产不卡一卡二| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 久久久久久久久久黄片| 91狼人影院| 99热这里只有是精品50| 如何舔出高潮| 99热这里只有精品一区| 国产色爽女视频免费观看| 校园春色视频在线观看| 毛片一级片免费看久久久久 | 欧美日韩国产亚洲二区| eeuss影院久久| 成人午夜高清在线视频| 老女人水多毛片| 国产精品亚洲一级av第二区| 丰满乱子伦码专区| 午夜激情欧美在线| av在线老鸭窝| 最近最新中文字幕大全电影3| 尤物成人国产欧美一区二区三区| 久久人妻av系列| 乱码一卡2卡4卡精品| 免费av观看视频| 亚洲精品一区av在线观看| 淫秽高清视频在线观看| 色av中文字幕| 全区人妻精品视频| 成人特级av手机在线观看| 青草久久国产| 最新中文字幕久久久久| 国产精品影院久久| 欧美潮喷喷水| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 亚洲最大成人av| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 97人妻精品一区二区三区麻豆| 观看美女的网站| 国产成人欧美在线观看| av福利片在线观看| 99在线人妻在线中文字幕| 99热6这里只有精品| 欧美日韩国产亚洲二区| 久久精品人妻少妇| h日本视频在线播放| 91久久精品电影网| 精品人妻偷拍中文字幕| 三级国产精品欧美在线观看| 中文字幕人成人乱码亚洲影| 69人妻影院| 亚洲国产精品久久男人天堂| 精品一区二区三区视频在线观看免费| 国产一区二区激情短视频| 精品人妻熟女av久视频| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 能在线免费观看的黄片| h日本视频在线播放| 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 色综合婷婷激情| 亚洲精品成人久久久久久| 我要搜黄色片| 一级av片app| 啦啦啦韩国在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 国产人妻一区二区三区在| 免费看美女性在线毛片视频| 我要看日韩黄色一级片| 欧美性猛交黑人性爽| 香蕉av资源在线| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩无卡精品| 免费电影在线观看免费观看| or卡值多少钱| 老鸭窝网址在线观看| 久久久久九九精品影院| 欧美高清成人免费视频www| 亚洲精品在线观看二区| 中国美女看黄片| 国产又黄又爽又无遮挡在线| 人人妻,人人澡人人爽秒播| 国产一区二区三区在线臀色熟女| 国产69精品久久久久777片| 婷婷亚洲欧美| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 好男人电影高清在线观看| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 每晚都被弄得嗷嗷叫到高潮| 制服丝袜大香蕉在线| 欧美3d第一页| 悠悠久久av| 中文字幕熟女人妻在线| 又爽又黄无遮挡网站| 在线十欧美十亚洲十日本专区| 亚洲激情在线av| 久99久视频精品免费| 欧美日韩国产亚洲二区| 身体一侧抽搐| 免费av观看视频| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 一级a爱片免费观看的视频| 搡女人真爽免费视频火全软件 | 88av欧美| 免费看美女性在线毛片视频| 变态另类丝袜制服| 九九久久精品国产亚洲av麻豆| 亚洲内射少妇av| 90打野战视频偷拍视频| 毛片一级片免费看久久久久 | 少妇裸体淫交视频免费看高清| 最近最新免费中文字幕在线| 中文在线观看免费www的网站| 两个人的视频大全免费| 丝袜美腿在线中文| 看片在线看免费视频| 美女免费视频网站| 国产精品久久久久久人妻精品电影| 久久99热6这里只有精品| 亚洲av电影不卡..在线观看| 国产精品久久久久久久久免 | 1024手机看黄色片| 制服丝袜大香蕉在线| 久久精品国产清高在天天线| 日日干狠狠操夜夜爽| a在线观看视频网站| 日本一二三区视频观看| 男人狂女人下面高潮的视频| 又黄又爽又刺激的免费视频.| 欧美最黄视频在线播放免费| 波多野结衣巨乳人妻| 国产毛片a区久久久久| 亚洲精品亚洲一区二区| 深夜a级毛片| 日本 av在线| 三级国产精品欧美在线观看| 久久久久久九九精品二区国产| 久久国产乱子免费精品| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 18美女黄网站色大片免费观看| 国产精品久久视频播放| 一区二区三区四区激情视频 | 九九在线视频观看精品| 永久网站在线| 18禁黄网站禁片免费观看直播| 国产91精品成人一区二区三区| 变态另类丝袜制服| 99久久无色码亚洲精品果冻| 好男人在线观看高清免费视频| 观看免费一级毛片| 99热精品在线国产| 欧美乱色亚洲激情| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 18美女黄网站色大片免费观看| 亚洲国产精品久久男人天堂| 国产在线精品亚洲第一网站| 我的老师免费观看完整版| 成人三级黄色视频| 久久中文看片网| av欧美777| 88av欧美| 日本 av在线| 亚洲18禁久久av| 日韩av在线大香蕉| 久久天躁狠狠躁夜夜2o2o| 国产精品嫩草影院av在线观看 | 亚洲片人在线观看| 男人舔女人下体高潮全视频| 精品一区二区免费观看| 久久亚洲真实| 亚洲久久久久久中文字幕| 国产探花极品一区二区| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| а√天堂www在线а√下载| 国产亚洲欧美98| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| 赤兔流量卡办理| 亚洲激情在线av| 中出人妻视频一区二区| 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产| 国产亚洲欧美98| 亚洲av二区三区四区| 国产91精品成人一区二区三区| 麻豆国产97在线/欧美| 欧美一区二区国产精品久久精品| 97超视频在线观看视频| 90打野战视频偷拍视频| 欧美成人a在线观看| 国产色婷婷99| 国产不卡一卡二| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 精品久久久久久久久亚洲 | 午夜影院日韩av| 大型黄色视频在线免费观看| 久久亚洲精品不卡| 深夜精品福利| 琪琪午夜伦伦电影理论片6080| 国产淫片久久久久久久久 | 国产成人a区在线观看| 日本一本二区三区精品| 国产亚洲精品久久久久久毛片| eeuss影院久久| 免费搜索国产男女视频| 久久伊人香网站| 婷婷亚洲欧美| 久久热精品热| 精品乱码久久久久久99久播| 男女视频在线观看网站免费| 国产亚洲精品久久久com| 精品无人区乱码1区二区| 欧美3d第一页| 久久久久久久久久成人| 村上凉子中文字幕在线| 国产精品精品国产色婷婷| 免费看日本二区| 亚洲色图av天堂| www.色视频.com| 极品教师在线免费播放| 99精品久久久久人妻精品| 亚洲av成人精品一区久久| 婷婷亚洲欧美| 丰满的人妻完整版| 日韩欧美精品免费久久 | 亚洲精品日韩av片在线观看| 69av精品久久久久久| 亚洲在线观看片| 国产精品av视频在线免费观看| x7x7x7水蜜桃| 日韩免费av在线播放| 精品欧美国产一区二区三| 国产白丝娇喘喷水9色精品| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 最新中文字幕久久久久| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 成人特级av手机在线观看| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 亚洲精品成人久久久久久| 欧美黄色片欧美黄色片| 免费看美女性在线毛片视频| 亚洲最大成人手机在线| 午夜视频国产福利| 婷婷精品国产亚洲av在线| 最近中文字幕高清免费大全6 | 欧美色视频一区免费| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 制服丝袜大香蕉在线| 亚洲五月天丁香| 很黄的视频免费| 又黄又爽又刺激的免费视频.| 久久久久免费精品人妻一区二区| 亚洲18禁久久av| 亚洲人成网站高清观看| 久久热精品热| 18禁黄网站禁片免费观看直播| 亚洲熟妇熟女久久| 欧美一区二区亚洲| 一级av片app| 激情在线观看视频在线高清| 一级a爱片免费观看的视频| 亚洲最大成人手机在线| 99久久精品一区二区三区| 少妇高潮的动态图| 久久久久免费精品人妻一区二区| 亚洲av二区三区四区| 成人三级黄色视频| 一区二区三区四区激情视频 | 婷婷精品国产亚洲av在线| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 熟女人妻精品中文字幕| av天堂在线播放| 精品熟女少妇八av免费久了| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 美女 人体艺术 gogo| 精品人妻偷拍中文字幕| 99热6这里只有精品| 精品人妻1区二区| 国内精品久久久久久久电影| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 午夜a级毛片| 如何舔出高潮| 久久婷婷人人爽人人干人人爱| 亚洲不卡免费看| 日韩欧美一区二区三区在线观看| www.熟女人妻精品国产| 亚洲,欧美精品.| 在线播放国产精品三级| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 亚洲av美国av| 淫妇啪啪啪对白视频| 国产国拍精品亚洲av在线观看| 日韩大尺度精品在线看网址| 午夜福利在线观看吧| h日本视频在线播放| 中国美女看黄片| 日韩中文字幕欧美一区二区| 禁无遮挡网站| 国产高清视频在线播放一区| 亚洲成人久久爱视频| 亚洲 国产 在线| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 深夜a级毛片| 极品教师在线视频| 久久人人精品亚洲av| 精品熟女少妇八av免费久了| 又黄又爽又免费观看的视频| 国产野战对白在线观看| 亚洲精品久久国产高清桃花| 午夜视频国产福利| 91av网一区二区| 男插女下体视频免费在线播放| 亚洲av电影不卡..在线观看| 成人国产一区最新在线观看| 亚洲av熟女| 欧美一级a爱片免费观看看| 宅男免费午夜| 天堂av国产一区二区熟女人妻| a级毛片免费高清观看在线播放| 日日摸夜夜添夜夜添av毛片 | 日韩欧美一区二区三区在线观看| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 日韩成人在线观看一区二区三区| av在线天堂中文字幕| 男人和女人高潮做爰伦理| 一本综合久久免费| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 国产老妇女一区| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 每晚都被弄得嗷嗷叫到高潮| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 12—13女人毛片做爰片一| 国产伦精品一区二区三区视频9| 亚洲国产色片| 在线播放无遮挡| 亚洲国产欧洲综合997久久,| 性欧美人与动物交配| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费| 国产成+人综合+亚洲专区| 国产伦人伦偷精品视频| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 亚洲成人久久性| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 精品一区二区三区视频在线| 此物有八面人人有两片| 精品99又大又爽又粗少妇毛片 | 亚洲七黄色美女视频| 成年版毛片免费区| 嫁个100分男人电影在线观看| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 久久这里只有精品中国| 亚洲在线自拍视频| 国产精品女同一区二区软件 | 一区福利在线观看| 国产aⅴ精品一区二区三区波| 长腿黑丝高跟| 欧美高清成人免费视频www| 欧美激情在线99| 午夜两性在线视频| x7x7x7水蜜桃| 欧美bdsm另类| 免费观看精品视频网站| 国产一区二区三区在线臀色熟女| 国产乱人伦免费视频| 亚洲欧美日韩高清专用| 日本五十路高清| 蜜桃亚洲精品一区二区三区| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 国产视频一区二区在线看| 制服丝袜大香蕉在线| av专区在线播放| 午夜a级毛片| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 99国产精品一区二区三区| АⅤ资源中文在线天堂| 亚洲第一电影网av| 日本 av在线| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 久久6这里有精品| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| 人妻久久中文字幕网| 波多野结衣高清无吗| 俺也久久电影网| 变态另类成人亚洲欧美熟女| 久久6这里有精品| 18+在线观看网站| 88av欧美| 久久精品国产亚洲av天美| av在线观看视频网站免费| 简卡轻食公司| 99视频精品全部免费 在线| 一个人免费在线观看的高清视频| 十八禁国产超污无遮挡网站| 国产高清激情床上av| 99久国产av精品| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| 精品不卡国产一区二区三区| 亚洲无线在线观看| 亚洲欧美精品综合久久99| 国产高潮美女av| www.www免费av| 成人国产综合亚洲| 日日干狠狠操夜夜爽| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 欧美日本视频| 90打野战视频偷拍视频| 欧美日本视频| 18禁在线播放成人免费| 色综合婷婷激情| 一级毛片久久久久久久久女| 真人做人爱边吃奶动态| 草草在线视频免费看| 男人狂女人下面高潮的视频| 国产三级中文精品| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 色综合欧美亚洲国产小说| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 国产三级中文精品| 一级黄片播放器| 亚洲乱码一区二区免费版| 很黄的视频免费| 亚洲精品在线观看二区| 首页视频小说图片口味搜索| 精品久久久久久,| 国产又黄又爽又无遮挡在线| 超碰av人人做人人爽久久| 亚洲成人免费电影在线观看| 欧美3d第一页| 亚洲av免费在线观看| 国产探花极品一区二区| 午夜精品久久久久久毛片777| 精品久久久久久久久亚洲 | 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 午夜福利在线观看吧| 小说图片视频综合网站| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 日韩国内少妇激情av| 欧美性感艳星| 天天一区二区日本电影三级| 久久6这里有精品| 国产精品嫩草影院av在线观看 | 日韩欧美在线乱码| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 亚洲久久久久久中文字幕| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 国产亚洲欧美98| 美女黄网站色视频| 伊人久久精品亚洲午夜| 欧美乱妇无乱码| 最新中文字幕久久久久| 亚洲成av人片在线播放无| 久久午夜福利片| 午夜福利18| 久久久精品大字幕| 啪啪无遮挡十八禁网站| 国产av在哪里看| 国产高清三级在线| 久久久久久久精品吃奶| 在线观看av片永久免费下载| 国内久久婷婷六月综合欲色啪| 色综合站精品国产| 成人特级黄色片久久久久久久| 国产成人欧美在线观看| 女生性感内裤真人,穿戴方法视频| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 深夜精品福利| 久久久久国产精品人妻aⅴ院| 美女 人体艺术 gogo| 美女高潮喷水抽搐中文字幕| 欧美激情国产日韩精品一区| 久99久视频精品免费| 精品一区二区免费观看| 欧美绝顶高潮抽搐喷水| 99精品久久久久人妻精品| 亚洲av.av天堂| 757午夜福利合集在线观看| 一进一出抽搐动态| 日韩欧美三级三区| 欧美日韩瑟瑟在线播放| 老司机午夜十八禁免费视频| 免费高清视频大片| 国产精品1区2区在线观看.|