• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    2014-10-14 03:45:14HANLingNIJiPengZHANGLiangMiaoYUEBaoHuaSHENShanShanZHANGHaoLUWenCong
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:紡錘體上海大學(xué)水熱法

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong*

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Abstract: We synthesized mesoporous MnO2nanospindles by a one-step hydrothermal process in an aqueous solution of KMnO4and glucose.The structure,morphology,purity,and size of the products were characterized by X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),scanning electron microscopy(SEM),and nitrogen adsorption/desorption(BET)measurements.The reaction time and concentrations of glucose influenced the final structures and shapes of the MnO2nanospindles.The length to diameter ratio of the MnCO3precursor nanospindles can be easily tuned from 1.35:1 to 2.89:1.A possible formation mechanism for the mesoporous MnO2nanospindles is proposed and discussed.

    Key Words:Hydrothermal method;Spindle;MnO2;Mesoporous

    1 Introduction

    Recently,much effort has been devoted to the synthesis of mesoporous materials,because of their wonderful structures and wide potential applications in the areas of catalysis,sorption,chemical and biological separation,photonic and electronic devices,and drug delivery.1-5Since the mesoporous silica was reported,6many researchers have devoted to preparing mesoporous-structured oxides,such as ZrO2,TiO2,SnO2,Nd2O5,and V2O5,etc.1-5Thus,mesoporous products with controlled structures and shapes remain a new challenge because of their possible potential functions caused by the combination of the specific-shape and the mesoporous structures.7

    Manganese oxides(MnO2)have been extensively studied as a well-known transition-metal oxide,because of their novel chemical and physical properties and wide applications in catalysis,ion or molecular sieves,molecular adsorption,biosensors,electrode materials in batteries,and energy storage.8-18MnO2exists in many polymorphic forms(such asα,β,γ,andδ),which are different because the basic unit[MnO6]octahedra are linked in different ways.19,20Different MnO2morphologies have been prepared,including rods,wires,tubes,urchin-like microstructures,etc.21-25However,to the best of our knowledge,few works were reported on the synthesis of mesoporous MnO2nanospindles.

    Herein,we report the synthesis of mesoporous MnO2nanospindles using a simple hydrothermal method followed by heat treatment.By changing the experimental conditions,we rationally speculated that,the formation of pores was mainly caused by removing of amorphous carbon nanoparticles,which were produced due to the decomposition of residual glucose at a relatively higher temperature.

    Table 1 Effects of the experimental conditions on the morphologies of the precursors

    2 Experimental

    All chemical reagents were analytical grade and purchased from Shanghai Chemical Reagent Company(P.R.China)without further purification.In a typical synthesis,10 mmol glucose was dissolved in 25 mL deionized water,and 2 mmol potassium permanganate(KMnO4)was dissolved in 15 mL deionized water.After stirring for about 30 min respectively,the two solutions were mixed immediately before it was sealed and placed in a Teflon-lined stainless steel autoclave(50 mL capacity)and heated at 180°C for 20 h.The autoclave was cooled to room temperature naturally.After filtrating and washing with deionized water and ethanol,the solid obtained was dried at 60 °C overnight and calcined at 500 °C for 4 h.The obtained black powder was collected for the following characterization.Effects of the experimental conditions on the morphology of the precursors are showed in Table 1.

    The XRD patterns were recorded on a Japan Rigaku D/Max-RB X-ray diffractometer with CuKαradiation(λ=0.154178 nm).The morphologies of the samples were studied by field emission scanning electron microscopy(JEOL JSM-6700F).The structure of the microspindles was observed through a transmission electron microscopy(JEOL JEM-200CX),and the highresolution transmission electron microscopy(HRTEM)images were taken on a JEOL JEM-2010F with an accelerating voltage of 200 kV.Fourier transform infrared(FTIR)spectra were obtained on an AVATAR370 spectrometer.The nitrogen adsorption and desorption isotherms at 77 K were measured with a Micrometrics ASAP 3000 analyzer.Before measurement,the samples were degassed in vacuum at 200°C for at least 6 h.

    3 Results and discussion

    The XRD pattern of the precursor is shown in Fig.1(a).The peaks can be well indexed to manganese carbonate(MnCO3),in good agreement with the standard value of JCPDS 44-1472.Fig.1(b)shows FTIR spectrum of the precursor.The broad band at about 3370 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.26The peak at 2924 cm-1is assigned to C―H band,27suggesting the possible incorporation of hydrogen during growth of the product.The peak at 1698 cm-1can be assigned to the C=C stretch,28resulting from the carbonization of residual glucose.The typical peaks for carboxylate are found at ca.1602,1406,860,and 789 cm-1.The first two frequencies correspond to the stretching mode of C=O in a carboxylate group and the last two refer to bending mode.29While the bands observed at 520-700 cm-1should be ascribed to the Mn―O vibrations in MnO6octahedra.30

    Field emission scanning electron microscopy(FESEM)and field emission transmission electron microscopy(FETEM)were employed to investigate the morphologies of the products.Fig.2(a)shows a typical low magnification image of the MnCO3precursor spindles,the obtained products are composed of the nanospindles mixed with a few of sphere-like par-ticles.The magnified SEM image shown in Fig.2(b)displays that the surfaces of the spindles are rough and some nanoparticles are adsorbed on them.Fig.2(c)is a typical TEM image of the MnCO3spindles.The average size of the MnCO3spindles is 2023 nm along its major axis and 950 nm along its minor axis,and the length-to-diameter ratio is about 2.12:1.

    Keeping other experimental conditions fixed,the effect of the reaction temperature was investigated.When the reaction was carried out at 150°C(sample B),the obtained product was also composed of spindle-like structures mixed with few sphere-like particles(Fig.3a).In comparison with the product obtained at 180°C(sample A),the average dimensions of nanospindles(obtained at 150 °C)are 2670 nm×1230 nm and the aspect ratio is increased(2.17:1).However,when the reaction was carried out at a relatively lower temperature of 120°C(sample C),the product was only composed of nanospindles with average dimensions of 2800 nm×1200 nm and the aspect ratio was obviously increased(2.35:1)(Fig.3b).

    In addition,the glucose concentration plays an important role in forming nanostructure.When the concentration of glucose is low(nG=4 mmol),only spindle-like structure with average dimensions of 1350 nm×1000 nm was obtained(sample D,Fig.3c).In comparison with the product obtained at nG=10 mmol(sample A),the aspect ratio of sample D is reduced(1.35:1).When the concentration of glucose is high(nG=16 mmol),thecantaloupe-likestructuresmixed with some sphere-like particles were obtained(Fig.3d).The average size of the cantaloupe-like structures is 1865 nm along its major axis and 643 nm along its minor axis,and the length-to-diameter ratio is obviously increased(2.89:1).

    Based on the above observation,when the reaction was carried out at relatively higher temperatures(150-180°C)and higher glucose concentration(nG:nKMnO4≥5:1),there are some sphere-like structures obtained.It is rationally speculated thatthe spheres were produced due to the decomposition of residual glucose at relatively higher reaction temperatures.

    MnO2nanostructures are expected to be obtained by calcining the precursors at a proper temperature.Fig.4(a)shows the XRD pattern of the samples obtained by calcining the MnCO3precursors at 500°C for 4 h.The diffraction lines are in agreement with the standard value(JCPDS No.44-0141)of MnO2with body-centered structure,indicating the MnCO3precursor completely transforming to MnO2.More characteristics of MnO2are also observed in FTIR spectrum(Fig.4b).The broad band at about 3477 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.31The 1640 cm-1band is normally due to O―H bending vibrations combined with Mn atoms.32While the intense bands observed at 669,573,and 522 cm-1should be ascribed to Mn―O vibrations in MnO6octahedra.30The FTIR result indicates that some bound water exists in MnO2sample.As compared with the as-prepared compound(Fig.1(b)),the disappeared peaks correspond to C=C,C―H,and C=O confirm the existence of carbon particles in the precursors.

    TEM and SEM images of the MnO2nanostructures are shown in Fig.5 and Fig.6.After heat-treatment,the spindle-like shapes of the precursors were well maintained,no obviously sintered or compressed phenomena were observed(Fig.5a and Fig.5b).Fig.5c shows that most particles are spindle-like.Fig.5d clearly displays the three-dimensional spindle-like morphology with the disappearance of spheres in the precursors and the mesoporous nanospindles which composed of small nanoparticles.The disappearance of the sphere-like structures further indicates that the spheres in sample A,B,E were amorphous carbon spheres produced due to the decomposition of residual glucose at relatively higher reaction temperatures.From the HRTEM results in Fig.6a and Fig.6b,we can see that the MnO2sample exhibits mesoporous structure and that the distribution of the pore structure is regular.

    Fig.7 shows TEM images of MnO2nanospindles obtained by calcining different precursors.After heat-treatment,the spindle-like shapes of the precursors(sample C and D)were well maintained.But there are only few pores along the side of the spindle-like structures for sample C(Fig.7(a,b)),and no pores were observed for sample D(Fig.7(c,d)).It indicates that the reaction temperature,especially glucose concentration plays important roles in the formation of mesoporous nanostructures.When the reaction temperature is below 120°C or the glucose concentration is low(nG:nKMnO4=2:1),the mesoporous structure can not be obtained.It demonstrates that the formation of pore structure,to some extent,is caused by removing amorphous carbon nanoparticles.It is rationally speculated that the precursors of mesoporous MnO2nanospindles are composed of carbon nanoparticles and MnCO3nanoparticles.

    To further investigate the formation process of the nanospindle superstructure as the above conjecture,we have carried out analogous experiments at different reaction durations.For these spindles,when the hydrothermal reaction was conducted for 1/3 h,many amorphous nanoparticles were produced.A few small nanoparticles were loosely aggregated,and these aggregations may act as backbones for the further development of MnCO3spindle structures(Fig.8a).When the reaction time was increased to 10 h,a few nanoparticles(Fig.8b)and many solid spindle particles composed of nanoparticles were produced.As the reaction went on to a longer time(e.g.,20 h),the size of the spindles(sample A)has grown larger in all direc-tions and the size uniformity is greatly improved(Fig.2).

    After heat-treatment,the carbon nanoparticles were disappeared and MnCO3was decomposed to mesoporous MnO2nanospindles.So the possible formation mechanism of MnO2nanospindles structure can be presumed in Fig.9.

    Nitrogen adsorption/desorption measurement was conducted to characterize the Brunauer-Emmett-Teller(BET)surface area and internal pore structure.The recorded adsorption and desorption isotherms for the nanospindle structures show a little hysteresis(Fig.10).The BET specific surface area of the sample is calculated from N2isotherms to be about 26 m2·g-1.Barrett-Joyner-Halenda(BJH)calculations for the pore-size distribution,derived from desorption data,present a sharp band centered at ca 18 nm.The pores presumably arise from the spaces between the nanoparticles within a mesoporous spindle.The results display that the obtained nanospindles have porous properties.

    4 Conclusions

    By adopting a stepwise reaction process,the MnCO3precursor nanospindles have been prepared via a facile solution process,and the dimension and morphology of the MnCO3precursors can be adjusted.Mesoporous MnO2nanospindles obtained by calcining the precursors are considered to arise from the appearance of the carbon nanoparticles.The micro-spindles after heat treatment exhibit porous properties which make them appealing for practical applications such as catalysts,molecular adsorption,biosensors,and energy storage.

    (1)Carreon,M.A.;Guliants,V.V.Chem.Mater.2002,14,2670.

    (2) Schuth,F.Chem.Mater.2001,13,3184.

    (3)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Nature 1998,396,152.

    (4)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Chem.Mater.1999,11,2813.

    (5) He,X.;Antonelli,D.Angew.Chem.Int.Edit.2001,41,214.

    (6) Kresge,C.;Leonowicz,M.;Roth,W.;Vartuli,J.;Beck,J.Nature 1992,359,710.

    (7) Gu,F.;Li,C.Z.;Wang,S.F.;Lu,M.K.Langmuir 2006,22,1329.

    (8) Espinal,L.;Suib,S.L.;Rusling,J.F.J.Am.Chem.Soc.2004,126,7676.

    (9) Armstrong,A.R.;Bruce,P.G.Nature 1996,381,499.

    (10) Song,X.C.;Zheng,Y.F.;Lin,S.;Wang,Y.Acta Phys.-Chim.Sin.2007,23,258.[宋旭春,鄭遺凡,林 深,王 蕓.物理化學(xué)學(xué)報(bào),2007,23,258.]

    (11)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (12)Toupin,M.;Brousse,T.;Belanger,D.Chem.Mater.2002,14,3946.

    (13)Wang,T.;Zhou,J.H.;Wang,D.J.;Sun,D.;Di,Z.Y.;He,J.P.Acta Phys.-Chim.Sin.2009,25,2155.[王 濤,周建華,王道軍,孫 盾,狄志勇,何建平.物理化學(xué)學(xué)報(bào),2009,25,2155.]

    (14)Wills,A.S.;Raju,N.P.;Greedan,J.E.Chem.Mater.1999,11,1510.

    (15) Segal,S.R.;Park,S.H.;Suib,S.L.Chem.Mater.1997,9,98.

    (16)Greedan,J.E.;Raju,N.P.;Wills,A.S.;Morin,C.;Shaw,S.M.;Reimers,J.N.Chem.Mater.1998,10,3058.

    (17)Wang,F.;Wang,Y.M.;Wen,Y.X.;Su,H.F.;Li,B.Acta Phys.-Chim.Sin.2010,26,521.[王 凡,王巖敏,文衍宣,粟海峰,李 斌.物理化學(xué)學(xué)報(bào),2010,26,521.]

    (18) Deng,J.G.;Zhang,L.;Dai,H.X.;Xia,Y.S.;Jiang,H.Y.;Zhang,H.;He,H.J.Phys.Chem.C 2010,114,2694.

    (19) Cheng,F.Y.;Zhao,J.Z.;Song,W.;Li,C.S.;Ma,H.;Chen,J.;Shen,P.W.Inorg.Chem.2006,45,2038.

    (20)Wang,X.;Li,Y.D.J.Am.Chem.Soc.2002,124,2880.

    (21)Wang,X.;Li,Y.D.Chem.-Eur.J.2003,9,300.

    (22) Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.-Eur.J.2003,9,1645.

    (23)Wei,M.;Konishi,Y.;Zhou,H.;Sugihara,H.;Arakawa,H.Nanotechnology 2005,16,245.

    (24)Yuan,Z.Y.;Ren,T.Z.;Du,G.H.;Su,B.L.Appl.Phys.AMater.2005,80,743.

    (25) Song,X.C.;Zhao,Y.;Zheng,Y.F.Cryst.Growth.Des.2007,7,159.

    (26) Xiong,Y.J.;Xie,Y.;Li,X.X.;Li,Z.Q.Carbon 2004,42,1447.

    (27)Wong,W.K.;Li,C.P.;Au,F.C.K.;Fung,M.K.;Sun,X.H.;Lee,C.S.;Lee,S.T.;Zhu,W.J.Phys.Chem.B 2003,107,1514.

    (28)Chowdhury,A.K.M.S.;Cameron,D.C.;Hashmi,M.S.J.Thin Solid Films 1998,332,62.

    (29)Ho,C.M.;Yu,J.C.;Kwong,T.;Mak,A.C.;Lai,S.Y.Chem.Mater.2005,17,4514.

    (30)Ananth,M.V.;Pethkar,S.;Dakshinamurthi,K.J.Power Sources 1998,75,278.

    (31) Liu,Z.H.;Yang,X.J.;Makita,Y.;Ooi,K.Chem.Mater.2002,14,4800.

    (32)Wang,X.L.;Yuan,A.B.;Wang,Y.Q.J.Power Sources 2007,172,1007.

    紡錘形介孔納米二氧化錳的控制合成

    韓 玲 倪紀(jì)朋 張良苗 岳寶華 申杉杉 張 浩 陸文聰*

    (上海大學(xué)化學(xué)系,上海200444)

    在KMnO4和葡萄糖水溶液體系中,用一步水熱法控制合成了介孔MnCO3納米紡錘體,通過(guò)焙燒MnCO3前驅(qū)體可以得到介孔納米MnO2,且保持了原有的紡錘體形貌.用X射線衍射(XRD)、傅里葉變換紅外(FTIR)光譜、掃描電鏡(SEM)、透射電鏡(TEM)和N2吸附-脫附(BET)對(duì)制備的樣品進(jìn)行了形貌和結(jié)構(gòu)的表征.并對(duì)反應(yīng)時(shí)間、反應(yīng)物濃度等對(duì)產(chǎn)物形貌的影響進(jìn)行了研究.實(shí)驗(yàn)結(jié)果表明,反應(yīng)時(shí)間和葡萄糖的濃度對(duì)MnCO3前驅(qū)體的尺寸和形貌具有重要影響,MnCO3縱橫比可從1.35:1到2.89:1之間改變.并初步探討了介孔MnO2紡錘體的生長(zhǎng)機(jī)制,MnO2孔的形成是由于焙燒葡萄糖降解形成的納米碳顆粒所致.

    水熱法;紡錘形;MnO2;介孔

    O641

    Received:September 27,2010;Revised:November 15,2010;Published on Web:January 28,2011.

    ?Corresponding author.Email:wclu@shu.edu.cn;Tel:+86-21-66132663;Fax:+86-21-66134080.

    The project was supported by the Shanghai Special Nanotechnology Project,China(0852nm00700)and Innovation Fund of Shanghai University,China(A.10-0101-09-023).

    上海市納米技術(shù)項(xiàng)目(0852nm00700)和上海大學(xué)創(chuàng)新項(xiàng)目(A.10-0101-09-023)資助

    猜你喜歡
    紡錘體上海大學(xué)水熱法
    Aurora激酶A調(diào)控卵母細(xì)胞減數(shù)分裂的分子機(jī)制
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    微刺激方案中成熟卵母細(xì)胞紡錘體參數(shù)與卵細(xì)胞質(zhì)內(nèi)單精子注射結(jié)局間的關(guān)系
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    淺談動(dòng)物細(xì)胞有絲分裂中的有星紡錘體
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    抑癌蛋白CYLD調(diào)控紡錘體定向
    遺傳(2014年3期)2014-02-28 20:59:25
    欧美精品人与动牲交sv欧美| 少妇被粗大的猛进出69影院| 纯流量卡能插随身wifi吗| 99国产精品一区二区三区| 夜夜爽天天搞| e午夜精品久久久久久久| 中文字幕制服av| 1024视频免费在线观看| 丁香六月欧美| 午夜激情久久久久久久| 丁香六月天网| 国产精品熟女久久久久浪| 成人亚洲精品一区在线观看| 国产精品久久电影中文字幕 | 久久精品国产亚洲av香蕉五月 | 女人被躁到高潮嗷嗷叫费观| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩精品亚洲av| 国产老妇伦熟女老妇高清| 色婷婷av一区二区三区视频| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 国产成人免费无遮挡视频| 亚洲国产av新网站| av不卡在线播放| 51午夜福利影视在线观看| 成人国产一区最新在线观看| 91av网站免费观看| 老熟妇仑乱视频hdxx| 国产av国产精品国产| 精品免费久久久久久久清纯 | 久久人妻福利社区极品人妻图片| 中文亚洲av片在线观看爽 | 国产真人三级小视频在线观看| 中文字幕精品免费在线观看视频| 国产有黄有色有爽视频| 免费黄频网站在线观看国产| 精品少妇内射三级| 欧美成人免费av一区二区三区 | 人人妻人人澡人人看| 国产一卡二卡三卡精品| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 国产日韩欧美在线精品| 日韩大码丰满熟妇| 人人妻,人人澡人人爽秒播| 精品国产国语对白av| 久久久久久久久久久久大奶| 天天躁日日躁夜夜躁夜夜| 三上悠亚av全集在线观看| 国产97色在线日韩免费| 黄频高清免费视频| 一边摸一边做爽爽视频免费| 国产精品美女特级片免费视频播放器 | 自线自在国产av| 欧美中文综合在线视频| 桃红色精品国产亚洲av| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 久久午夜亚洲精品久久| 一级毛片女人18水好多| 亚洲九九香蕉| 两个人免费观看高清视频| 伦理电影免费视频| 一区二区三区精品91| 人人妻人人添人人爽欧美一区卜| 亚洲精品粉嫩美女一区| 国产日韩欧美在线精品| 动漫黄色视频在线观看| 99精品在免费线老司机午夜| 人人妻人人澡人人看| 啦啦啦 在线观看视频| 在线观看66精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利永久在线观看| 两个人免费观看高清视频| 亚洲国产欧美网| 多毛熟女@视频| a在线观看视频网站| 亚洲第一青青草原| 午夜91福利影院| 老司机福利观看| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 老司机深夜福利视频在线观看| 国产成人av激情在线播放| 一夜夜www| 深夜精品福利| 黄片小视频在线播放| 黄色成人免费大全| 日日夜夜操网爽| 日本vs欧美在线观看视频| 国产精品麻豆人妻色哟哟久久| 久久精品91无色码中文字幕| 不卡一级毛片| av网站在线播放免费| 亚洲色图综合在线观看| 男女边摸边吃奶| 精品人妻在线不人妻| 又黄又粗又硬又大视频| 国产97色在线日韩免费| 三级毛片av免费| 91国产中文字幕| 性色av乱码一区二区三区2| 国产精品香港三级国产av潘金莲| 老熟女久久久| 午夜福利视频在线观看免费| 久久精品亚洲精品国产色婷小说| 丝袜人妻中文字幕| 亚洲性夜色夜夜综合| 老熟女久久久| 侵犯人妻中文字幕一二三四区| 黑人操中国人逼视频| 欧美一级毛片孕妇| 亚洲av日韩在线播放| 国产精品免费一区二区三区在线 | 欧美日韩亚洲综合一区二区三区_| 久久久久久久国产电影| 法律面前人人平等表现在哪些方面| 露出奶头的视频| 人妻 亚洲 视频| a级毛片黄视频| 精品第一国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线一区亚洲| 久久人妻熟女aⅴ| 成人手机av| 夜夜爽天天搞| 免费少妇av软件| videos熟女内射| 国产野战对白在线观看| 国产老妇伦熟女老妇高清| 法律面前人人平等表现在哪些方面| 女人精品久久久久毛片| 操出白浆在线播放| 久久香蕉激情| 又大又爽又粗| 中文字幕人妻丝袜制服| 午夜福利欧美成人| 亚洲三区欧美一区| 韩国精品一区二区三区| 咕卡用的链子| 久久99热这里只频精品6学生| 色精品久久人妻99蜜桃| 亚洲伊人色综图| 老司机在亚洲福利影院| 午夜福利,免费看| 亚洲中文字幕日韩| 国产一区二区 视频在线| 欧美精品一区二区免费开放| 在线看a的网站| 亚洲九九香蕉| 国产亚洲欧美在线一区二区| 亚洲国产成人一精品久久久| 男男h啪啪无遮挡| 黑人操中国人逼视频| 久久99热这里只频精品6学生| 色尼玛亚洲综合影院| 亚洲av欧美aⅴ国产| 国产免费现黄频在线看| 亚洲av美国av| 91av网站免费观看| 国产麻豆69| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 国产99久久九九免费精品| 国产高清国产精品国产三级| 性少妇av在线| 久9热在线精品视频| 肉色欧美久久久久久久蜜桃| 极品少妇高潮喷水抽搐| 国产免费视频播放在线视频| 精品午夜福利视频在线观看一区 | 嫩草影视91久久| 精品亚洲成a人片在线观看| 国产精品影院久久| www.自偷自拍.com| 精品少妇一区二区三区视频日本电影| 色综合婷婷激情| 丰满人妻熟妇乱又伦精品不卡| 亚洲七黄色美女视频| 热99久久久久精品小说推荐| 国产成人欧美| 亚洲全国av大片| 精品国产亚洲在线| 欧美乱码精品一区二区三区| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全电影3 | 亚洲精品美女久久av网站| 精品国产一区二区三区四区第35| 纯流量卡能插随身wifi吗| 我要看黄色一级片免费的| 看免费av毛片| 亚洲欧美一区二区三区久久| 十分钟在线观看高清视频www| av又黄又爽大尺度在线免费看| 一区在线观看完整版| 一区二区日韩欧美中文字幕| 欧美+亚洲+日韩+国产| 欧美成人午夜精品| 男人舔女人的私密视频| 久久国产精品影院| 国产成人免费无遮挡视频| 免费av中文字幕在线| 国产片内射在线| 成人国语在线视频| 69av精品久久久久久 | 欧美日韩亚洲综合一区二区三区_| 久久久国产精品麻豆| videosex国产| 一边摸一边抽搐一进一小说 | www.自偷自拍.com| 欧美日韩亚洲高清精品| 久久久精品区二区三区| 日韩免费av在线播放| 亚洲国产欧美日韩在线播放| 老熟女久久久| 精品亚洲乱码少妇综合久久| 国产在线观看jvid| 久久久精品免费免费高清| 捣出白浆h1v1| 黄频高清免费视频| 后天国语完整版免费观看| tocl精华| 午夜久久久在线观看| 搡老乐熟女国产| 免费一级毛片在线播放高清视频 | 伊人久久大香线蕉亚洲五| 亚洲精品国产区一区二| 亚洲av成人不卡在线观看播放网| 纯流量卡能插随身wifi吗| h视频一区二区三区| 成年动漫av网址| 19禁男女啪啪无遮挡网站| 99re在线观看精品视频| 久久天堂一区二区三区四区| avwww免费| 中文字幕人妻丝袜制服| 免费观看人在逋| 亚洲国产av影院在线观看| 亚洲综合色网址| 色视频在线一区二区三区| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 天堂俺去俺来也www色官网| 另类精品久久| 精品亚洲成a人片在线观看| 国产精品免费一区二区三区在线 | 制服人妻中文乱码| 亚洲精品乱久久久久久| 男女高潮啪啪啪动态图| 国精品久久久久久国模美| 欧美 亚洲 国产 日韩一| 在线观看www视频免费| 在线观看免费视频日本深夜| 欧美 日韩 精品 国产| av在线播放免费不卡| 亚洲精品国产精品久久久不卡| 天堂中文最新版在线下载| 一边摸一边抽搐一进一小说 | 欧美激情 高清一区二区三区| 午夜福利在线免费观看网站| 91av网站免费观看| 成年人黄色毛片网站| 99热网站在线观看| 精品第一国产精品| 精品福利观看| videos熟女内射| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 欧美久久黑人一区二区| 国产精品免费视频内射| 午夜福利视频精品| 久久中文字幕一级| 热99re8久久精品国产| 午夜福利视频精品| 老熟女久久久| av有码第一页| 国产麻豆69| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频,在线免费观看| 色婷婷av一区二区三区视频| 搡老熟女国产l中国老女人| 精品一区二区三区视频在线观看免费 | 国产色视频综合| 18禁裸乳无遮挡动漫免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美精品综合一区二区三区| 考比视频在线观看| 一区在线观看完整版| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 国内毛片毛片毛片毛片毛片| 色婷婷av一区二区三区视频| 一本久久精品| 成年动漫av网址| 国产av又大| 热re99久久国产66热| 999久久久国产精品视频| 久久久水蜜桃国产精品网| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 两人在一起打扑克的视频| 国产精品久久久久成人av| 精品一区二区三卡| 这个男人来自地球电影免费观看| 久久ye,这里只有精品| 日韩中文字幕欧美一区二区| 99精品欧美一区二区三区四区| 波多野结衣一区麻豆| 午夜福利视频精品| 久久狼人影院| 波多野结衣一区麻豆| 丝袜美足系列| 国产高清激情床上av| 欧美日韩成人在线一区二区| 精品高清国产在线一区| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷av一区二区三区视频| 男男h啪啪无遮挡| 精品亚洲成国产av| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 99在线人妻在线中文字幕 | 欧美日韩福利视频一区二区| 欧美日韩国产mv在线观看视频| 十八禁高潮呻吟视频| 国产免费福利视频在线观看| 国产熟女午夜一区二区三区| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 一二三四社区在线视频社区8| 欧美亚洲 丝袜 人妻 在线| 欧美久久黑人一区二区| 午夜两性在线视频| 90打野战视频偷拍视频| 精品一区二区三区四区五区乱码| 国产高清国产精品国产三级| 又黄又粗又硬又大视频| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 国产单亲对白刺激| 国产一区二区三区视频了| 久久人妻福利社区极品人妻图片| 免费久久久久久久精品成人欧美视频| 不卡av一区二区三区| 精品人妻在线不人妻| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 亚洲一码二码三码区别大吗| 正在播放国产对白刺激| 免费日韩欧美在线观看| 啦啦啦免费观看视频1| 视频区欧美日本亚洲| 国产成人av教育| 岛国在线观看网站| 欧美午夜高清在线| 日韩人妻精品一区2区三区| 黄色a级毛片大全视频| 天天躁夜夜躁狠狠躁躁| 一个人免费在线观看的高清视频| 欧美乱妇无乱码| 搡老熟女国产l中国老女人| 国产在线观看jvid| 青草久久国产| 久久青草综合色| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 窝窝影院91人妻| 国产日韩欧美在线精品| 在线看a的网站| 日日爽夜夜爽网站| 99国产精品一区二区三区| 大香蕉久久网| 女警被强在线播放| av电影中文网址| 亚洲久久久国产精品| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 久久久欧美国产精品| 后天国语完整版免费观看| 亚洲第一欧美日韩一区二区三区 | 麻豆乱淫一区二区| 国产在线观看jvid| 一区在线观看完整版| 中文字幕高清在线视频| 亚洲精品在线观看二区| 久久人妻福利社区极品人妻图片| 久久久国产一区二区| 久久精品亚洲精品国产色婷小说| 日韩精品免费视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 两个人看的免费小视频| 欧美 日韩 精品 国产| 男女免费视频国产| 中文字幕高清在线视频| 少妇被粗大的猛进出69影院| 国产精品成人在线| 一区二区三区国产精品乱码| 黄色怎么调成土黄色| 国产片内射在线| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 另类精品久久| 免费人妻精品一区二区三区视频| 欧美国产精品va在线观看不卡| 五月开心婷婷网| 久久人妻av系列| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 国产日韩欧美视频二区| 成人免费观看视频高清| 黑人猛操日本美女一级片| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 黑人猛操日本美女一级片| 欧美亚洲日本最大视频资源| 国产欧美亚洲国产| 精品久久蜜臀av无| 亚洲精品在线美女| 欧美在线一区亚洲| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 精品久久久久久电影网| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 亚洲专区中文字幕在线| 人人妻人人澡人人爽人人夜夜| 久久香蕉激情| 咕卡用的链子| 在线天堂中文资源库| 91麻豆av在线| 飞空精品影院首页| 麻豆av在线久日| 亚洲国产欧美网| 精品人妻熟女毛片av久久网站| 视频区图区小说| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 人妻 亚洲 视频| 女人精品久久久久毛片| a级毛片黄视频| 亚洲九九香蕉| 99精品在免费线老司机午夜| avwww免费| 老司机午夜福利在线观看视频 | 亚洲精品在线观看二区| 久久九九热精品免费| 咕卡用的链子| 五月开心婷婷网| 777米奇影视久久| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久人妻精品电影 | 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 美女午夜性视频免费| 国产av又大| 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免费看| 久久久久国内视频| 老司机亚洲免费影院| 久久久水蜜桃国产精品网| av又黄又爽大尺度在线免费看| 欧美 日韩 精品 国产| 免费观看av网站的网址| 免费一级毛片在线播放高清视频 | 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 中文亚洲av片在线观看爽 | 啪啪无遮挡十八禁网站| 王馨瑶露胸无遮挡在线观看| 国产精品国产av在线观看| 国产成人免费观看mmmm| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 女性被躁到高潮视频| 我要看黄色一级片免费的| 成年动漫av网址| 高清在线国产一区| 久久中文看片网| 高潮久久久久久久久久久不卡| 欧美在线黄色| 亚洲国产欧美在线一区| 丝袜喷水一区| 国产精品亚洲av一区麻豆| 老熟女久久久| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 熟女少妇亚洲综合色aaa.| tube8黄色片| 久久久久国产一级毛片高清牌| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 韩国精品一区二区三区| 99久久国产精品久久久| 精品一区二区三区视频在线观看免费 | 国产黄色免费在线视频| 9热在线视频观看99| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 久久狼人影院| 成人免费观看视频高清| av网站在线播放免费| 精品亚洲成国产av| 99热网站在线观看| av线在线观看网站| 久久这里只有精品19| 久久久久久人人人人人| 亚洲天堂av无毛| 大型黄色视频在线免费观看| 两性夫妻黄色片| 在线观看www视频免费| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 成人免费观看视频高清| 精品国产乱子伦一区二区三区| 丁香欧美五月| 最新在线观看一区二区三区| 在线 av 中文字幕| 狠狠狠狠99中文字幕| 精品久久久精品久久久| 国产成人精品在线电影| 亚洲欧美日韩高清在线视频 | 久久九九热精品免费| 在线观看66精品国产| 国产福利在线免费观看视频| 老司机亚洲免费影院| 天天操日日干夜夜撸| 一本大道久久a久久精品| 久久国产精品大桥未久av| 91精品国产国语对白视频| 久久久水蜜桃国产精品网| 国产成人av激情在线播放| 黄片小视频在线播放| 午夜久久久在线观看| 日韩精品免费视频一区二区三区| 亚洲国产欧美在线一区| 午夜福利视频在线观看免费| av片东京热男人的天堂| 乱人伦中国视频| 成人国产av品久久久| 18禁美女被吸乳视频| 黄色视频在线播放观看不卡| 久久久国产成人免费| 欧美精品高潮呻吟av久久| 国产日韩一区二区三区精品不卡| 亚洲人成77777在线视频| 97人妻天天添夜夜摸| 美女主播在线视频| avwww免费| 国产成人精品久久二区二区免费| av网站免费在线观看视频| 黄色 视频免费看| 国产精品久久电影中文字幕 | 国内毛片毛片毛片毛片毛片| 精品少妇一区二区三区视频日本电影| 两人在一起打扑克的视频| 久久毛片免费看一区二区三区| 窝窝影院91人妻| 久久天躁狠狠躁夜夜2o2o| 天天躁夜夜躁狠狠躁躁| 美女扒开内裤让男人捅视频| 亚洲精品美女久久av网站| 欧美性长视频在线观看| 日本av免费视频播放| 亚洲成人免费av在线播放| 国产精品一区二区在线不卡| 色94色欧美一区二区| 黄色视频在线播放观看不卡| 操出白浆在线播放| 亚洲视频免费观看视频| 久久精品国产综合久久久| 日韩人妻精品一区2区三区| 亚洲专区中文字幕在线| 国产男女内射视频| 天天添夜夜摸| 动漫黄色视频在线观看| 亚洲成国产人片在线观看| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| 青草久久国产| 国产淫语在线视频| 亚洲国产欧美网| 香蕉国产在线看| 一区二区日韩欧美中文字幕| 亚洲 欧美一区二区三区| 男女下面插进去视频免费观看| 成人av一区二区三区在线看| 久久久国产一区二区| 亚洲精品粉嫩美女一区| 老熟妇乱子伦视频在线观看| 国产欧美日韩综合在线一区二区| 久久狼人影院| 丰满少妇做爰视频| 国产熟女午夜一区二区三区| 久久狼人影院|