• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    2014-10-14 03:45:12WANGKunPengWANGChangSheng
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:激發(fā)態(tài)吡唑國家自然科學(xué)基金

    WANG Kun-Peng WANG Chang-Sheng

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    WANG Kun-Peng WANG Chang-Sheng*

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Abstract: The ground state(S0)structures of 3(5)-(9-anthryl)pyrazole and its derivatives were obtained using the density functional theory(DFT)B3LYP/6-31G(d)method.The first singlet excited state(S1)structures were optimized using the singlet-excitation configuration interaction(CIS)/6-31G(d)method.The absorption and emission spectra were then evaluated using the time-dependent density functional theory(TD-DFT)B3LYP method with the 6-311++G(d,p)basis set.Our calculation results reveal that for all the derivatives(electron-withdrawing groups or electron-donating groups)the calculated absorption and fluorescence emission wavelength values all show red shifts compared with the parent 3(5)-(9-anthryl)pyrazole.We also find that compared with the parent 3(5)-(9-anthryl)pyrazole,the derivatives with―R=―BH2,―CCl3,―CHO,―NH2are good candidates for longer absorption wavelength materials and for longer fluorescence emission wavelength materials.

    Key Words:Absorption spectrum;Fluorescence emission spectrum;3(5)-(9-Anthryl)pyrazole;Excited state

    1 Introduction

    The design and synthesis of organic optical materials have attracted intensive attention because of their potential applications in organic light-emitting diodes(OLEDs).Much effort has been made on the multicolor patterning of organic luminescent molecules with ordered micro-and nano-scopic features as a result of their applications in full-color display and other related areas.1-19Mizukamiet al.1found that a helical 3,3′-di-tert-butylsalen-zinc(II)complex,[Zn2],has a red-shifted fluorescence as compared to that of[Zn],a half-structured mononuclear complex of[Zn2].Baderet al.2reported the syntheses and electrochemical properties of four oligothiophene derivativeswith the tricyanovinyl group and suggested that these materials might be suitable for n-type,and possibly for ambipolar,transport.Yamaguchi et al.3designed and synthesized a series of B,B′,B″-trianthryl-N,N′,N″-triarylborazine derivatives bearing various p-substituted phenyl groups and observed significant bundle effects in the photophysical and electrochemical properties of these compounds.Murata et al.4reported efficient molecular organic light-emitting diodes composed of novel silols derivatives as an electron transporting layer and an emissive layer.Tang et al.5prepared a series of 2,3,4,5-tetraphenylsiloles with different 1,1-substituents and observed that with an increase in the electronegativity of 1,1-substituents of the silols,the absorption and emission wavelengths of the silols bathochromically shifted.Sapochak et al.6carried out theoretical and experimental investigations on the molecular and electronic structure of the 8-hydroxyquinoline chelate of zinc(II)and related the results to OLED performance.Brinkmann et al.7investigated the structures and the correlation between intermolecular interactions and optical properties in various metaloquinolate tris(8-hydroxyquinoline)aluminum(Alq3)systems,including solution,amorphous thin films,and different crystalline forms,and showed that the length of interligand contacts between neighboring Alq3molecules as well as the molecular density of the packing plays an important role in influencing the spectral position of fluorescence.The molecular orbital study of the first excited state of the OLED material Alq3was carried out by Schlegel et al.8Based on the structure of the excited state,they predicted an emission wavelength of 538 nm,which is comparable to 514 nm observed experimentally for solution phase photoluminescence.Geng et al.9investigated the electronic structure and transport properties of a p-stacking molecular chain using the first-principles density functional theory approach combined with Green′s function method.Su et al.10carried out a DFT/TD-DFT study on the electronic structures and optoelectronic properties of several blue-emitting iridium(III)complexes and found that the properties of the ligands had great influence on the photophysical properties,such as energy gap,absorption spectra,emission spectra,etc.Zhang et al.11investigated the optical properties of the phosphorescent trinuclear copper(I)complexes of pyrazolates theoretically and found that the short intermolecular Cu…Cu distance played an important role in the emission spectra of the verticaland tilting-movement dimers.An theoretical study on symmetric and asymmetric spirosilabifluorene derivatives was also carried out and an excellent agreement with the experiment data on their optical properties was obtained.12Wang et al.13-14reported the emission properties of the polymorphs and pseudopolymorphs of N,N-di(n-butyl)quinacridone and N,N-di(n-cetyl)quinacridone and found that the crystal phases with stronger π-π interactions showed the emission maximum at a longer wavelength region while that with relatively weaker π-π interactions exhibited an emission maximum at a shorter wavelength region.Although considerable progress has been made in organic luminescent materials with different structures,it is still essential to achieve a molecular-level understanding of the relationship between the electronic structures and the resulting optical properties.

    The organic molecule 3(5)-(9-anthryl)pyrazole has been used as building blocks to construct different luminescent single crystal.20-22In order to understand the optical properties of 3(5)-(9-anthryl)pyrazole,we here reported our research on the geometrical structure,the gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),and the absorption/emission spectra of 3(5)-(9-anthryl)pyrazole at the ground and excited states with the DFT and CIS methods.We displayed the relationship between the optical properties and electronic structures of the frontier molecular orbitals(FMOs),explored the influence of the substitutions on the absorption and emission wavelengths.We hope that the result obtained would be helpful for understanding connection between the fluorescence characters and electronic structures and helpful for the find of new fluorescence materials.

    2 Calculation methods

    ANP possesses two possible structures ANP-1 and ANP-2(Fig.1).The ground state S0structures of ANP-1 and ANP-2 were obtained by using the density functional theory23B3LYP/6-31G(d)method.B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)calculation showed that ANP-1 was a little more stable than ANP-2.The singlet excited state S1structures of ANP-1 and ANP-2 were optimized by using the CIS method24with 6-31G(d)basis set.Based on the structures obtained,their absorption and emission spectra were calculated by the TD-DFT B3LYP method with 6-311++G(d,p)basis sets.In order to examine the effect of substituents on the absorption and emission spectra,several derivatives of ANP-1 were designed by replacing the hydrogen atom on the C7 of ANP-1 with several electron-withdrawing or electron-donating groups.The ground state S0structures and the singlet excited state S1structures of these derivatives were optimized by using B3LYP/6-31G(d)and CIS/6-31G(d)methods,respectively.Based on the structures obtained,the absorption and emission spectra of these derivatives were then obtained by using TD-DFT B3LYP method with 6-311++G(d,p)basis sets.The solvent affect was considered by using PCM model25in TD-DFT B3LYP calculations.

    3 Results and discussion

    3.1 Geometric structures and electronic structures of ANP-1 and ANP-2

    The selected structure parameters of ANP-1 and ANP-2 are listed in Table 1.Compared with the ground state S0,some bond lengths in the excited state S1are lengthened,some others are shortened.The bond lengths of C1―C6,C2―C3,and C4―C5 are all shortened from the ground state S0to the excited state S1for both ANP-1 and ANP-2,while the bond lengthsof C1―C2,C5―C6,C3―C7,and C4―C11 are all lengthened.The bond lengths between the adjacent atoms except H in the pyrazole ring of ANP-1 and ANP-2 are all shortened with the exception of the bond length C12―C19 in ANP-2 which is lengthened slightly from 0.1423 to 0.1424 nm.The dihedral anglesDN15C12C11C10become smaller for both ANP-1 and ANP-2 from the ground stateS0to the excited stateS1,indicating a better planar nature of the excited stateS1.What is more,their bond lengths C11―C12 are within the range from 0.1485 to 0.1472 nm,which are longer than the standard double bond(C=C,0.134 nm)and shorter than the standard single bond(C―C,0.154 nm),indicating a certain double bond nature.Thus conclusion could be drawn that a larger conjugation system has formed fromS0toS1,which will facilitate the free movement of electron cloud and electron transfer from the pyrazole fragment to the anthracene fragment.

    The electron density contours of HOMO-1,HOMO,LUMO,LUMO+1 of ANP-1 and ANP-2(Fig.2)show that HOMO is mainly distributed on the anthracene ring part with a small quantity of distribution on the pyrazole fragment,LUMO is mainly distributed on the anthracene ring part and much less distributed on the pyrazole fragment.Based on the fact that the lowest lying excited state usually corresponds to an excitation from HOMO to LUMO,we can make a good explanation of the ANP bond length variation by analyzing the FMOs.The bonds C1―C6,C2―C3,and C4―C5 are antibonding on the HOMO for both ANP-1 and ANP-2,while on the LUMO,they are bonding in these regions.Therefore,these bonds are shortened on the excited stateS1.The bonds C1―C2,C5―C6,C3―C7,and C4―C11 are antibonding on the LUMO,while they are bonding on the HOMO.These bonds hence become longer on the excited stateS1.

    Table 1 Optimized structural parameters ofANP-1 andANP-2

    3.2 Effect of substituents on the optical properties

    3.2.1 The frontier molecular orbital(FMO)analysis

    The HOMO and LUMO energies of ANP-1 and its derivatives are listed in Table 2.As seen from Table 2,both HOMO and LUMO energies are obviously changed by replacing the hydrogen atom on the C7 of ANP-1 with an electron-withdrawing or electron-donating group.Table 2 shows that compared with the parent molecule ANP-1(―R=―H),replacing the hydrogen atom with an electron-withdrawing group(―R=―BH2,―CHO,―SO3H,―COMe,―COOH,―CONH2,―CCl3,―CF3,―CN)lowers both the HOMO energy(EHOMO)and the LUMO energy(ELUMO),andELUMOis lowered more thanEHOMO,resulting in a smaller energy gapsEgcompared with the energy gap(3.472 eV)of ANP-1,suggesting a red-shift absorption wavelength.However,substituting the hydrogen atom with an electron-donating group(―R=―Me,―OH,―OMe,―NH2,―NHMe)raises bothEHOMOandELUMO,butEHOMOis raised more,resulting in a smaller energy gap compared with that of ANP-1,also suggesting a red-shift absorption wavelength.

    3.2.2 Absorption spectra

    Table 3 displays the calculated absorption wavelength(λ),the oscillator strength(f),transition assignment,and the main CI expansion coefficients of ANP-1 and its derivatives.It has been known that a large oscillator strengthfusually corresponds to a large experimental absorption coefficient or a strong fluorescence.It can be seen from Table 3 that,for all thederivatives,whatever the substituent is an electron-withdrawing group or an electron-donating group,the calculated absorption wavelength values all show a red shift as compared with ANP-1,consistent with the FMO analysis above.Table 3 shows that the derivative with―R=―NH2possesses a relatively longer absorption wavelength(442 nm)than the derivative with―R=―NHMe(428 nm),the derivative with―R=―OH possesses a relatively longer absorption wavelength(424 nm)than the derivative with―R=―OMe(413 nm),the derivative with―R=―CHO possesses a relatively longer absorption wavelength(447 nm)than the derivative with―R=―COMe(410 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer absorption wavelength.Table 3 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br exists the longest absorption wavelength(415 nm)whereas the derivative with―R=―F shows the shortest absorption wavelength(409 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter absorption wavelength,or,in another word,a more electropositive group may result in a longer absorption wavelength.This conclusion is further confirmed by the fact that the derivative with―R=―CCl3has a longer absorption wavelength than the one with―R=―CF3.Among the substituents considered,we find that the derivatives with―R=―BH2,―CCl3,―CHO,and―NH2have relatively long absorption wavelength,three of them belong to the electron-withdrawing group,suggesting that if one want to design and synthesize an optical material possessing a longer wavelength,one can substitute the hydrogen atom of the parent molecule with electron-withdrawing group,especially with ―BH2,―CCl3,―CHO.

    The data in the third column of Table 3 are the absorption wavelength in CHCl3solvent.The data in the fifth column of Table 3 are the oscillator strengths in CHCl3solvent.These data show that the solvent CHCl3leads to a further red shift for the absorption wavelength values with the red-shifted extent 3-13 nm except the derivative with―R=―O-.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterparts in gas phase.

    Table 2 Frontier molecular orbital energies(in eV)and their differences(Egin eV)obtained at the B3LYP/6-31G(d)level

    3.2.3 Emission spectra

    The calculated emission parameters are listed in Table 4.It can be seen from Table 4 that the fluorescence emission spectra of the derivatives are all red shifted compared with the parent molecule ANP-1,whatever the substituent is an electronwithdrawing group or an electron-donating group,consistent again with the FMO analysis above.Furthermore,the redshifted wavelength is predicted in the increasing order―Me<― OMe<― OH<― NHMe<—NH2for the electron-donating group,and ―CONH2<―COOH≈—CF3≈―CN≈―COMe<―SO3H<―CHO<―BH2<―CCl3for the electron-withdrawing group.Table 4 shows that the derivative with―R=―NH2possesses a relatively longer fluorescence emission wavelength(514 nm)than the derivative with―R=―NHMe(490 nm),the derivative with―R=―OH possesses a relatively longer emission wavelength(486 nm)than the derivative with―R=―OMe(472 nm),the derivative with―R=―CHO possesses a relatively longer emission wavelength(498 nm)than the derivative with―R=―COMe(478 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer fluorescence emission wavelength.Table 4 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br shows the longest fluores-cence emission wavelength(471 nm)whereas the derivative with―R=―F shows a shortest fluorescence emission wavelength(468 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter emission wavelength,or,in another word,a more electropositive group may result in a longer emission wavelength.This is further confirmed by the fact that the derivative with―R=―CCl3has a longer fluorescence emission wavelength(531 nm)than the one with―R=―CF3(475 nm).Among the substituents considered in this work,we find that the derivatives with ―R=―O-,―BH2,―CCl3,―CHO,―NH2have relatively the longest fluorescence emission wavelength,suggesting that if one wants to design and synthesize an optical material possessing a longer fluorescence emission wavelength,one can substitute the hydrogen atom of the parent molecule with these groups.

    Table 3 Absorption wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    The data in the third column of Table 4 are the fluorescence emission wavelength in CHCl3solvent.These data show that the solvent leads to a further red shift for the fluorescence emission wavelengths with the red-shifted extent 4-17 nm.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterpart ones in gas phase,displaying that the fluores-cent emitting spectrum is strengthened in CHCl3solvent.

    Table 4 Fluorescence emission wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    4 Conclusions

    Based on the theoretical calculations we have demonstrated that,for all the derivatives of ANP considered in this paper,whatever the substituent is an electron-withdrawing group or an electron-donating group,the absorption and fluorescence emission wavelength values all show red shifts as compared with ANP.We have also shown that,compared with ANP,the derivatives of ANP-1 with ―R=―BH2,―CCl3,―CHO,and―NH2are good candidates both for the optical materials possessing longer absorption wavelength and for the optical materials possessing longer fluorescence emission wavelength.Furthermore,we found that the derivative with―R=―Br has both a longer absorption wavelength and a longer fluorescence emission wavelength than the derivative with―R=―F,and the derivative with―R=―CCl3has a longer wavelength than the one with―R=―CF3,showing that a more electropositive group may result in a longer absorption or emission wavelength.

    (1)Mizukami,S.;Houjou,H.;Sugaya,K.;Koyama,E.;Tokuhisa,H.;Sasaki,T.;Kanesato,M.Chem.Mater.2005,17,50.

    (2)Bader,M.M.;Custelcean,R.;Ward,M.D.Chem.Mater.2003,15,616.

    (3)Wakamiya,A.;Ide,T.;Yamaguchi,S.J.Am.Chem.Soc.2005,127,14859.

    (4) Murata,H.;Kafafi,Z.H.;Uchida,M.Appl.Phys.Lett.2002,80,189.

    (5)Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.;Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.2003,15,1535.

    (6) Sapochak,L.S.;Benincasa,F.E.;Schofield,R.S.;Baker,J.L.;Riccio,K.K.C.;Fogarty,D.;Kohlmann,H.;Ferris,K.F.;Burrows,P.E.J.Am.Chem.Soc.2002,124,6119.

    (7) Brinkmann,M.;Gadret,G.;Muccini,M.;Taliani,C.;Masciocchi,N.;Sironi.A.J.Am.Chem.Soc.2000,122,5147.

    (8) Halls,M.D.;Schlegel,H.B.Chem.Mater.2001,13,2632.

    (9)Geng,W.T.;Oda,M.;Nara,J.;Kondo,H.;Ohno,T.J.Phys.Chem.B 2008,112,2795.

    (10)Shi,L.;Hong,B.;Guan,W.;Wu,Z.;Su,Z.J.Phys.Chem.A 2010,114,6559.

    (11) Hu,B.;Gahungu,G.;Zhang,J.J.Phys.Chem.A 2007,111,4965.

    (12) Sun,M.;Niu,B.;Zhang,J.Theor.Chem.Acc.2008,119,489.

    (13)Fan,Y.;Zhao,Y.;Ye,L.;Li,B.;Yang,G.;Wang,Y.Crystal Growth&Design 2009,9,1421.

    (14)Fan,Y.;Song,W.;Yu,D.;Ye,K.;Zhang,J.;Wang,Y.CrystEngComm 2009,11,1716.

    (15) Gaal,M.;Gadermaier,C.;Plank,H.;Moderegger,E.;Pogantsch,A.;Leising,G.;List,E.J.W.Adv.Mater.2003,15,1165.

    (16)Zhao,Y.;Gao,H.;Fan,Y.;Zhuo,T.;Su,Z.;Liu,Y.;Wang,Y.Adv.Mater.2009,21,3165.

    (17) Gustafsson,G.;Cao,Y.;Treacy,G.M.;Klavetter,F.;Colaneri,N.;Heeger,A.J.Nature 1992,357,477.

    (18) Chen,Y.;Au,J.;Kazlas,P.;Ritenour,A.;Gates,H.;McCreary,M.Nature 2003,423,136.

    (19)Rakow,N.A;Suslick,K.S.Nature 2000,406,710.

    (20) Zhang,H.;Zhang,Z.;Ye,K.;Zhang,J.;Wang,Y.Adv.Mater.2006,18,2369.

    (21)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Wang,W.;Wu,Y.;Wang,Y.;Chi,L.Langmuir 2008,24,12745.

    (22)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Shi,G.;Wang,Y.;Chi,L.Langmuir 2009,25,3894.

    (23) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.

    (24) Foresman,J.B.;Head-Gordon,M.;Pople,J.A.;Frisch,M.J.J.Phys.Chem.1992,96,135.

    (25)Cancès,E.;Mennucci,B.;Tomasi,J.J.Chem.Phys.1997,107,3032.

    取代基對3(5)-(9-蒽基)吡唑光學(xué)性質(zhì)的影響

    王昆鵬 王長生*

    (遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    使用密度泛函理論(DFT)B3LYP/6-31G(d)方法優(yōu)化得到了3(5)-(9-蒽基)吡唑及其衍生物的基態(tài)(S0)分子結(jié)構(gòu),使用單激發(fā)組態(tài)相互作用(CIS)/6-31G(d)方法優(yōu)化得到這些分子的第一單重激發(fā)態(tài)(S1)的幾何結(jié)構(gòu),并使用含時密度泛函理論(TD-DFT)B3LYP/6-311++G(d,p)方法計算了它們的吸收和發(fā)射光譜.計算結(jié)果表明,與3(5)-(9-蒽基)吡唑相比,無論取代基是吸電子基團(tuán)還是供電子基團(tuán),衍生物的吸收和發(fā)射峰均發(fā)生紅移,并且當(dāng)取代基―R=―BH2,―CCl3,―CHO,―NH2時衍生物有較長的吸收波長和發(fā)射波長.

    吸收光譜; 熒光發(fā)射光譜;3(5)-(9-蒽基)吡唑; 激發(fā)態(tài)

    O641

    Received:October 29,2010;Revised:December 27,2010;Published on Web:January 18,2011.

    ?Corresponding author.Email:chwangcs@lnnu.edu.cn;Tel:+86-411-82159391.

    The project was supported by the National Natural Science Foundation of China(20973088)and Research Fund of the Educational Department of Liaoning Province,China(2007T091,2008T106).

    國家自然科學(xué)基金(20973088)和遼寧省高校創(chuàng)新團(tuán)隊基金(2007T091,2008T106)資助項目

    猜你喜歡
    激發(fā)態(tài)吡唑國家自然科學(xué)基金
    常見基金項目的英文名稱(一)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    國家自然科學(xué)基金項目簡介
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    激情在线观看视频在线高清| av欧美777| 深夜a级毛片| 亚洲,欧美精品.| 嫩草影院新地址| 国产精品久久视频播放| 欧美3d第一页| 欧美日韩国产亚洲二区| 日本免费一区二区三区高清不卡| 亚洲内射少妇av| 18美女黄网站色大片免费观看| 女人被狂操c到高潮| 亚洲av中文字字幕乱码综合| 老熟妇乱子伦视频在线观看| 精华霜和精华液先用哪个| 欧美性猛交黑人性爽| 成年人黄色毛片网站| 亚洲欧美精品综合久久99| 男女那种视频在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲av美国av| 午夜精品在线福利| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产亚洲精品久久久久久毛片| 深夜a级毛片| 久久精品综合一区二区三区| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 欧美日韩综合久久久久久 | 欧美bdsm另类| 91久久精品国产一区二区成人| 悠悠久久av| 又粗又爽又猛毛片免费看| 国产精品免费一区二区三区在线| 色精品久久人妻99蜜桃| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 午夜影院日韩av| 亚洲最大成人av| 国产淫片久久久久久久久 | 色在线成人网| 欧美性感艳星| 女人被狂操c到高潮| 国产精品不卡视频一区二区 | 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频| 91狼人影院| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| 成人av在线播放网站| 日本一本二区三区精品| 国产午夜福利久久久久久| 精品一区二区免费观看| 成人无遮挡网站| 亚洲美女搞黄在线观看 | 亚洲午夜理论影院| av天堂在线播放| a级毛片免费高清观看在线播放| 午夜精品在线福利| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 亚洲av成人av| 欧美色视频一区免费| 久久久精品大字幕| 两个人的视频大全免费| 美女黄网站色视频| 国产精品嫩草影院av在线观看 | 黄色丝袜av网址大全| 国产精品乱码一区二三区的特点| 亚洲精品成人久久久久久| 极品教师在线免费播放| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲 | 国产亚洲欧美98| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式| 成人国产综合亚洲| 国产精品一及| 成人性生交大片免费视频hd| 久久人妻av系列| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 久99久视频精品免费| 日日夜夜操网爽| 午夜福利高清视频| 18禁在线播放成人免费| 成熟少妇高潮喷水视频| av福利片在线观看| 天堂动漫精品| 好男人在线观看高清免费视频| 99热这里只有是精品50| 97碰自拍视频| 亚洲av熟女| 亚洲av不卡在线观看| 99国产精品一区二区三区| 深夜a级毛片| 51午夜福利影视在线观看| 一级av片app| 亚洲va日本ⅴa欧美va伊人久久| 美女大奶头视频| 久久6这里有精品| 人妻久久中文字幕网| 看十八女毛片水多多多| 欧美午夜高清在线| 在现免费观看毛片| 国产精品人妻久久久久久| 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 蜜桃久久精品国产亚洲av| 国产精品98久久久久久宅男小说| 精品午夜福利在线看| 麻豆成人午夜福利视频| 欧美绝顶高潮抽搐喷水| 国产人妻一区二区三区在| 欧美日韩亚洲国产一区二区在线观看| 亚洲经典国产精华液单 | 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 欧美性感艳星| 最近最新中文字幕大全电影3| 999久久久精品免费观看国产| 国产黄a三级三级三级人| 很黄的视频免费| 老司机深夜福利视频在线观看| 中文字幕人成人乱码亚洲影| 一级作爱视频免费观看| 伊人久久精品亚洲午夜| 日韩欧美三级三区| 51国产日韩欧美| 久久久久免费精品人妻一区二区| 99久久精品热视频| 欧美xxxx性猛交bbbb| 亚洲一区二区三区不卡视频| 91麻豆精品激情在线观看国产| 在现免费观看毛片| 亚洲午夜理论影院| 国产91精品成人一区二区三区| 亚洲国产色片| 亚洲,欧美,日韩| 最新中文字幕久久久久| 精品人妻熟女av久视频| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 成人性生交大片免费视频hd| 婷婷亚洲欧美| 久久久久久大精品| 级片在线观看| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| 看免费av毛片| 一a级毛片在线观看| 十八禁人妻一区二区| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 亚洲精华国产精华精| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 亚洲五月天丁香| 免费在线观看日本一区| avwww免费| 亚洲av免费高清在线观看| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆| 一边摸一边抽搐一进一小说| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 真人做人爱边吃奶动态| 国产私拍福利视频在线观看| 免费看日本二区| 九九在线视频观看精品| 超碰av人人做人人爽久久| 国内久久婷婷六月综合欲色啪| 久久99热这里只有精品18| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 国产白丝娇喘喷水9色精品| АⅤ资源中文在线天堂| 欧美高清性xxxxhd video| 国产老妇女一区| 我的女老师完整版在线观看| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 精品久久国产蜜桃| 两人在一起打扑克的视频| 成人美女网站在线观看视频| 一级黄色大片毛片| 永久网站在线| 免费av毛片视频| 久久久国产成人免费| 欧美丝袜亚洲另类 | 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 午夜福利在线在线| 极品教师在线免费播放| 久久人妻av系列| 身体一侧抽搐| 精品免费久久久久久久清纯| 中文在线观看免费www的网站| .国产精品久久| 国产高清激情床上av| 少妇裸体淫交视频免费看高清| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 午夜视频国产福利| 国产高清视频在线播放一区| 嫩草影院入口| 国产成人a区在线观看| 精品国产亚洲在线| 免费高清视频大片| 亚洲久久久久久中文字幕| 日韩精品中文字幕看吧| 国产高清激情床上av| 日韩高清综合在线| 国产精品人妻久久久久久| 香蕉av资源在线| 日本一二三区视频观看| 在线国产一区二区在线| 深夜精品福利| 18禁黄网站禁片午夜丰满| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 真人做人爱边吃奶动态| 十八禁网站免费在线| 亚洲五月天丁香| 中文字幕av在线有码专区| 国产av在哪里看| 男人的好看免费观看在线视频| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 嫩草影院新地址| www.熟女人妻精品国产| aaaaa片日本免费| 亚洲av电影不卡..在线观看| 欧美绝顶高潮抽搐喷水| 日韩欧美精品免费久久 | 日韩有码中文字幕| 麻豆国产av国片精品| 热99re8久久精品国产| 精品久久久久久成人av| 亚洲精品乱码久久久v下载方式| 久久伊人香网站| 亚洲av成人精品一区久久| 啦啦啦韩国在线观看视频| 午夜福利高清视频| 少妇被粗大猛烈的视频| av视频在线观看入口| 国产久久久一区二区三区| 亚洲经典国产精华液单 | 毛片一级片免费看久久久久 | 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | or卡值多少钱| 99精品在免费线老司机午夜| 村上凉子中文字幕在线| 免费在线观看亚洲国产| 免费av不卡在线播放| 亚洲av一区综合| 麻豆av噜噜一区二区三区| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 观看免费一级毛片| 精品久久久久久,| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 黄片小视频在线播放| 成熟少妇高潮喷水视频| ponron亚洲| 在线观看午夜福利视频| 色5月婷婷丁香| 午夜福利欧美成人| 国产成人aa在线观看| 亚洲午夜理论影院| 亚洲美女视频黄频| 成人av在线播放网站| 欧美黄色淫秽网站| 国产伦一二天堂av在线观看| 午夜久久久久精精品| 美女黄网站色视频| 嫩草影院入口| 久久国产精品人妻蜜桃| 亚洲av成人不卡在线观看播放网| 90打野战视频偷拍视频| 国产成人欧美在线观看| 国产欧美日韩精品一区二区| 18+在线观看网站| 日本 av在线| 成年人黄色毛片网站| 在线播放无遮挡| 亚洲美女黄片视频| 我要搜黄色片| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久久毛片| 亚洲,欧美精品.| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区| a级毛片a级免费在线| 国产真实乱freesex| 国产色婷婷99| 日韩欧美国产一区二区入口| 久久人人爽人人爽人人片va | 欧美一级a爱片免费观看看| 麻豆成人av在线观看| 午夜免费成人在线视频| 国产高清视频在线观看网站| 久久久久久大精品| 久久久久性生活片| 欧美另类亚洲清纯唯美| netflix在线观看网站| 色哟哟哟哟哟哟| 日韩中字成人| 琪琪午夜伦伦电影理论片6080| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 桃色一区二区三区在线观看| 丁香六月欧美| 久久精品91蜜桃| 岛国在线免费视频观看| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 一区二区三区免费毛片| 又黄又爽又免费观看的视频| 一个人免费在线观看的高清视频| 成人欧美大片| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 午夜福利高清视频| 欧美成狂野欧美在线观看| 午夜两性在线视频| 搡老妇女老女人老熟妇| 一个人看视频在线观看www免费| 欧美黄色片欧美黄色片| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区 | 毛片女人毛片| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 久久6这里有精品| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 一夜夜www| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 国产视频内射| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 狂野欧美白嫩少妇大欣赏| 麻豆成人av在线观看| 在线观看午夜福利视频| 久久久久久久久久成人| 欧美精品国产亚洲| 亚洲美女搞黄在线观看 | 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 又粗又爽又猛毛片免费看| 欧美xxxx性猛交bbbb| av福利片在线观看| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 国产真实伦视频高清在线观看 | 国产成人影院久久av| 午夜免费男女啪啪视频观看 | 国产一区二区三区在线臀色熟女| 国产亚洲精品av在线| 色吧在线观看| 国产久久久一区二区三区| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| 一二三四社区在线视频社区8| 久久草成人影院| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 赤兔流量卡办理| 久久久成人免费电影| 99热这里只有是精品在线观看 | 18禁裸乳无遮挡免费网站照片| 亚洲成av人片在线播放无| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| 久久99热这里只有精品18| 国产视频内射| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| 久久香蕉精品热| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 国产成人a区在线观看| 久久人人爽人人爽人人片va | 又黄又爽又免费观看的视频| 欧美性猛交黑人性爽| 高潮久久久久久久久久久不卡| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久| 在线看三级毛片| 午夜影院日韩av| 国产麻豆成人av免费视频| 精品人妻1区二区| 最新中文字幕久久久久| 99久国产av精品| 一区福利在线观看| 三级毛片av免费| 91字幕亚洲| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 最近视频中文字幕2019在线8| av在线老鸭窝| 久久久久久久久大av| 日本三级黄在线观看| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 国产三级在线视频| 精品熟女少妇八av免费久了| 欧美一区二区精品小视频在线| 1024手机看黄色片| 成人欧美大片| 婷婷色综合大香蕉| 国产精品伦人一区二区| 国产高清激情床上av| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆| 神马国产精品三级电影在线观看| 欧美乱妇无乱码| 91字幕亚洲| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 久99久视频精品免费| 一级黄色大片毛片| 一个人观看的视频www高清免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 五月玫瑰六月丁香| 成人精品一区二区免费| 国产av不卡久久| 真实男女啪啪啪动态图| 日本 av在线| 亚洲av成人精品一区久久| 精品国产三级普通话版| 国产精品伦人一区二区| 免费av毛片视频| 99热这里只有精品一区| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子免费精品| 国产日本99.免费观看| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 99久国产av精品| 丰满的人妻完整版| 中文字幕免费在线视频6| 亚洲av美国av| 天堂网av新在线| 乱人视频在线观看| 国语自产精品视频在线第100页| 一级毛片久久久久久久久女| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| av天堂中文字幕网| 别揉我奶头~嗯~啊~动态视频| 人妻夜夜爽99麻豆av| 美女高潮的动态| 精品人妻偷拍中文字幕| 国产精品久久久久久久久免 | 午夜福利在线观看吧| 99久久九九国产精品国产免费| 给我免费播放毛片高清在线观看| 欧美日韩综合久久久久久 | 能在线免费观看的黄片| 欧美日韩黄片免| 色视频www国产| 亚洲自拍偷在线| 日韩欧美国产在线观看| 久久久久久久久久黄片| netflix在线观看网站| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区三区| 亚洲七黄色美女视频| 午夜免费男女啪啪视频观看 | 内射极品少妇av片p| 亚洲最大成人av| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 免费观看人在逋| 免费看光身美女| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 国产亚洲欧美98| 亚洲国产精品sss在线观看| 国产精华一区二区三区| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 亚洲18禁久久av| 国产色爽女视频免费观看| 日韩欧美三级三区| 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清| 久久久久免费精品人妻一区二区| a在线观看视频网站| 成年女人看的毛片在线观看| 欧美3d第一页| 午夜福利18| 非洲黑人性xxxx精品又粗又长| 国产伦精品一区二区三区视频9| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 看黄色毛片网站| 欧美一区二区亚洲| 欧美三级亚洲精品| 能在线免费观看的黄片| 精品国产三级普通话版| 日韩欧美国产在线观看| 欧美午夜高清在线| 国产熟女xx| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 成人鲁丝片一二三区免费| 美女大奶头视频| 亚洲久久久久久中文字幕| 亚洲内射少妇av| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 国内精品一区二区在线观看| 午夜福利在线观看吧| av天堂在线播放| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 成年免费大片在线观看| 欧美日本亚洲视频在线播放| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 国产精品女同一区二区软件 | av天堂中文字幕网| 在线观看午夜福利视频| 乱码一卡2卡4卡精品| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 色综合亚洲欧美另类图片| 亚洲在线观看片| 97超视频在线观看视频| 亚洲,欧美,日韩| 夜夜爽天天搞| 91午夜精品亚洲一区二区三区 | 中出人妻视频一区二区| 男女下面进入的视频免费午夜| 成人精品一区二区免费| 男女之事视频高清在线观看| 国产精品综合久久久久久久免费| 无人区码免费观看不卡| 美女黄网站色视频| 国产成人啪精品午夜网站| 床上黄色一级片| 国产激情偷乱视频一区二区| 中亚洲国语对白在线视频| 身体一侧抽搐| 亚洲美女搞黄在线观看 | 日韩中文字幕欧美一区二区| 国产亚洲精品久久久com| 日韩中字成人| www.熟女人妻精品国产| 免费观看人在逋| 久久久久久久久久成人| 好男人在线观看高清免费视频| 免费无遮挡裸体视频| 三级毛片av免费| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 少妇高潮的动态图| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 欧美激情在线99| 全区人妻精品视频| 亚洲av不卡在线观看| 日韩欧美国产一区二区入口| 久久久久久久亚洲中文字幕 | 亚洲第一欧美日韩一区二区三区| 2021天堂中文幕一二区在线观| 怎么达到女性高潮| 欧美性猛交黑人性爽| 亚洲精品在线美女| 亚洲精品影视一区二区三区av| 在线观看66精品国产| 国产黄色小视频在线观看| 99久久精品一区二区三区| 亚洲精品粉嫩美女一区|