• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    2014-10-14 03:45:14HANLingNIJiPengZHANGLiangMiaoYUEBaoHuaSHENShanShanZHANGHaoLUWenCong
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:紡錘體上海大學(xué)水熱法

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong*

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Abstract: We synthesized mesoporous MnO2nanospindles by a one-step hydrothermal process in an aqueous solution of KMnO4and glucose.The structure,morphology,purity,and size of the products were characterized by X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),scanning electron microscopy(SEM),and nitrogen adsorption/desorption(BET)measurements.The reaction time and concentrations of glucose influenced the final structures and shapes of the MnO2nanospindles.The length to diameter ratio of the MnCO3precursor nanospindles can be easily tuned from 1.35:1 to 2.89:1.A possible formation mechanism for the mesoporous MnO2nanospindles is proposed and discussed.

    Key Words:Hydrothermal method;Spindle;MnO2;Mesoporous

    1 Introduction

    Recently,much effort has been devoted to the synthesis of mesoporous materials,because of their wonderful structures and wide potential applications in the areas of catalysis,sorption,chemical and biological separation,photonic and electronic devices,and drug delivery.1-5Since the mesoporous silica was reported,6many researchers have devoted to preparing mesoporous-structured oxides,such as ZrO2,TiO2,SnO2,Nd2O5,and V2O5,etc.1-5Thus,mesoporous products with controlled structures and shapes remain a new challenge because of their possible potential functions caused by the combination of the specific-shape and the mesoporous structures.7

    Manganese oxides(MnO2)have been extensively studied as a well-known transition-metal oxide,because of their novel chemical and physical properties and wide applications in catalysis,ion or molecular sieves,molecular adsorption,biosensors,electrode materials in batteries,and energy storage.8-18MnO2exists in many polymorphic forms(such asα,β,γ,andδ),which are different because the basic unit[MnO6]octahedra are linked in different ways.19,20Different MnO2morphologies have been prepared,including rods,wires,tubes,urchin-like microstructures,etc.21-25However,to the best of our knowledge,few works were reported on the synthesis of mesoporous MnO2nanospindles.

    Herein,we report the synthesis of mesoporous MnO2nanospindles using a simple hydrothermal method followed by heat treatment.By changing the experimental conditions,we rationally speculated that,the formation of pores was mainly caused by removing of amorphous carbon nanoparticles,which were produced due to the decomposition of residual glucose at a relatively higher temperature.

    Table 1 Effects of the experimental conditions on the morphologies of the precursors

    2 Experimental

    All chemical reagents were analytical grade and purchased from Shanghai Chemical Reagent Company(P.R.China)without further purification.In a typical synthesis,10 mmol glucose was dissolved in 25 mL deionized water,and 2 mmol potassium permanganate(KMnO4)was dissolved in 15 mL deionized water.After stirring for about 30 min respectively,the two solutions were mixed immediately before it was sealed and placed in a Teflon-lined stainless steel autoclave(50 mL capacity)and heated at 180°C for 20 h.The autoclave was cooled to room temperature naturally.After filtrating and washing with deionized water and ethanol,the solid obtained was dried at 60 °C overnight and calcined at 500 °C for 4 h.The obtained black powder was collected for the following characterization.Effects of the experimental conditions on the morphology of the precursors are showed in Table 1.

    The XRD patterns were recorded on a Japan Rigaku D/Max-RB X-ray diffractometer with CuKαradiation(λ=0.154178 nm).The morphologies of the samples were studied by field emission scanning electron microscopy(JEOL JSM-6700F).The structure of the microspindles was observed through a transmission electron microscopy(JEOL JEM-200CX),and the highresolution transmission electron microscopy(HRTEM)images were taken on a JEOL JEM-2010F with an accelerating voltage of 200 kV.Fourier transform infrared(FTIR)spectra were obtained on an AVATAR370 spectrometer.The nitrogen adsorption and desorption isotherms at 77 K were measured with a Micrometrics ASAP 3000 analyzer.Before measurement,the samples were degassed in vacuum at 200°C for at least 6 h.

    3 Results and discussion

    The XRD pattern of the precursor is shown in Fig.1(a).The peaks can be well indexed to manganese carbonate(MnCO3),in good agreement with the standard value of JCPDS 44-1472.Fig.1(b)shows FTIR spectrum of the precursor.The broad band at about 3370 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.26The peak at 2924 cm-1is assigned to C―H band,27suggesting the possible incorporation of hydrogen during growth of the product.The peak at 1698 cm-1can be assigned to the C=C stretch,28resulting from the carbonization of residual glucose.The typical peaks for carboxylate are found at ca.1602,1406,860,and 789 cm-1.The first two frequencies correspond to the stretching mode of C=O in a carboxylate group and the last two refer to bending mode.29While the bands observed at 520-700 cm-1should be ascribed to the Mn―O vibrations in MnO6octahedra.30

    Field emission scanning electron microscopy(FESEM)and field emission transmission electron microscopy(FETEM)were employed to investigate the morphologies of the products.Fig.2(a)shows a typical low magnification image of the MnCO3precursor spindles,the obtained products are composed of the nanospindles mixed with a few of sphere-like par-ticles.The magnified SEM image shown in Fig.2(b)displays that the surfaces of the spindles are rough and some nanoparticles are adsorbed on them.Fig.2(c)is a typical TEM image of the MnCO3spindles.The average size of the MnCO3spindles is 2023 nm along its major axis and 950 nm along its minor axis,and the length-to-diameter ratio is about 2.12:1.

    Keeping other experimental conditions fixed,the effect of the reaction temperature was investigated.When the reaction was carried out at 150°C(sample B),the obtained product was also composed of spindle-like structures mixed with few sphere-like particles(Fig.3a).In comparison with the product obtained at 180°C(sample A),the average dimensions of nanospindles(obtained at 150 °C)are 2670 nm×1230 nm and the aspect ratio is increased(2.17:1).However,when the reaction was carried out at a relatively lower temperature of 120°C(sample C),the product was only composed of nanospindles with average dimensions of 2800 nm×1200 nm and the aspect ratio was obviously increased(2.35:1)(Fig.3b).

    In addition,the glucose concentration plays an important role in forming nanostructure.When the concentration of glucose is low(nG=4 mmol),only spindle-like structure with average dimensions of 1350 nm×1000 nm was obtained(sample D,Fig.3c).In comparison with the product obtained at nG=10 mmol(sample A),the aspect ratio of sample D is reduced(1.35:1).When the concentration of glucose is high(nG=16 mmol),thecantaloupe-likestructuresmixed with some sphere-like particles were obtained(Fig.3d).The average size of the cantaloupe-like structures is 1865 nm along its major axis and 643 nm along its minor axis,and the length-to-diameter ratio is obviously increased(2.89:1).

    Based on the above observation,when the reaction was carried out at relatively higher temperatures(150-180°C)and higher glucose concentration(nG:nKMnO4≥5:1),there are some sphere-like structures obtained.It is rationally speculated thatthe spheres were produced due to the decomposition of residual glucose at relatively higher reaction temperatures.

    MnO2nanostructures are expected to be obtained by calcining the precursors at a proper temperature.Fig.4(a)shows the XRD pattern of the samples obtained by calcining the MnCO3precursors at 500°C for 4 h.The diffraction lines are in agreement with the standard value(JCPDS No.44-0141)of MnO2with body-centered structure,indicating the MnCO3precursor completely transforming to MnO2.More characteristics of MnO2are also observed in FTIR spectrum(Fig.4b).The broad band at about 3477 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.31The 1640 cm-1band is normally due to O―H bending vibrations combined with Mn atoms.32While the intense bands observed at 669,573,and 522 cm-1should be ascribed to Mn―O vibrations in MnO6octahedra.30The FTIR result indicates that some bound water exists in MnO2sample.As compared with the as-prepared compound(Fig.1(b)),the disappeared peaks correspond to C=C,C―H,and C=O confirm the existence of carbon particles in the precursors.

    TEM and SEM images of the MnO2nanostructures are shown in Fig.5 and Fig.6.After heat-treatment,the spindle-like shapes of the precursors were well maintained,no obviously sintered or compressed phenomena were observed(Fig.5a and Fig.5b).Fig.5c shows that most particles are spindle-like.Fig.5d clearly displays the three-dimensional spindle-like morphology with the disappearance of spheres in the precursors and the mesoporous nanospindles which composed of small nanoparticles.The disappearance of the sphere-like structures further indicates that the spheres in sample A,B,E were amorphous carbon spheres produced due to the decomposition of residual glucose at relatively higher reaction temperatures.From the HRTEM results in Fig.6a and Fig.6b,we can see that the MnO2sample exhibits mesoporous structure and that the distribution of the pore structure is regular.

    Fig.7 shows TEM images of MnO2nanospindles obtained by calcining different precursors.After heat-treatment,the spindle-like shapes of the precursors(sample C and D)were well maintained.But there are only few pores along the side of the spindle-like structures for sample C(Fig.7(a,b)),and no pores were observed for sample D(Fig.7(c,d)).It indicates that the reaction temperature,especially glucose concentration plays important roles in the formation of mesoporous nanostructures.When the reaction temperature is below 120°C or the glucose concentration is low(nG:nKMnO4=2:1),the mesoporous structure can not be obtained.It demonstrates that the formation of pore structure,to some extent,is caused by removing amorphous carbon nanoparticles.It is rationally speculated that the precursors of mesoporous MnO2nanospindles are composed of carbon nanoparticles and MnCO3nanoparticles.

    To further investigate the formation process of the nanospindle superstructure as the above conjecture,we have carried out analogous experiments at different reaction durations.For these spindles,when the hydrothermal reaction was conducted for 1/3 h,many amorphous nanoparticles were produced.A few small nanoparticles were loosely aggregated,and these aggregations may act as backbones for the further development of MnCO3spindle structures(Fig.8a).When the reaction time was increased to 10 h,a few nanoparticles(Fig.8b)and many solid spindle particles composed of nanoparticles were produced.As the reaction went on to a longer time(e.g.,20 h),the size of the spindles(sample A)has grown larger in all direc-tions and the size uniformity is greatly improved(Fig.2).

    After heat-treatment,the carbon nanoparticles were disappeared and MnCO3was decomposed to mesoporous MnO2nanospindles.So the possible formation mechanism of MnO2nanospindles structure can be presumed in Fig.9.

    Nitrogen adsorption/desorption measurement was conducted to characterize the Brunauer-Emmett-Teller(BET)surface area and internal pore structure.The recorded adsorption and desorption isotherms for the nanospindle structures show a little hysteresis(Fig.10).The BET specific surface area of the sample is calculated from N2isotherms to be about 26 m2·g-1.Barrett-Joyner-Halenda(BJH)calculations for the pore-size distribution,derived from desorption data,present a sharp band centered at ca 18 nm.The pores presumably arise from the spaces between the nanoparticles within a mesoporous spindle.The results display that the obtained nanospindles have porous properties.

    4 Conclusions

    By adopting a stepwise reaction process,the MnCO3precursor nanospindles have been prepared via a facile solution process,and the dimension and morphology of the MnCO3precursors can be adjusted.Mesoporous MnO2nanospindles obtained by calcining the precursors are considered to arise from the appearance of the carbon nanoparticles.The micro-spindles after heat treatment exhibit porous properties which make them appealing for practical applications such as catalysts,molecular adsorption,biosensors,and energy storage.

    (1)Carreon,M.A.;Guliants,V.V.Chem.Mater.2002,14,2670.

    (2) Schuth,F.Chem.Mater.2001,13,3184.

    (3)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Nature 1998,396,152.

    (4)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Chem.Mater.1999,11,2813.

    (5) He,X.;Antonelli,D.Angew.Chem.Int.Edit.2001,41,214.

    (6) Kresge,C.;Leonowicz,M.;Roth,W.;Vartuli,J.;Beck,J.Nature 1992,359,710.

    (7) Gu,F.;Li,C.Z.;Wang,S.F.;Lu,M.K.Langmuir 2006,22,1329.

    (8) Espinal,L.;Suib,S.L.;Rusling,J.F.J.Am.Chem.Soc.2004,126,7676.

    (9) Armstrong,A.R.;Bruce,P.G.Nature 1996,381,499.

    (10) Song,X.C.;Zheng,Y.F.;Lin,S.;Wang,Y.Acta Phys.-Chim.Sin.2007,23,258.[宋旭春,鄭遺凡,林 深,王 蕓.物理化學(xué)學(xué)報(bào),2007,23,258.]

    (11)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (12)Toupin,M.;Brousse,T.;Belanger,D.Chem.Mater.2002,14,3946.

    (13)Wang,T.;Zhou,J.H.;Wang,D.J.;Sun,D.;Di,Z.Y.;He,J.P.Acta Phys.-Chim.Sin.2009,25,2155.[王 濤,周建華,王道軍,孫 盾,狄志勇,何建平.物理化學(xué)學(xué)報(bào),2009,25,2155.]

    (14)Wills,A.S.;Raju,N.P.;Greedan,J.E.Chem.Mater.1999,11,1510.

    (15) Segal,S.R.;Park,S.H.;Suib,S.L.Chem.Mater.1997,9,98.

    (16)Greedan,J.E.;Raju,N.P.;Wills,A.S.;Morin,C.;Shaw,S.M.;Reimers,J.N.Chem.Mater.1998,10,3058.

    (17)Wang,F.;Wang,Y.M.;Wen,Y.X.;Su,H.F.;Li,B.Acta Phys.-Chim.Sin.2010,26,521.[王 凡,王巖敏,文衍宣,粟海峰,李 斌.物理化學(xué)學(xué)報(bào),2010,26,521.]

    (18) Deng,J.G.;Zhang,L.;Dai,H.X.;Xia,Y.S.;Jiang,H.Y.;Zhang,H.;He,H.J.Phys.Chem.C 2010,114,2694.

    (19) Cheng,F.Y.;Zhao,J.Z.;Song,W.;Li,C.S.;Ma,H.;Chen,J.;Shen,P.W.Inorg.Chem.2006,45,2038.

    (20)Wang,X.;Li,Y.D.J.Am.Chem.Soc.2002,124,2880.

    (21)Wang,X.;Li,Y.D.Chem.-Eur.J.2003,9,300.

    (22) Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.-Eur.J.2003,9,1645.

    (23)Wei,M.;Konishi,Y.;Zhou,H.;Sugihara,H.;Arakawa,H.Nanotechnology 2005,16,245.

    (24)Yuan,Z.Y.;Ren,T.Z.;Du,G.H.;Su,B.L.Appl.Phys.AMater.2005,80,743.

    (25) Song,X.C.;Zhao,Y.;Zheng,Y.F.Cryst.Growth.Des.2007,7,159.

    (26) Xiong,Y.J.;Xie,Y.;Li,X.X.;Li,Z.Q.Carbon 2004,42,1447.

    (27)Wong,W.K.;Li,C.P.;Au,F.C.K.;Fung,M.K.;Sun,X.H.;Lee,C.S.;Lee,S.T.;Zhu,W.J.Phys.Chem.B 2003,107,1514.

    (28)Chowdhury,A.K.M.S.;Cameron,D.C.;Hashmi,M.S.J.Thin Solid Films 1998,332,62.

    (29)Ho,C.M.;Yu,J.C.;Kwong,T.;Mak,A.C.;Lai,S.Y.Chem.Mater.2005,17,4514.

    (30)Ananth,M.V.;Pethkar,S.;Dakshinamurthi,K.J.Power Sources 1998,75,278.

    (31) Liu,Z.H.;Yang,X.J.;Makita,Y.;Ooi,K.Chem.Mater.2002,14,4800.

    (32)Wang,X.L.;Yuan,A.B.;Wang,Y.Q.J.Power Sources 2007,172,1007.

    紡錘形介孔納米二氧化錳的控制合成

    韓 玲 倪紀(jì)朋 張良苗 岳寶華 申杉杉 張 浩 陸文聰*

    (上海大學(xué)化學(xué)系,上海200444)

    在KMnO4和葡萄糖水溶液體系中,用一步水熱法控制合成了介孔MnCO3納米紡錘體,通過(guò)焙燒MnCO3前驅(qū)體可以得到介孔納米MnO2,且保持了原有的紡錘體形貌.用X射線衍射(XRD)、傅里葉變換紅外(FTIR)光譜、掃描電鏡(SEM)、透射電鏡(TEM)和N2吸附-脫附(BET)對(duì)制備的樣品進(jìn)行了形貌和結(jié)構(gòu)的表征.并對(duì)反應(yīng)時(shí)間、反應(yīng)物濃度等對(duì)產(chǎn)物形貌的影響進(jìn)行了研究.實(shí)驗(yàn)結(jié)果表明,反應(yīng)時(shí)間和葡萄糖的濃度對(duì)MnCO3前驅(qū)體的尺寸和形貌具有重要影響,MnCO3縱橫比可從1.35:1到2.89:1之間改變.并初步探討了介孔MnO2紡錘體的生長(zhǎng)機(jī)制,MnO2孔的形成是由于焙燒葡萄糖降解形成的納米碳顆粒所致.

    水熱法;紡錘形;MnO2;介孔

    O641

    Received:September 27,2010;Revised:November 15,2010;Published on Web:January 28,2011.

    ?Corresponding author.Email:wclu@shu.edu.cn;Tel:+86-21-66132663;Fax:+86-21-66134080.

    The project was supported by the Shanghai Special Nanotechnology Project,China(0852nm00700)and Innovation Fund of Shanghai University,China(A.10-0101-09-023).

    上海市納米技術(shù)項(xiàng)目(0852nm00700)和上海大學(xué)創(chuàng)新項(xiàng)目(A.10-0101-09-023)資助

    猜你喜歡
    紡錘體上海大學(xué)水熱法
    Aurora激酶A調(diào)控卵母細(xì)胞減數(shù)分裂的分子機(jī)制
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    微刺激方案中成熟卵母細(xì)胞紡錘體參數(shù)與卵細(xì)胞質(zhì)內(nèi)單精子注射結(jié)局間的關(guān)系
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    淺談動(dòng)物細(xì)胞有絲分裂中的有星紡錘體
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    抑癌蛋白CYLD調(diào)控紡錘體定向
    遺傳(2014年3期)2014-02-28 20:59:25
    久久香蕉激情| 亚洲一级一片aⅴ在线观看| 日本一本二区三区精品| 十八禁国产超污无遮挡网站| 欧美+日韩+精品| netflix在线观看网站| 内射极品少妇av片p| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲经典国产精华液单| 不卡一级毛片| 亚洲美女黄片视频| 国产私拍福利视频在线观看| 日本精品一区二区三区蜜桃| 我要看日韩黄色一级片| 女生性感内裤真人,穿戴方法视频| 国产精品av视频在线免费观看| 久久99热这里只有精品18| 午夜福利在线观看免费完整高清在 | 高清毛片免费观看视频网站| 简卡轻食公司| 欧美中文日本在线观看视频| 蜜桃亚洲精品一区二区三区| 日韩欧美国产在线观看| 联通29元200g的流量卡| 日韩欧美在线乱码| 国产精品99久久久久久久久| 夜夜看夜夜爽夜夜摸| 99视频精品全部免费 在线| 悠悠久久av| 欧美又色又爽又黄视频| 国产高清激情床上av| 香蕉av资源在线| 成年女人永久免费观看视频| 亚洲av第一区精品v没综合| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 亚洲国产精品久久男人天堂| 真实男女啪啪啪动态图| 亚洲欧美日韩高清在线视频| 亚洲av中文字字幕乱码综合| 人妻制服诱惑在线中文字幕| 成人av一区二区三区在线看| 亚洲美女黄片视频| 免费高清视频大片| 国产精品精品国产色婷婷| 性色avwww在线观看| 成年免费大片在线观看| 国产大屁股一区二区在线视频| 亚洲天堂国产精品一区在线| 国产高清三级在线| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区 | 国内少妇人妻偷人精品xxx网站| 欧美日本亚洲视频在线播放| 九九久久精品国产亚洲av麻豆| 99热只有精品国产| 国产一区二区亚洲精品在线观看| 超碰av人人做人人爽久久| 91在线精品国自产拍蜜月| 欧美成人a在线观看| 亚洲最大成人手机在线| 熟女人妻精品中文字幕| 国产日本99.免费观看| 婷婷丁香在线五月| 精品久久久噜噜| 色综合婷婷激情| 欧美日韩瑟瑟在线播放| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 在线观看一区二区三区| 十八禁网站免费在线| 国产男人的电影天堂91| 天美传媒精品一区二区| 午夜免费激情av| 最新在线观看一区二区三区| 久久精品国产亚洲av天美| 日本在线视频免费播放| 男女那种视频在线观看| 赤兔流量卡办理| 亚洲中文日韩欧美视频| 成人永久免费在线观看视频| 久久久久免费精品人妻一区二区| 亚洲av中文字字幕乱码综合| 欧美激情国产日韩精品一区| 国内精品美女久久久久久| 日日啪夜夜撸| 日本免费一区二区三区高清不卡| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 亚洲精品国产成人久久av| 精品免费久久久久久久清纯| 欧美成人性av电影在线观看| 亚洲av免费高清在线观看| 很黄的视频免费| 国产久久久一区二区三区| 99热这里只有是精品50| 日韩在线高清观看一区二区三区 | 不卡一级毛片| 精品久久久久久,| 久久久久久久久久黄片| 制服丝袜大香蕉在线| 久久九九热精品免费| 五月玫瑰六月丁香| 亚洲狠狠婷婷综合久久图片| 亚洲av熟女| 麻豆成人午夜福利视频| 亚洲av不卡在线观看| 人人妻人人看人人澡| 国产视频一区二区在线看| 亚洲av中文av极速乱 | 亚洲av电影不卡..在线观看| 久久久精品大字幕| 精品福利观看| 无遮挡黄片免费观看| 男女边吃奶边做爰视频| 99riav亚洲国产免费| 色视频www国产| 亚洲天堂国产精品一区在线| 波多野结衣巨乳人妻| 亚洲经典国产精华液单| 2021天堂中文幕一二区在线观| 男女下面进入的视频免费午夜| 国产精品三级大全| 超碰av人人做人人爽久久| 两个人视频免费观看高清| 最近在线观看免费完整版| 如何舔出高潮| 99精品在免费线老司机午夜| av福利片在线观看| 免费看a级黄色片| 97超视频在线观看视频| 久久久精品欧美日韩精品| videossex国产| 狂野欧美白嫩少妇大欣赏| 内地一区二区视频在线| 看黄色毛片网站| 日本成人三级电影网站| 国产高清视频在线播放一区| 欧美bdsm另类| 国产一区二区激情短视频| 色精品久久人妻99蜜桃| 97超级碰碰碰精品色视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 天堂影院成人在线观看| 国产精品99久久久久久久久| 一进一出抽搐gif免费好疼| 热99在线观看视频| 极品教师在线免费播放| 精品午夜福利视频在线观看一区| 不卡一级毛片| 欧美性感艳星| 十八禁国产超污无遮挡网站| 亚洲欧美日韩无卡精品| 嫁个100分男人电影在线观看| 日日夜夜操网爽| 2021天堂中文幕一二区在线观| 有码 亚洲区| 桃红色精品国产亚洲av| 在线播放无遮挡| 一级a爱片免费观看的视频| 最后的刺客免费高清国语| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| av在线观看视频网站免费| 波多野结衣高清作品| 国产真实乱freesex| av在线亚洲专区| 九九久久精品国产亚洲av麻豆| 欧美色视频一区免费| 亚洲精华国产精华液的使用体验 | 九九在线视频观看精品| 黄色视频,在线免费观看| 九九爱精品视频在线观看| 亚洲成人免费电影在线观看| 欧美性感艳星| 国产av一区在线观看免费| 麻豆成人av在线观看| 久久这里只有精品中国| 搡老妇女老女人老熟妇| 国产精品一区www在线观看 | 亚洲 国产 在线| 国产高清激情床上av| av视频在线观看入口| 国产成人aa在线观看| 国产aⅴ精品一区二区三区波| 91在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线在线| 精品久久国产蜜桃| 丝袜美腿在线中文| 欧美3d第一页| 国产精品野战在线观看| 三级国产精品欧美在线观看| 搡老岳熟女国产| 色哟哟·www| 男人和女人高潮做爰伦理| 久久久久精品国产欧美久久久| 亚洲无线观看免费| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看 | 校园春色视频在线观看| 国产在线男女| 精品一区二区三区人妻视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 亚洲无线在线观看| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 不卡一级毛片| 国产免费av片在线观看野外av| 一夜夜www| 国产单亲对白刺激| 特级一级黄色大片| av在线观看视频网站免费| or卡值多少钱| 少妇人妻精品综合一区二区 | 色哟哟哟哟哟哟| 深夜a级毛片| 中文字幕熟女人妻在线| 久9热在线精品视频| 精品久久久噜噜| 亚洲国产高清在线一区二区三| 亚洲精品色激情综合| 久久久国产成人免费| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 直男gayav资源| 精品一区二区三区视频在线观看免费| 88av欧美| 久99久视频精品免费| 国产在线男女| 国产真实伦视频高清在线观看 | 亚洲精华国产精华液的使用体验 | 成人二区视频| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 精品一区二区三区av网在线观看| 在线天堂最新版资源| 美女黄网站色视频| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 美女大奶头视频| 天美传媒精品一区二区| 亚洲av不卡在线观看| 波野结衣二区三区在线| 一区福利在线观看| 校园人妻丝袜中文字幕| 成人二区视频| 亚洲最大成人中文| 免费不卡的大黄色大毛片视频在线观看 | 黄色一级大片看看| 婷婷精品国产亚洲av在线| 五月玫瑰六月丁香| 无人区码免费观看不卡| 欧美日韩国产亚洲二区| 男女做爰动态图高潮gif福利片| 亚洲欧美清纯卡通| 国产精品人妻久久久久久| 国产高清激情床上av| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 亚洲美女视频黄频| 久久国内精品自在自线图片| 麻豆一二三区av精品| 亚洲精品日韩av片在线观看| 亚洲av熟女| 女人被狂操c到高潮| 国产免费男女视频| 亚洲国产精品sss在线观看| 女生性感内裤真人,穿戴方法视频| 毛片女人毛片| 三级毛片av免费| 亚洲欧美精品综合久久99| 免费观看精品视频网站| 赤兔流量卡办理| 精品一区二区三区人妻视频| 国产精品一及| 真人一进一出gif抽搐免费| 欧美一级a爱片免费观看看| 精品福利观看| 亚洲精品成人久久久久久| 国产精品女同一区二区软件 | 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av| 毛片一级片免费看久久久久 | 亚洲午夜理论影院| 国产三级在线视频| 露出奶头的视频| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 亚洲成人免费电影在线观看| 国产精品一及| 日韩欧美精品免费久久| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久 | 成人特级av手机在线观看| bbb黄色大片| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 国产精品三级大全| 国产亚洲欧美98| 日本熟妇午夜| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久99热这里只有精品18| 久9热在线精品视频| 伦精品一区二区三区| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 欧美性感艳星| 亚洲美女搞黄在线观看 | 亚洲第一区二区三区不卡| 色综合站精品国产| 简卡轻食公司| 午夜日韩欧美国产| 亚洲 国产 在线| 色综合站精品国产| 久久午夜亚洲精品久久| 老女人水多毛片| 一个人看视频在线观看www免费| 在线观看av片永久免费下载| 欧美性猛交黑人性爽| bbb黄色大片| 日韩欧美在线乱码| 日本免费一区二区三区高清不卡| 亚洲av美国av| 久久久久九九精品影院| 九色国产91popny在线| 亚洲专区国产一区二区| 一区福利在线观看| 亚洲国产日韩欧美精品在线观看| 人人妻人人澡欧美一区二区| 亚洲精品影视一区二区三区av| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 午夜福利在线在线| 搡老妇女老女人老熟妇| 国产综合懂色| 精品人妻1区二区| 天天躁日日操中文字幕| 国产探花在线观看一区二区| av中文乱码字幕在线| 性插视频无遮挡在线免费观看| 免费观看精品视频网站| 久久精品国产自在天天线| 亚洲最大成人手机在线| 中国美白少妇内射xxxbb| 丰满的人妻完整版| 99精品久久久久人妻精品| 国产伦在线观看视频一区| 国产一区二区在线观看日韩| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 国产主播在线观看一区二区| 亚洲av免费高清在线观看| 欧美日韩瑟瑟在线播放| 变态另类丝袜制服| 成人二区视频| 麻豆成人av在线观看| 噜噜噜噜噜久久久久久91| 亚洲avbb在线观看| ponron亚洲| 夜夜爽天天搞| 国产激情偷乱视频一区二区| 午夜a级毛片| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 欧美另类亚洲清纯唯美| 日日啪夜夜撸| 天天躁日日操中文字幕| 精品久久久久久久久久免费视频| 日本与韩国留学比较| 最后的刺客免费高清国语| 啦啦啦观看免费观看视频高清| 成人三级黄色视频| 亚洲av免费高清在线观看| 特级一级黄色大片| 深夜精品福利| 精品午夜福利视频在线观看一区| 悠悠久久av| 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 国产视频内射| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 窝窝影院91人妻| 亚洲av美国av| 九九爱精品视频在线观看| 此物有八面人人有两片| 美女cb高潮喷水在线观看| 内射极品少妇av片p| АⅤ资源中文在线天堂| 欧洲精品卡2卡3卡4卡5卡区| 日韩人妻高清精品专区| a在线观看视频网站| 伊人久久精品亚洲午夜| АⅤ资源中文在线天堂| 欧美极品一区二区三区四区| 日日啪夜夜撸| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 我要搜黄色片| 极品教师在线视频| 精品一区二区三区人妻视频| 欧美成人性av电影在线观看| 中文字幕av在线有码专区| 热99在线观看视频| 亚洲成a人片在线一区二区| 亚洲成人免费电影在线观看| 最近中文字幕高清免费大全6 | 韩国av一区二区三区四区| 久久久久久伊人网av| 国产视频内射| 国产精品一区二区性色av| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添小说| 久久这里只有精品中国| 国产亚洲欧美98| 国产爱豆传媒在线观看| 真人一进一出gif抽搐免费| 日本成人三级电影网站| 最近中文字幕高清免费大全6 | 国产一区二区三区av在线 | 九九久久精品国产亚洲av麻豆| 久9热在线精品视频| 久久精品国产亚洲av涩爱 | 国产乱人伦免费视频| 免费大片18禁| 国产激情偷乱视频一区二区| 88av欧美| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 无人区码免费观看不卡| 日本-黄色视频高清免费观看| 69av精品久久久久久| 国产亚洲精品综合一区在线观看| 亚洲精品色激情综合| 99久久成人亚洲精品观看| 午夜福利在线在线| 久99久视频精品免费| 亚洲国产高清在线一区二区三| 嫁个100分男人电影在线观看| 午夜福利成人在线免费观看| 91久久精品电影网| 午夜免费激情av| 国产乱人伦免费视频| 日本a在线网址| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 伊人久久精品亚洲午夜| 午夜免费激情av| 日本免费一区二区三区高清不卡| 又爽又黄无遮挡网站| 久久99热这里只有精品18| 黄色欧美视频在线观看| 欧美性感艳星| av天堂中文字幕网| 熟女人妻精品中文字幕| 18禁黄网站禁片免费观看直播| 久久久久精品国产欧美久久久| 国产av不卡久久| 搡老熟女国产l中国老女人| 少妇猛男粗大的猛烈进出视频 | 国产av麻豆久久久久久久| 一级毛片久久久久久久久女| 又紧又爽又黄一区二区| 日韩 亚洲 欧美在线| 亚洲国产精品sss在线观看| 国产午夜精品论理片| 欧美在线一区亚洲| 久久精品91蜜桃| 国产中年淑女户外野战色| eeuss影院久久| 国产 一区 欧美 日韩| 色综合站精品国产| 色综合色国产| 俺也久久电影网| 一区二区三区高清视频在线| 亚洲精品456在线播放app | 午夜视频国产福利| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| 美女 人体艺术 gogo| 3wmmmm亚洲av在线观看| 午夜精品一区二区三区免费看| a级毛片a级免费在线| 又黄又爽又免费观看的视频| 真人一进一出gif抽搐免费| 国产精品福利在线免费观看| 国产在视频线在精品| 国产一区二区亚洲精品在线观看| 欧美精品啪啪一区二区三区| 一本一本综合久久| 精品人妻视频免费看| 观看免费一级毛片| 99九九线精品视频在线观看视频| 小说图片视频综合网站| 国内精品久久久久久久电影| www.色视频.com| 成人精品一区二区免费| 久久亚洲真实| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 99久久中文字幕三级久久日本| 在线国产一区二区在线| 午夜福利在线观看吧| 日韩一本色道免费dvd| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 搞女人的毛片| 久久午夜亚洲精品久久| 91av网一区二区| 精品一区二区三区av网在线观看| 欧美日韩乱码在线| 久久精品91蜜桃| 美女高潮的动态| 久久久久久伊人网av| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 午夜免费成人在线视频| 国产大屁股一区二区在线视频| 舔av片在线| 九九在线视频观看精品| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 中文资源天堂在线| a在线观看视频网站| 最好的美女福利视频网| 真实男女啪啪啪动态图| 欧美日韩乱码在线| 国内精品美女久久久久久| 成年女人毛片免费观看观看9| 欧美黑人欧美精品刺激| 国产精品乱码一区二三区的特点| 麻豆国产av国片精品| 日本色播在线视频| 联通29元200g的流量卡| 免费人成视频x8x8入口观看| 男女啪啪激烈高潮av片| 中文字幕免费在线视频6| 麻豆国产97在线/欧美| 久久久久国产精品人妻aⅴ院| 男人和女人高潮做爰伦理| 18禁黄网站禁片免费观看直播| 大又大粗又爽又黄少妇毛片口| 欧美激情在线99| 久久热精品热| 高清在线国产一区| 欧美性感艳星| 国产一区二区三区视频了| 精品日产1卡2卡| 国产精品三级大全| av天堂中文字幕网| 色视频www国产| 亚洲18禁久久av| 久久久久国产精品人妻aⅴ院| 人妻少妇偷人精品九色| 国内揄拍国产精品人妻在线| 午夜视频国产福利| 在线观看午夜福利视频| 亚洲成人精品中文字幕电影| 免费观看精品视频网站| 久久亚洲真实| 午夜福利在线观看免费完整高清在 | 国产色婷婷99| 国产一区二区亚洲精品在线观看| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 日本黄大片高清| 一级黄片播放器| eeuss影院久久| 老女人水多毛片| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| 岛国在线免费视频观看| 国产熟女欧美一区二区| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版| 亚洲久久久久久中文字幕| 久久久精品欧美日韩精品| h日本视频在线播放| 国产精品嫩草影院av在线观看 | 久久久久九九精品影院| 亚洲欧美日韩无卡精品| 黄色丝袜av网址大全| 国产一区二区在线av高清观看| 两性午夜刺激爽爽歪歪视频在线观看| 成人性生交大片免费视频hd| 黄色女人牲交| 国产免费男女视频| 国产精品美女特级片免费视频播放器| 亚洲av.av天堂| 欧美精品啪啪一区二区三区| 午夜激情福利司机影院| 亚洲精品色激情综合| 国产白丝娇喘喷水9色精品| 久久99热6这里只有精品|