• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    2014-10-14 03:45:16DINGXiaoChunCHENXiuZHOUJianHuaWANGTaoSUNDunHEJianPing
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:南京航空航天大學(xué)建平建華

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping*

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract: Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5(carbon replicated from SBA-15 silica)by NaBH4reduction.X-ray diffraction(XRD)suggests alloy formation between Pt and Ni.X-ray photoelectron spectroscopy(XPS)shows that Pt-Ni/CMK-5(5:1)has more detectable oxidized Ni.More metallic Pt is present on Pt-Ni/CMK-5(5:1)(atomic ratio)than on Pt/CMK-5.Oxidized Ni species,such as NiO,Ni(OH)2,and NiOOH,favor the adsorption of methanol and the dissociation of methanol from the surface of Pt.Cyclic voltammetry shows that Pt-Ni/CMK-5(5:1)has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1.It has more resistance to CO poisoning than Pt/CMK-5.

    Key Words:CMK-5;Pt/CMK-5 catalyst;Pt-Ni/CMK-5 catalyst;Methanol;Electrooxidation

    1 Introduction

    Fuel cells are appealing alternative power sources as they offer high energy density with zero or low emission of pollutants.Among the diverse types of fuel cells,the proton exchange membrane fuel cells(PEMFC)and direct methanol fuel cells(DMFC)are the most suitable candidates for transportation applications,portable electronics,and residential power sources due to their relatively low operating temperature(<100°C)and fast starting-up function.However,the commercial viability of PEMFC and DMFC is still hindered by several drawbacks,including the low catalytic activity of electrodes,the high cost of the Pt-based catalysts,and the poor durability and reliability.One of the main obstacles for the application of PEMFC in vehicles is the long-term durability of the cathodecatalysts,especially when the fuel cells are operated under the cycle duty.Up to now,the carbon-supported Pt is still a conventional electro-catalyst for PEMFC and DMFC.The degradation of Pt/C cathode catalysts results from both the reduction of electrochemical active surface area(EAS)of Pt and the corrosion of carbon support.1The overpotential caused by the highly irreversible oxygen reduction reaction(ORR)and the methanol crossed over from anode poisoning cathode is the major performance limitation for cathode catalyst.2So there are two solutions to the above problems,one is to quest for alternative catalyst supports,such as carbon nanotubes,carbon spheres,graphitic carbon nanofibers,3-7which are beneficial to improve the dispersion of Pt and consequently enhance its electro-catalytic activity.The other approach is to prepare Pt-based alloy,such as Pt-Ru,Pt-Ni,Pt-Co.8-10Based upon bifunctional mechanism,CO-poisoned Pt nanoparticles can be regenerated via the reaction of surface CO with O-type species associated with a second metal yielding CO2.11Over the last two decades,various Pt-based alloy catalysts had been widely investigated,among which Pt-Ni bimetallic catalyst had attracted more interest.12-21Ni can decrease the oxidation activation potential of H2O,which can dissociate into active oxygen species at a lower potential.The formed active Ni-(OH)adscan react with CO into CO2.Besides,various oxidized Ni accelerate the reaction of Pt-CO with oxygen-containing species produced by oxidized Ni,and thus decreasing the CO-poisoning of Pt.Therefore,Pt-Ni alloy catalyst shows improved electrocatalytic activity.17

    In order to enhance the catalytic activity of the Pt-Ni alloy catalyst,the choice of the support plays a very important role in obtaining high-performance catalysts.CMK-5,a carbon replicated from SBA-15 silica,is among promising support candidates due to its large pore volume,high structural stability and large surface area.22,23Based on our previous research work,the electrochemical active surface of Pt/CMK-5 approximately equals to that of Pt/C(E-ETK).24

    In the present work,CMK-5 was applied to support catalyst nanoparticles via the NaBH4-reduction method.With the fixed total Pt-Ni loading,more Pt loading can absorb more methanol,however displaying a lower electrocatalytic activity.Because less Ni loading forms less Ni-(OH)ads,unfavorable for the oxidation activation of methanol.However a lower Pt loading provides less active sites for absorbing methanol.The present work is undertaken to determine the optimum nominal Pt-Ni atomic ratio among 1:1,3:1,5:1,and 7:1.The physical and morphological characteristics of these bimetallic catalysts were systematically investigated.And the electro-catalytic properties of the catalysts for hydrogen and methanol oxidation were evaluated by cyclic voltammetry.Furthermore,the relationship between the structure and the electrochemical performance and the mechanism interpretation for catalysts were investigated in detail.

    2 Experimental

    2.1 Synthesis of catalyst

    Nano-casting carbon of ordered large pore structure was synthesized via a nanocasting process using SBA-15 as a template,furfuryl alcohol(FA)as a carbon precursor.It was denoted as CMK-5,22,23employed as the catalyst support.The catalyst was obtained via the chemical reduction method by NaBH4.40 mg of CMK-5 was impregnated with 0.038 mol·L-1H2PtCl6in the mixture of water and isopropanol.Then the suspension was constantly stirred to obtain a homogenously dispersed solution,adjusting pH to 9 with NaOH,and subsequently the temperature was increased to 60°C.Afterwards,excessive 0.1 mol·L-1NaBH4solution(31.8 mg NaBH4added into 80 mL of 2 g·L-1NaOH solution)were added dropwise into the suspension under vigorous stirring,followed by 3 h of continuous stirring for the complete reduction of Pt(and Ni).Finally,the resulting material was washed with distilled water several times and dried in a vacuum oven at 80°C,labeled as Pt/CMK-5.The mixture of 0.038 mol·L-1H2PtCl6and 0.01 mol·L-1Ni(NO3)2solution with Pt-Ni atomic ratios of respective 1:1,3:1,5:1,7:1 was used as the Pt-Ni alloy catalyst precursor solution,the following experimental steps were the same as above.And the final samples were signified as Pt-Ni/CMK-5(1:1),Pt-Ni/CMK-5(3:1),Pt-Ni/CMK-5(5:1),and Pt-Ni/CMK-5(7:1),respectively.The metal loading(mass fraction)of all catalysts was 20%.

    2.2 Characterization

    The porous structure of the carbon support was measured by N2adsorption isotherm using Micromeritics ASAP 2010 at 77 K.X-ray diffraction(XRD)patterns of the catalysts were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm).Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and the particle size distribution of all catalysts.The samples for TEM measurement were prepared by ultrasonically suspending the powder in ethanol and placing a drop of the suspension on a carbon film supported by Cu grids.X-ray photoelectron spectroscopy(XPS)analysis was carried out on an ESCALAB 250(Thermo Electron Co.,America)spectrometer with monochromatic Al Kαradiation(150 W,15 kV).The compositions of the samples were analyzed by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Jarrell-Ash 1100).

    An electrochemical interface(Solartron 1287)and a conventional three-electrode system were employed to conduct the cyclic voltammetry of catalysts in 0.5 mol·L-1H2SO4and 1 mol·L-1H2SO4+2 mol·L-1CH3OH solutions.The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(mass fraction)Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied onto the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a platinum foil were used as the referenceelectrode and the counter electrode,respectively.The cyclic voltammograms were collected between-0.22 and 0.98 V in H2SO4system(or between 0 and 1 V in methanol system)versusSCE with a scan rate of 20 mV·s?1at room temperature.From the cyclic voltammetry curve,we can calculate the electrochemical active surface area(EASA)of Pt,which are based on Eq.(1).25,26

    where,QHis the total charge of hydrogen atoms electro-absorpted on the Pt surface,mPtis the mass of Pt andQHrefis assumed to be 0.21 mC·cm-2corresponding to a Pt surface density of 1.3×1015cm-2.

    3 Results and discussion

    3.1 Structural analysis

    Wide-angle XRD,presented in Fig.1,is utilized to characterize the crystalline structure of the catalysts.The wide peak observed at about 24°is associated with C(002)-plane diffraction.27Four diffraction peaks observed at 2θof 39°,46°,67°,and 81°are indexed to(111),(200),(220),and(311)reflections,suggesting the face-centered-cubic(fcc)structure for Pt.Furthermore,compared with pure Pt supported catalyst,there emerges a slight shift of Pt(111)-plane peak toward the higher diffraction angle in Pt-Ni alloy catalysts,indicative of the alloy formation between Pt and Ni.28As can be noted from the diffractograms,no characteristic lines of Ni fcc structure are observed.The absence of lines corresponding to metallic Ni fcc structure(along with Pt lattice)may be due to the metallic grains that are intermixed with amorphous Ni oxides such as NiO,Ni(OH)2,and NiOOH.17

    According to the wide-angle XRD patterns,Table 1 lists the corresponding parameters,including the displacement angle of Pt(111)-plane peak(DA),the mean particle size(D),and the lattice constant values(afcc),wherein,Dis evaluated by the parameters of the Pt(220)peak according to Scherrer′s equation,andafccis calculated on the assumption that the alloy particles are completely homogeneously-dispersed.29,30In Table 1,as the content of Ni in binary catalysts increases,the crystalline structure of Pt changes,showing that the adding of a foreign metal influences the crystalline structure.31It was noted that with the proportion of Ni in the Pt-Ni alloys decreasing,all diffraction peaks were shifted synchronously to lower 2θvalues.The shift is an indication of the reduction in lattice constant.According to Vegard′s law,lattice constant can be used to measure the extent of alloying.afccfor Pt-Ni/CMK-5 presents a decrease monotonically with the Ni content.The reduction ofafccin Pt-Ni/CMK-5 arose primarily from the substitution of platinum at-oms by Ni atoms,which led to the contraction of the fcc lattice,an indication of the formation of Pt-Ni alloys.17

    Table 1 Lattice parameters,particle sizes of catalysts calculated based upon XRD patterns

    X-ray photoelectron spectroscopy(XPS)analysis is performed to investigate the oxidation states of Pt and Ni.As shown in Fig.2(a),there emerges a doublet at 71.2 eV/74.6 eV indicative of metallic Pt.In Fig.2(b),Pt 4fregion of the spectrum can be deconvoluted into three pairs of doublets,which are signature of Pt(0),Pt(II)and Pt(IV),respectively.The Ni 2p3/2spectrum shows a corresponding complex structure and different nickel species,including Ni,NiO,Ni(OH)2,and NiOOH with the binding energies located at 852.6,853.78,855.5 and 857.3 eV,respectively.28Furthermore,the relative quantitative analysis can be measured by the integrated intensities of the deconvoluted XPS signals.As shown in Table 2,the Pt-Ni alloy presents a much enhanced enrichment of metallic Pt on the surface as compared with pure Pt catalyst,probably because of the electron transfer from a lower electronegativity of Ni(1.19)to a higher electronegativity of Pt(2.28),which is consistent with the abundant amorphous Ni oxides detectable in Fig.2(c).32

    The micrometric morphology of supported catalysts is generally characterized by the TEM images.In Fig.3(b),the Pt-Ni catalyst with the atomic ratio of 5:1 is small-sized and uniformly anchored onto CMK-5.Comparatively,in Fig.3(c),pure Pt catalyst presents a slight agglomeration,with some relatively large-sized nanoparticles in several regions of carbon support.Besides,as for Pt-Ni(1:1)catalyst,there appears large-area agglomeration phenomenon for alloy nanoparticles,showing the most severe agglomeration among such three alloy nanoparticles.It is known that,given a similar size,the metal having a lower sublimation tends to surface segregate in binary alloys.The heats of vaporization of Pt and Ni are 509.6 and 370.3 kJ·mol-1,respectively.28Therefore,Ni is enriched on the surface,resulting in the most severe alloy catalyst segregation among such three catalysts.Conclusively,appropriate Ni in Pt-Ni alloy catalyst facilitates dispersing nanoparticles on the support.

    Table 2 Valance states,binding energy(EB),and atomic ratios(AR)of integrated intensity of pure Pt in Pt/CMK-5,as well as Pt-Ni and Ni in Pt-Ni/CMK-5(5:1)

    3.2 Electro-catalytic performances

    To evaluate the electro-catalytic properties of supported Pt,CV curves are generally referred to as a means of electrocatalytic characterization.25,26The CV curves for different catalysts in 0.5 mol·L-1H2SO4solution are shown in Fig.4.The reversible hydrogen adsorption/desorption and preoxidation/reduction doublet peaks of Pt are clearly seen for all catalysts except for Pt-Ni/CMK-5(1:1),suggesting that excessive alloy metal is unfavorable to the formation of uniformly-dispersed catalyst particles,and thus resulting in the relative poor electro-catalytic property.

    The electrochemical active surface area(EASA)of metal nanoparticles is one most important parameter in the evaluation of hydrogen electro-oxidation properties.25,26As listed in Table 3,among the as-prepared catalysts,the EASA of Pt-Ni/CMK-5(5:1)reaches a peak value of 63.9 m2·g?1,higher than that reported in literatures(56 m2·g-1).27Compared with Pt/CMK-5,the adding of appropriate Ni can significantly increase the EASA.

    Table 3 Electrochemical active surface area of different catalysts

    Methanol electro-oxidation of all catalysts is showed in Fig.5.The Pt-Ni/CMK-5(5:1)catalyst exhibits better performance than Pt/CMK-5.As the generally accepted interpretation of bifunctional mechanism explained,33metallic Pt facilitates the adsorption/dissociation process of methanol anchored on the surface of Pt.More oxidative Ni can remove the intermediary products derived from the oxidation of methanol,and release more active sites provided by metallic Pt,28as is confirmed by the above XPS analysis.Moreover,the enhanced activity of Pt-Ni/CMK-5(5:1)catalyst can be attributed to optimized electronic properties in Pt 4fwhen it is alloyed with Ni.Electron transfer from Ni to Pt can be explained by the electronegativities of Ni(1.91)and Pt(2.28).The shift indelectron density from Ni to Pt would be expected to lower the density of states(DOS)at the Fermi level and to reduce the bond energy of Pt and CO as a byproduct of methanol electrooxidation.It has already been pointed out that Ni(hydro)oxides on the Pt/Ni nanoparticles could promote methanol oxidationviaa surface redox process.These two contributions to enhancing methanol electrooxidation would exist in the Pt/Ni based electrodes.34

    The ratio of the forward anodic peak current(If)to the backward anodic peak current(Ib)is commonly used to determine the tolerance of catalysts to carbonaceous species accumulation.35Ordinarily,a higherIf/Ibvalue implies more tolerant toward CO-poisoning.In our experiments,the ratio(listed in Table 3)was estimated to be higher for bimetallic catalyst(except Pt-Ni/CMK-5(1:1))than the pure Pt catalyst.A highIf/Ibindicates that most of the intermediate carbonaceous species were oxidized to CO2in the forward scan,further suggesting that the presence of Ni oxides(detectable in XPS)in the catalyst provides an oxygen source for CO oxidation at lower potential.9,18Therefore,Pt-Ni alloy catalyst exhibits an improved resistance to CO poisoning.TheIf/Ibvalue of Pt-Ni/CMK-5(1:1)catalyst is lowest,probably due to the poorly-dispersed Pt nanoparticles.

    4 Conclusions

    In this paper,pure Pt and Pt-Ni alloy catalysts are supported on CMK-5 by chemical reduction method.Based on XRD and XPS results,it is hypothesized that Ni is present in an oxide/hydroxid amorphous form,as confirmed by the XPS.The physical characterization shows that Pt-Ni with the atomic ratio of 5:1 possesses the best dispersity,and provides far more metallic Pt.Due to the favorable structural property,Pt-Ni/CMK-5(5:1)offers the best electro-chemical performance amongst all the as-prepared catalysts.Conclusively,the research work of doping Ni into the lattice of Pt,undoubtedly,is meaningful in solving the problems encountered by fuel cells.

    (1) Liu,X.;Chen,J.;Liu,G.;Zhang,L.;Zhang,H.M.;Yi,B.L.J.Power Sources2010,195,4098.

    (2)Li,W.Z.;Zhou,W.J.;Li,H.Q.;Zhou,Z.H.;Zhou,B.;Sun,G.Q.;Xin,Q.Electrochim.Acta2004,49,1045.

    (3)Yang,C.W.;Wang,D.L.;Hu,X.G.;Dai,C.S.;Liang,Z.J.Alloy.Compd.2008,448,109.

    (4) Wang,X.M.;Li,N.;Pfefferle,L.D.;Haller,G.L.J.Phys.Chem.,C2010,114,16996.

    (5)Tang,H.;Chen,J.H.;Nie,L.H.;Liu,D.Y.;Deng,W.;Kuang,Y.F.;Yao,S.Z.J.Colloid Interface Sci.2004,269,26.

    (6) Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Nanosci.Nanotechnol.2003,3,247.

    (7)Yen,C.H.;Shimizu,K.;Lin,Y.Y.;Bailey,F.;Cheng,I.F.;Wai,C.M.Energy Fuels2007,21,2268.

    (8)Shimazaki,Y.;Hayasaka,S.;Koyama,T.;Nagao,D.;Kobayashi,Y.;Konno,M.J.Colloid Interface Sci.2010,350,580.

    (9) Zhao,Y.;E,Y.F.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52,5873.

    (10) Do,J.S.;Chen,Y.T.;Lee,M.H.J.Power Sources2007,172,623.

    (11) Choi,J.H.;Park,K.W.;Kwon,B.K.;Sung,Y.E.J.Electrochem.Soc.2003,150,773.

    (12) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.

    (13) Jeon,T.Y.;Yoo,S.J.;Cho,Y.H.;Lee,K.S.;Kang,S.H.;Sung,Y.E.J.Phys.Chem.C2009,113,19732.

    (14)Jiang,S.J.;Ma,Y.W.;Tao,H.S.;Jian,G.Q.;Wang,X.Z.;Fan,Y.N.;Zhu,J.M.;Hu,Z.J.Nanosci.Nanotechnol.2010,10,3895.

    (15)Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe,M.Langmuir2007,23,6438.

    (16) He,C.Z.;Kunz,H.R.;Fenton,J.M.J.Electrochem.Soc.2003,150,A1071.

    (17)Mathiyarasu,J.;Remona,A.M.;Mani,A.;Phani,K.L.N.;Yegnaraman,V.J.Solid State Electrochem.2004,8,968.

    (18)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B 2004,108,8234.

    (19) Wang,Z.B.;Yin,G.P.;Shi,P.F.J.Electrochem.Soc.2005,153,A2406.

    (20) Park,K.W.;Choi,J.H.;Ahn,K.S.;Sung,Y.E.J.Phys.Chem.B 2004,108,5989.

    (21) Sun,D.;He,J.P.;Zhou,J.H.;Wang,T.;Di,Z.Y.;Ding,X.C.Acta Phys.-Chim.Sin.2010,26,1219.[孫 盾,何建平,周建華,王 濤,狄志勇,丁曉春.物理化學(xué)學(xué)報,2010,26,1219.]

    (22)Lu,A.H.;Li,W.C.;Schmidt,W.G.;Schuth,F.Microporous Mesoporous Mat.2005,80,117.

    (23) Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal.Chem.2005,580,145.

    (24)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.;Mei,T.Q.Electrochem.Solid-State Lett.2007,10,B191.

    (25) Pozio,A.;Francesco,D.M.;Cemmi,A.J.Power Sources 2002,105,13.

    (26)Yang,R.Z.;Liu,X.P.;Zhang,H.R.Carbon 2005,43,11.

    (27)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.Electrochem.Solid-State Lett.2007,10,B191.

    (28)Park,K.W.;Choi,J.H.;Kwon,B.K.;Lee,S.A.;Sung,Y.E.J.Phys.Chem.B 2002,106,1869.

    (29) Gojkovic,S.L.;Vidakovic,T.R.;Durovic,D.R.Electrochim.Acta 2003,48,3607.

    (30) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154,98.

    (31)Geng,D.S.;Lu,G.X.J.Phys.Chem.C 2007,111,11897.

    (32) Liu,F.;Lee,J.Y.;Zhou,W.J.Small 2006,2,121.

    (33)Watanabe,M.;Uchida,M.;Motoo,S.J.Electroanal.Chem.1987,229,395.

    (34) Park,K.W.;Choi,J.H.;Sung,Y.E.J.Phys.Chem.B 2003,107,5851.

    (35)Lin,Y.;Cui,X.;Yen,C.;Wai,C.M.J.Phys.Chem.B 2005,109,14410.

    CMK-5負載Pt-Ni合金催化劑及其甲醇電化學(xué)氧化性能

    丁曉春 陳 秀 周建華 王 濤 孫 盾 何建平*

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京210016)

    采用NaBH4還原法將不同原子比的鉑鎳負載于CMK-5(由SBA-15模板所得的碳載體)表面.X射線衍射(XRD)和X射線光電子能譜(XPS)測試結(jié)果表明,所得催化劑是以鉑鎳合金的形式存在,相對于Pt/CMK-5而言,這種合金化的催化劑中Pt表現(xiàn)出更多的金屬態(tài).電化學(xué)測試結(jié)果顯示,在催化劑中主要以化合態(tài)存在的鎳(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化產(chǎn)物從催化劑表面的脫附.另外,從循環(huán)伏安測試結(jié)果可知,Pt-Ni/CMK-5(5:1)(原子比)具有較大的比表面活性,其電化學(xué)活性面積高達63.9 m2·g-1,且與Pt/CMK-5相比抗CO中毒能力有明顯改善.

    CMK-5;Pt/CMK-5催化劑;Pt-Ni/CMK-5催化劑; 甲醇; 電化學(xué)氧化

    O646

    Received:October 27,2010;Revised:January 10,2011;Published on Web:February 16,2011.

    ?Corresponding author.Email:jianph@nuaa.edu.cn;Tel:+86-25-52112900;Fax:+86-25-52112626.The project was supported by the National Natural Science Foundation of China(50871053).

    國家自然科學(xué)基金(50871053)資助項目

    猜你喜歡
    南京航空航天大學(xué)建平建華
    Her dream came true她的夢想成真了
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    久久精品国产亚洲av天美| 午夜免费激情av| 99在线视频只有这里精品首页| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 三级国产精品欧美在线观看| 久久精品国产亚洲av香蕉五月| 舔av片在线| 欧美色视频一区免费| av黄色大香蕉| 亚洲第一区二区三区不卡| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 亚洲av不卡在线观看| 成人精品一区二区免费| 精品一区二区三区人妻视频| 麻豆国产97在线/欧美| 男插女下体视频免费在线播放| 蜜桃亚洲精品一区二区三区| 色综合色国产| 色综合亚洲欧美另类图片| 岛国在线免费视频观看| 女的被弄到高潮叫床怎么办| 亚洲色图av天堂| 一级a爱片免费观看的视频| 舔av片在线| 国产中年淑女户外野战色| 国产探花在线观看一区二区| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 最后的刺客免费高清国语| 欧美高清性xxxxhd video| 国产成人freesex在线 | 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 插逼视频在线观看| 波多野结衣高清作品| 最近手机中文字幕大全| 99热精品在线国产| 久久欧美精品欧美久久欧美| 色哟哟·www| 久久久国产成人免费| 男女那种视频在线观看| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| 久99久视频精品免费| 日本一本二区三区精品| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 免费在线观看成人毛片| 日日摸夜夜添夜夜添av毛片| 免费看a级黄色片| 我要看日韩黄色一级片| 女人被狂操c到高潮| 中国美白少妇内射xxxbb| 久久欧美精品欧美久久欧美| 国产私拍福利视频在线观看| 99九九线精品视频在线观看视频| 给我免费播放毛片高清在线观看| 亚洲成a人片在线一区二区| 日本一本二区三区精品| 国产午夜精品论理片| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 午夜免费激情av| 校园春色视频在线观看| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 99久久精品热视频| 最近中文字幕高清免费大全6| 亚洲欧美日韩卡通动漫| 一边摸一边抽搐一进一小说| 91精品国产九色| 亚洲av中文字字幕乱码综合| 亚洲人成网站在线播放欧美日韩| av国产免费在线观看| 乱人视频在线观看| 在线观看午夜福利视频| 97超级碰碰碰精品色视频在线观看| 成年av动漫网址| 欧美最黄视频在线播放免费| 国产白丝娇喘喷水9色精品| 国产女主播在线喷水免费视频网站 | 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区四那| 色综合色国产| 久久热精品热| 色吧在线观看| 亚洲av第一区精品v没综合| 午夜精品在线福利| 精品日产1卡2卡| 国产在线精品亚洲第一网站| 精品少妇黑人巨大在线播放 | 级片在线观看| 变态另类成人亚洲欧美熟女| 婷婷六月久久综合丁香| 一区二区三区四区激情视频 | 精品久久久久久久人妻蜜臀av| 国产三级中文精品| 两个人视频免费观看高清| 亚洲美女搞黄在线观看 | 国产黄色视频一区二区在线观看 | 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| 免费大片18禁| 精品人妻一区二区三区麻豆 | 国产精品久久久久久av不卡| 免费人成在线观看视频色| 亚洲激情五月婷婷啪啪| 69人妻影院| 亚洲久久久久久中文字幕| 小说图片视频综合网站| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 久久鲁丝午夜福利片| 国产高清激情床上av| 日日摸夜夜添夜夜添av毛片| 久久热精品热| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 在线天堂最新版资源| 老女人水多毛片| 亚洲精品一卡2卡三卡4卡5卡| 日本黄大片高清| 国产在线精品亚洲第一网站| 高清午夜精品一区二区三区 | 伦理电影大哥的女人| 国产男靠女视频免费网站| 天堂√8在线中文| 欧美zozozo另类| 成人性生交大片免费视频hd| 久久韩国三级中文字幕| 简卡轻食公司| 国产亚洲精品久久久com| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻| av福利片在线观看| 村上凉子中文字幕在线| 亚洲自偷自拍三级| 欧美激情在线99| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 日本黄色视频三级网站网址| 美女免费视频网站| 九九热线精品视视频播放| 国模一区二区三区四区视频| 在线看三级毛片| 最近最新中文字幕大全电影3| 在线播放无遮挡| 我的老师免费观看完整版| 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女| 久久久久国内视频| 国产视频内射| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 在线观看免费视频日本深夜| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 亚洲内射少妇av| 国产精品久久久久久av不卡| 非洲黑人性xxxx精品又粗又长| 国产精品久久电影中文字幕| 亚洲av中文字字幕乱码综合| 女同久久另类99精品国产91| 亚洲美女黄片视频| 有码 亚洲区| 国产精华一区二区三区| 中文字幕免费在线视频6| 国产aⅴ精品一区二区三区波| 网址你懂的国产日韩在线| 日韩在线高清观看一区二区三区| 国产精品亚洲一级av第二区| 日产精品乱码卡一卡2卡三| 国产精品一及| 狂野欧美激情性xxxx在线观看| 99久久精品国产国产毛片| 女的被弄到高潮叫床怎么办| 免费一级毛片在线播放高清视频| 免费无遮挡裸体视频| 99国产极品粉嫩在线观看| 久久久久久久久大av| 俄罗斯特黄特色一大片| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 精品久久久噜噜| 久久久久国产网址| 日韩人妻高清精品专区| 97超视频在线观看视频| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| 久久久久精品国产欧美久久久| 国产亚洲精品av在线| 国产女主播在线喷水免费视频网站 | 一级毛片aaaaaa免费看小| 一个人看的www免费观看视频| 欧美日韩在线观看h| 色哟哟·www| 精品欧美国产一区二区三| 亚洲人成网站在线播| 成人精品一区二区免费| 亚洲成人久久性| 日日撸夜夜添| 久久6这里有精品| 99热这里只有是精品在线观看| 国内精品久久久久精免费| 在线播放无遮挡| 亚洲欧美日韩高清在线视频| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 美女免费视频网站| 18禁在线播放成人免费| 可以在线观看的亚洲视频| 天堂影院成人在线观看| 精品福利观看| 亚洲av中文av极速乱| 中文字幕熟女人妻在线| 俺也久久电影网| 99在线人妻在线中文字幕| 日本欧美国产在线视频| 一级毛片aaaaaa免费看小| 99国产极品粉嫩在线观看| 亚洲av一区综合| 欧美极品一区二区三区四区| 日韩欧美在线乱码| 91久久精品电影网| 少妇的逼好多水| 亚洲国产精品成人久久小说 | 日韩精品青青久久久久久| 国产老妇女一区| 自拍偷自拍亚洲精品老妇| 99国产精品一区二区蜜桃av| av在线老鸭窝| 久久精品人妻少妇| 一级毛片久久久久久久久女| 国产精品久久电影中文字幕| 亚洲成人av在线免费| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 成人三级黄色视频| 亚洲精品久久国产高清桃花| 成人欧美大片| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 免费大片18禁| 直男gayav资源| 亚洲中文字幕日韩| 久久久久久大精品| 99久国产av精品| 欧美不卡视频在线免费观看| 最新中文字幕久久久久| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 免费人成视频x8x8入口观看| 欧美最黄视频在线播放免费| 91av网一区二区| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 色哟哟哟哟哟哟| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 大型黄色视频在线免费观看| 91久久精品国产一区二区成人| 精品人妻一区二区三区麻豆 | 3wmmmm亚洲av在线观看| 亚洲va在线va天堂va国产| 亚洲中文日韩欧美视频| 国产高潮美女av| 国产乱人视频| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 亚洲色图av天堂| 99热网站在线观看| 午夜爱爱视频在线播放| 久久精品国产亚洲av涩爱 | 一夜夜www| 国产色爽女视频免费观看| 国产av在哪里看| 毛片一级片免费看久久久久| 看片在线看免费视频| www.色视频.com| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| www日本黄色视频网| 国产淫片久久久久久久久| 国产精品国产高清国产av| 天堂√8在线中文| 成人二区视频| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 久久人妻av系列| 亚洲成人精品中文字幕电影| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 国产精品国产三级国产av玫瑰| 亚洲最大成人手机在线| 国产亚洲精品综合一区在线观看| 日韩制服骚丝袜av| 99热6这里只有精品| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 亚洲成人久久性| 免费大片18禁| 亚洲在线自拍视频| 国产精品福利在线免费观看| 一级毛片我不卡| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| .国产精品久久| 久久久久久大精品| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 免费看美女性在线毛片视频| 久久久精品大字幕| 国产真实伦视频高清在线观看| 春色校园在线视频观看| 看免费成人av毛片| 国产亚洲91精品色在线| 成人av在线播放网站| 国产精品不卡视频一区二区| 免费av毛片视频| 51国产日韩欧美| 亚洲av五月六月丁香网| 久久人人爽人人爽人人片va| 夜夜夜夜夜久久久久| 色综合色国产| 国产一区二区激情短视频| 欧美日本亚洲视频在线播放| 国产精品日韩av在线免费观看| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 国产成年人精品一区二区| 久久精品国产亚洲网站| 欧美日本视频| 婷婷六月久久综合丁香| 18禁在线无遮挡免费观看视频 | 成年女人永久免费观看视频| a级毛色黄片| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 亚洲久久久久久中文字幕| 亚洲欧美精品自产自拍| 国产成人福利小说| 内地一区二区视频在线| 免费在线观看影片大全网站| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 日韩av不卡免费在线播放| 国产精品久久久久久av不卡| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 亚洲精品国产av成人精品 | 成人漫画全彩无遮挡| 国产在视频线在精品| av中文乱码字幕在线| 亚洲五月天丁香| 亚洲人成网站在线观看播放| 欧美日韩在线观看h| 美女cb高潮喷水在线观看| 午夜视频国产福利| 在线观看av片永久免费下载| 国产精品久久久久久精品电影| 有码 亚洲区| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| 在线播放无遮挡| 精品一区二区三区视频在线观看免费| 亚洲av.av天堂| 美女内射精品一级片tv| 99热这里只有精品一区| 特级一级黄色大片| 亚洲精品在线观看二区| 国产亚洲91精品色在线| 俺也久久电影网| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 最后的刺客免费高清国语| 中文资源天堂在线| 日韩欧美一区二区三区在线观看| 99热全是精品| av在线蜜桃| 99riav亚洲国产免费| 特级一级黄色大片| 色综合站精品国产| 久久人妻av系列| 日本 av在线| 国产单亲对白刺激| 午夜福利高清视频| 国产精品久久视频播放| 国产探花极品一区二区| 国产一区二区激情短视频| 国产色爽女视频免费观看| 成人国产麻豆网| 如何舔出高潮| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 久久久久国产网址| 露出奶头的视频| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 国产日本99.免费观看| 不卡一级毛片| 亚洲婷婷狠狠爱综合网| 国产免费男女视频| 男女边吃奶边做爰视频| 国内久久婷婷六月综合欲色啪| 大型黄色视频在线免费观看| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 99九九线精品视频在线观看视频| 成人欧美大片| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 国产三级中文精品| 能在线免费观看的黄片| 熟女电影av网| 亚洲高清免费不卡视频| 亚洲国产精品合色在线| 丰满乱子伦码专区| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 中文字幕免费在线视频6| 此物有八面人人有两片| 国产精品一区www在线观看| 成人特级黄色片久久久久久久| 成人特级av手机在线观看| 十八禁国产超污无遮挡网站| avwww免费| 美女高潮的动态| 国产高清视频在线播放一区| 日本一二三区视频观看| 久久久久久久久久成人| 欧美性猛交黑人性爽| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美精品自产自拍| av卡一久久| 99久久九九国产精品国产免费| 我要搜黄色片| 国产精品一区二区免费欧美| 日本色播在线视频| 国产成人aa在线观看| 国产精品嫩草影院av在线观看| 五月玫瑰六月丁香| 国产乱人偷精品视频| 最新中文字幕久久久久| 欧美丝袜亚洲另类| av天堂中文字幕网| 男女之事视频高清在线观看| 91在线观看av| 十八禁网站免费在线| 内地一区二区视频在线| av国产免费在线观看| 国产视频内射| 国产免费一级a男人的天堂| 一本久久中文字幕| av天堂中文字幕网| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 色哟哟·www| 男女那种视频在线观看| 一进一出好大好爽视频| 亚洲精品乱码久久久v下载方式| 18禁黄网站禁片免费观看直播| aaaaa片日本免费| 成人av一区二区三区在线看| 91在线精品国自产拍蜜月| 美女被艹到高潮喷水动态| 国产欧美日韩精品亚洲av| 亚洲国产精品国产精品| 嫩草影视91久久| 好男人在线观看高清免费视频| 在线观看66精品国产| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看 | 国国产精品蜜臀av免费| 精品无人区乱码1区二区| 日韩人妻高清精品专区| 久久精品夜色国产| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 欧美区成人在线视频| 国模一区二区三区四区视频| av天堂中文字幕网| 日韩高清综合在线| 一级黄色大片毛片| 夜夜爽天天搞| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 长腿黑丝高跟| 久久久久久久亚洲中文字幕| 亚洲av美国av| 久久久精品大字幕| 十八禁网站免费在线| 亚洲精品乱码久久久v下载方式| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 看非洲黑人一级黄片| 极品教师在线视频| 久久精品久久久久久噜噜老黄 | 国产精品一区二区三区四区久久| 国产在视频线在精品| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 在线观看av片永久免费下载| 乱系列少妇在线播放| 日韩一本色道免费dvd| 韩国av在线不卡| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 婷婷色综合大香蕉| 成年av动漫网址| 亚洲综合色惰| 最近最新中文字幕大全电影3| 美女黄网站色视频| 国产精品一区二区免费欧美| 国产亚洲91精品色在线| 啦啦啦观看免费观看视频高清| 少妇的逼好多水| 成人精品一区二区免费| 激情 狠狠 欧美| 久久久久久久久久成人| 国产高清有码在线观看视频| 成年版毛片免费区| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 在线观看午夜福利视频| 国产亚洲精品久久久久久毛片| 欧美xxxx黑人xx丫x性爽| 九九在线视频观看精品| 国产精品嫩草影院av在线观看| 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| av在线观看视频网站免费| 一级av片app| 日韩精品有码人妻一区| 又爽又黄a免费视频| 日本精品一区二区三区蜜桃| 可以在线观看毛片的网站| 一级毛片电影观看 | 亚洲av美国av| 欧美潮喷喷水| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 亚洲七黄色美女视频| 亚洲经典国产精华液单| 国产成人影院久久av| 三级国产精品欧美在线观看| 热99re8久久精品国产| 自拍偷自拍亚洲精品老妇| 老司机福利观看| 日韩制服骚丝袜av| 精品一区二区三区av网在线观看| a级毛片a级免费在线| 国产伦在线观看视频一区| 夜夜爽天天搞| 在线a可以看的网站| 日本一二三区视频观看| 亚洲第一区二区三区不卡| 可以在线观看的亚洲视频| av中文乱码字幕在线| 中文字幕免费在线视频6| 高清日韩中文字幕在线| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 亚洲,欧美,日韩| 色播亚洲综合网| 国产极品精品免费视频能看的| 国产精品一区www在线观看| 91久久精品电影网| 国产视频内射| 国产伦精品一区二区三区视频9| 精品人妻一区二区三区麻豆 | 成人性生交大片免费视频hd| 波多野结衣高清无吗| 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 亚洲最大成人手机在线| ponron亚洲| 极品教师在线视频| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 亚洲av一区综合| 亚洲经典国产精华液单| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 久久精品国产鲁丝片午夜精品| 亚洲av成人av| 日韩成人伦理影院| 国产欧美日韩精品亚洲av| 国产伦在线观看视频一区| 毛片一级片免费看久久久久| 在线观看免费视频日本深夜|