• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    浸漬法制備的Pd-MnO x/γ-Al2O3催化劑及不同載體對(duì)地表O3降解的影響

    2014-10-18 05:28:08任成軍周麗娜尚鴻燕陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:學(xué)報(bào)化學(xué)

    任成軍 周麗娜 尚鴻燕 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都 610064)

    1 Introduction

    The researchers have found that ground-level ozone would increase cardiovascular mortality and respiratory disease,decrease lung function.1Ozone is a powerful oxidant.The woody plants including arbor and shrubs had already suffered the harm of ambient ozone.2Karlsson et al.3investigated the negative impacts of ozone on crop yields and forest production.Moreover,ozone can deteriorate valuable materials.4According to OSHA(Occupational Safety and Health Administration)regulations,the threshold level for allowable exposure during an 8 h time period is 1.0×10-7(volume fraction,the same below).5The allowable concentration in the working environment is also 1.0×10-7in Japan.6In March 2012,State Environmental Protection Administration of China promulgated“ambient air quality standard”regulation(GB3095-2012)that ozone average concentration must be lower than 100-160 μg·m-3(4.6×10-8-7.5×10-8)in 8 h and it will be carried out in January 2016.Therefore,the catalytic decomposition of ozone is an important area of research from the point of view of environmental protection and health.7-11

    Ground-level ozone was formed from nonlinear reactions between volatile organic compounds(VOCs)and nitrogen oxides(NOx)under ultraviolet light,12-14which are released from power plants and automobile exhaust gases.The numbers of vehicle are dramatically increased with rapid development of economy in recent years.Ozone gradually becomes one of the major air pollutions.Our group8-11focused on improving the activity of catalysts in early work.If the as-prepared catalysts were coated on vehicle radiators,where temperature ranged from 20 to 90°C,ozone would be completely decomposed.However,automobiles often run at high speed,and may jolt and rattle on the rough ground.The washcoat of catalysts could be fallen away.Therefore,it is necessary that the catalysts have not only excellent activity but also better viscosity.

    The Al2O3is used as both support and binder due to its large surface area and better viscosity in this paper.MnOxis acted as active species owing to its highly activity.5,11,15,16Moreover,there is high relative humidity on the surface of water tank in automobiles.H2O molecules would compete with ozone for adsorption leading to decrease of MnOxactivity.Therefore,Pd is employed both as a resistant to water vapor and active species.11,16,17The γ-Al2O3support was prepared by peptizing method,and Mn(NO3)2and Pd(NO3)2were impregnated on the γ-Al2O3support,and then,the Pd-MnOx/γ-Al2O3was coated on the cordierite substrate to obtain Pd-MnOx/γ-Al2O3monolith catalysts.In addition,Mn(NO3)2and Pd(NO3)2were impregnated on SiO2,La-Al2O3,and Zr-Al2O3supports,respectively.The performance of catalysts for O3decomposition was investigated under high space velocities(380000,450000,510000,and 580000 h-1)and high relative humidity(RH=85%-90%).The prepared catalysts were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),and temperature-programmed reduction(TPR)technologies.And the significant results were obtained.

    2 Experimental

    2.1 Preparation of catalysts

    2.1.1 Supports

    A support of γ-Al2O3was prepared by peptizing method.Firstly,concentrated nitric acid(A.R.)and water were added into an appropriate amount of boehmite(A.R.).Subsequently,a clear sol was formed after high-energy ball milling,and aged at 90°C for 6 h in water bath.Then,the precipitates were filtered via vacuum filtration,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    La-Al2O3support calcined at 900°C was purchased from Rhodia Corporation.

    SiO2support was prepared,for which the SiO2aqueous sol(A.R.)was heated in water bath until vapor was removed,and then,dried at 110°C overnight.The dried powders were calcined at 600°C for 3 h.

    Zr-Al2O3support was prepared by co-precipitation method.ZrOCO3·6H2O(A.R.)was dissolved into concentrated nitric acid.Then,the aqueous solutions of ZrOCO3and Al(NO3)3(A.R.)were mixed in a mass ratio of 1:9(ZrO2to Al2O3),and adjusted to pH 8.8 by NH3·H2O(A.R.).The precipitates were filtered off,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    2.1.2 Pd-MnOx/γ-Al2O3catalyst powders

    MnOx/γ-Al2O3catalyst powders were prepared,for which Mn(NO3)2(A.R.)was impregnated on the γ-Al2O3support,and then,was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of MnOxwas 8%(mass fraction).

    Pd/γ-Al2O3catalyst powders were prepared,for which Pd(NO3)2(ChengDu Guangming Equipment Company,A.R.)was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction).

    Catalyst(MP)was prepared.Firstly,Mn(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.Subsequently,Pd(NO3)2was impregnated on the MnOx/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(PM)was prepared.At first,Pd(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.Subsequently,Mn(NO3)2was impregnated on the Pd/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110 °C overnight.The dried powders were calcined at 400 °C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(CPM)was prepared,which Mn(NO3)2and Pd(NO3)2were co-impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    2.1.3 Pd-MnOx/γ-Al2O3monolith catalyst

    The above mentioned powders were ball-milled with distilled water to form slurry.The slurry was coated on cordierite substrate of 0.28 cm3(Coring Corporation in American,400 pore·inch-2,diameter(Φ)=5 mm,length(L)=14 mm)and the excess slurry was blown off.The catalyst was dried at 110°C overnight and calcined in air at 200°C for 3 h to prepare the Pd-MnOx/γ-Al2O3monolith catalyst.The loading of catalyst washcoat was 350 mg·mL-1.

    When the support was SiO2,La-Al2O3,or Zr-Al2O3,the monolith catalysts were prepared by the above-mentioned methods,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm)at 40 kV and 25 mA.The XRD data were recorded for 2θ values from 10°to 80°at an interval of 0.05(°)·s-1.The specific surface area and pore size of the catalysts were determined by N2adsorption-desorption at-196°C on a QUADRASORB SI,an automated surface area and pore size analyzer(Uuantachrome Instruments).Before the measurements,the samples were degassed in vacuum at 350°C for 1 h.X-ray photoelectron spectra of samples were acquired at room temperature using a Vacuum Generator Scientific XSAM800 system from Kratos Co.in U.K.The spectra were recorded with the Mg Kα(hν=1253.6 eV).X-ray radiation by setting the electron energy analyzer was operated at 180 W(12 kV,15 mA).Temperature programmed reduction of H2was carried out using an automated instrument.In a typical experiment,100 mg of sample was loaded in a U-shaped quartz micro-reactor.The sample was heated from room temperature to 550°C at a heating rate of 10 °C·min-1in a flowing hydrogen mixed gas of 5%(volume fraction)H2and 95%(volume fraction)N2at 30 cm3·min-1.Hydrogen consumption was monitored using a thermal conductivity detector.

    2.3 Catalytic tests

    The catalyst tests were carried out in a continuous flow tubular quartz reactor(inner diameter:10 mm)placed in a temperature-programmed furnace.The catalyst temperature was controlled by a thermocouple mounted internally.Ozone gases were generated from ozone generator(JY-3 type,Chengdu Qiangui Purification Equipment Company)and were fed from independent mass-flow controller.Air was come into being from air compressor,and then was separated by an oil-water separator and dried by a silica gel,its flow rate was controlled by a rotameter.Measurements over the samples were performed at a RH of 85%-90%using a gas hourly space velocity(GHSV)of 380000,450000,510000,and 580000 h-1,respectively.The feed consists of 6.0×10-7O3,and balance air.The outlet flow of the reactor was analyzed using an ozone analyzer(Nanjing 8Shang Technology Co.,Ltd.).The activity of the catalyst was calculated on the basis of the following equation:

    where Cinletand Coutletare inlet concentration of O3and outlet concentration of O3,respectively.

    3 Results and discussion

    3.1 Activity of catalysts and synergetic effect between Pd and MnO x

    As shown in Fig.1,initial O3conversions at 12°C are 53.3%,73.3%,and 30.0%,O3complete conversion temperatures are 56,38,and 70 °C,corresponding to MnOx/γ-Al2O3,Pd-MnOx/γ-Al2O3,and Pd/γ-Al2O3catalysts,respectively.The activity of the Pd/γ-Al2O3catalyst for decomposition of O3is poor,and the activity of MnOx/γ-Al2O3catalyst is better than Pd based catalyst.The performance of the Pd-MnOx/γ-Al2O3catalyst is the best,where both Pd and MnOxspecies are involved.Namely,there was some synergetic effect between Pd and MnOx.For the Pd-MnOx/γ-Al2O3catalyst,Pd is functionalized both as active spe-cies and resistant to humidity,which would suppress deactivation aroused by the adsorption of H2O molecules.16,17It benefits to O3molecules interacting with more MnOxactive species.Therefore,the Pd-MnOx/γ-Al2O3catalyst has an excellent activity under high relative humidity.

    Fig.1 O3conversion as a function of reaction temperature on Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 H2-TPR profiles of Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 shows H2-TPR profiles of Pd/γ-Al2O3,MnOx/γ-Al2O3,and Pd-MnOx/γ-Al2O3catalysts.It is seen that a weak peak at 121 °C was present in the Pd/γ-Al2O3catalyst,it is attributed to the reduction of PdO species.18,19For the MnOx/γ-Al2O3catalyst,the broad peaks around 150-370 °C and 420-610 °C are observed.The broad peak around 150-370°C can be divided into two peaks at 181 and 258°C,which are ascribed as MnO2and Mn2O3reduction to Mn3O4.19The broad peak around 420-610 °C can be divided into two peaks at 475 and 538 °C,which represent Mn3O4reducing to MnO.19For the Pd-MnOx/γ-Al2O3catalyst,a peak at 155°C is attributed to the reduction of PdO species,18and a peak around 210°C is due to MnO2and Mn2O3reduction to Mn3O4,19and a peak at 430°C is ascribed to Mn3O4reduction to MnO.19The reduction temperature of MnOxis lowered in the presence of Pd,implying that there is an obvious interaction between Pd and MnOx.Xu et al.20reported that the presence of Pd lowered the reduction temperature of MnO2due to hydrogen spillover from Pd to the oxides.This phenomenon can be explained as follows:PdO is easily reduced to Pd by H2.Namely,PdO has changed to Pd before MnO2reduction.The Pd adsorbs H2and dissociates it into H,and then,H spills over onto MnO2to promote its reduction.The interaction of Pd and MnOximproves the reducibility of MnOx.Dhandapani and Oyama5thought that the activity of MnOxis relevant to its reducibility.Therefore,the activity of the Pd-MnOx/γ-Al2O3catalyst is enhanced for decomposition of O3.

    3.2 Effect of impregnation orders of Pd and MnO xon performance of catalysts

    3.2.1 TPR results of catalysts

    Fig.3 H2-TPR profiles of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.3 displays the TPR profiles of the catalysts prepared by different impregnation orders of Pd and MnOx.For the catalyst co-impregnated Pd and MnOx,as mentioned in Fig.2,there are three reduction peaks around 155,210,and 430°C.A broad peak arround 60-330 °C and a peak at 426°C were observed in the catalyst impregnated MnOxand then impregnated Pd.The broad peak can be divided into two peaks at 153 and 218°C.For the catalyst impregnated Pd and then MnOx,three peaks at about 151,260,and 437°C were present,the peak at 260 °C shifted towards high temperature.Although there are slight difference of the reduction temperatures of Pd and MnOx,the reduction peak areas of Pd and MnOxare obviously different from the other two samples.The reduction peak area is the largest in the catalyst co-impregnated Pd and MnOx,indicating that the catalyst has the best reducibility.

    3.2.2 Textural property of catalysts

    As shown in Table 1,the surface areas are similar in three samples.However,the pore volume and average pore diameter of the catalyst co-impregnated Pd and MnOxare slightly larger than those of the catalysts impregnated Pd and MnOxsequentially.Large pore volume is favorable of more O3molecules activated by the active species on the surface of catalyst.Large pore diameter is in favor of O3coming into pores rapidly under high space velocity.Therefore,better textural property of the co-impregnated catalyst is beneficial to decomposition of O3.

    3.2.3 Activity of catalysts

    Fig.4 indicates the activity of catalysts impregnated Pd and MnOxby different impregnation orders.It is seen that initial O3conversions at 12°C are 73.3%,69.7%,and 66.7%,complete conversion temperatures of O3are 38,46,and 48°C,corresponding to the catalyst co-impregnated Pd and MnOx,the catalyst impregnated MnOxand then Pd,and the catalyst impregnated Pd and then MnOx,respectively.The impregnation order has some impacts on the activity of catalysts,the activity of the co-impregnated catalyst is the highest in the three samples.For the co-impregnated catalyst,Mn4+and Pd2+were uniformly mixed in ionic form before impregnation,in favorable of MnOxand Pd dispersion evenly onto the surface of γ-Al2O3support.It is possible that more active species were exposed on the surface of the co-impregnated catalyst.In general,the more the active species exposed(such as Pd or MnOx),the better the activity of the catalyst.Moreover,when Pd or MnOxwas loaded on the surface of γ-Al2O3support,the negative charges of Al2O3would be transferred into PdO or MnOxdue to strong interaction of metal and support.For the co-impregnated catalyst,the interaction could be more obvious,resulting in better reducibility of PdO and MnOx,which is helpful to O3decomposition.In addition,the activity of the catalyst impregnated MnOxand then Pd is slightly better than that of the catalyst impregnated Pd and then MnOx.It can be ascribed to good reducibility of MnOxin the catalyst(see Fig.3,H2-TPR).Furtherover,a little Pd was possibly covered by MnOxon the surface of the catalyst impregnated Pd and then MnOx,the amount of Pd exposed decreased more or less.

    Table 1 Textural property of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.4 O3catalytic performance of samples prepared by different impregnation orders of Pd and MnO x

    3.3 Effect of supports on the performance of the catalyst co-impregnated Pd and MnO x

    3.3.1 Activity of catalysts

    Fig.5 reveals the activity of the catalyst co-impregnated Pd and MnOxon various supports under different space velocities,respectively.For space velocity of 380000 h-1,O3conversions,at 14°C are 82%,82%,77%,and 68%,O3complete conversion temperatures are 36,36,38,and 48°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 450000 h-1,O3conversions at 14°C are 72%,68%,64%,and 58%,O3complete conversion temperatures are 50,56,59,and 65 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 510000 h-1,O3conversions at 14°C are 60%,52%,50%,and 40%,O3complete conversion temperatures are 66,78,80,and 88 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 580000 h-1,O3conversions at 14°C are 43%,34%,36%,and 28%,O3complete conversion temperatures are 86,100,94,and 112°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.It can be seen that the Pd-MnOx/La-Al2O3catalyst has the best activity;the Pd-MnOx/SiO2catalyst has better activity when the space velocity varied from 380000 to 510000 h-1,however,its activity is slightly weaker than that of the Pd-MnOx/γ-Al2O3catalyst at the space velocity of 580000 h-1;the activity of the Pd-MnOx/Zr-Al2O3catalyst is the worst in all the catalysts.

    Fig.5 Effect of supports on the catalytic performance of samples co-impregnated Pd and MnO xunder different space velocities

    3.3.2 XRD characterization of catalysts

    Fig.6 shows XRD patterns of samples co-impregnated Pd and MnOxon different supports.The diffraction peaks of supports were observed in XRD patterns for all of the samples.For example,SiO2was observed in the Pd-MnOx/SiO2catalyst.The γ-Al2O3was present in the Al2O3-based catalysts.The weak diffraction peaks of MnO2were appeared,indicating that MnO2was in the presence of microcrystalline due to low MnO2content and high dispersion on the surface of supports.In addition,a weak diffraction peak of PdO was also emerged,implying that PdO was evenly dispersed on the surface of supports,and was a microcrystalline.

    3.3.3 Textural property of catalysts

    Fig.6 XRD patterns of samples co-impregnated Pd and MnO xon different supports

    Table 2 Textural properties of the samples co-impregnated Pd and MnO xon different supports

    As shown in Table 2,the surface areas of the Pd-MnO2/SiO2,Pd-MnO2/γ-Al2O3,and Pd-MnO2/Zr-Al2O3are large,whereas the surface area of the Pd-MnO2/La-Al2O3is the least.Total pore volume is almost the same for the Pd-MnO2/γ-Al2O3,Pd-MnO2/La-Al2O3,and Pd-MnO2/Zr-Al2O3,while pore volume of the Pd-MnO2/SiO2is the least.The average pore diameter of the Pd-MnO2/La-Al2O3is the largest,in favor of O3mass transfer under high space velocity.The average pore diameter of the Pd-MnO2/SiO2catalyst is the least.The textural property of the Pd-MnO2/SiO2catalyst is related to its support,which has large surface area and small average pore diameter.21,22Large surface area is in favor of O3adsorption on the SiO2support.However,its small pore volume and small average pore diameter make against the mass transfer of O3molecules,especially,under high space velocity.Therefore,the activity of the Pd-MnO2/SiO2catalyst sharply declined with the increase of space velocity.

    3.3.4 XPS of catalysts

    Fig.7 Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnO xon different supports

    Table 3 XPS results of Mn 2p3/2for the samples co-impregnated Pd and MnO xon different supports

    Fig.7 shows Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnOxon different supports.According to literature,23,24the binding energies of Mn 2p3/2were 640.8,641.8,and 642.6 eV for Mn(II),Mn(III),and Mn(IV),respectively.24,25As shown in Fig.7,valence state of Mn is+3 on the surface of the Pd-MnOx/SiO2catalyst.Although XRD pattern(Fig.6)shows MnO2microcrystalline,it is possible that negative charge in SiO2support was transferred into Mn4+due to strong interaction between MnOxand SiO2support,resulting in the formation of Mn2O3on the surface of the catalyst.Valence states of Mn are+2 and+3 on the surface of the Pd-MnOx/La-Al2O3catalyst.It indicates that MnOxis in the presence of MnO and Mn2O3on the surface of the catalyst,and there is a strong interaction between MnOxand La-Al2O3support.Valence states of Mn are+2 and+4 on the surfaces of the Pd-MnOx/γ-Al2O3catalyst and the Pd-MnOx/Zr-Al2O3catalyst.Namely,MnO,Mn3O4,or Mn5O8formed by Mn4+got electrons from the support(γ-Al2O3or Zr-Al2O3)on the surface of the catalysts.The relative amount of Mn2+,Mn3+,and Mn4+species on the surface of samples is listed in Table 3.

    3.3.5 TPR of catalysts

    Fig.8 exhibits H2-TPR profiles of samples co-impregnated Pd and MnOxon different supports.It can be seen that support obviously affects the reducibility of PdO and MnOx.For the Pd-MnOx/SiO2catalyst,a large reduction peak around 66-160°C can be divided into two peaks at 102 and 132°C,which represent the reduction of PdO and MnOx,respectively.The reduction peak of MnOxobviously shifted towards low temperature due to strong interaction between MnOxand SiO2support,in agreement with the result of XPS analysis.Namely,MnOxspecies is highly active and is easily reduced for the Pd-MnOx/SiO2catalyst.For the Pd-MnOx/La-Al2O3catalyst,a large reduction peak around 58-200°C can be divided into two peaks at 116 and 145°C,which are ascribed to the reduction of PdO and MnOx,respectively.18The reduction temperatures of PdO and MnOxare low for Pd-MnOx/SiO2and Pd-MnOx/La-Al2O3,implying high reducibility and better activity of PdO and MnOx.The peak at 155°C is due to the reduction of PdO,18the peak at 210°C is ascribed as MnO2reduction to Mn3O4,the peak at 430°C belongs to Mn3O4reducing to MnO.19The reduction peak areas of PdO and MnOxare large for the Pd-MnOx/γ-Al2O3catalyst,leading to better catalytic performance for O3decomposition.A peak at 120°C is attributed to the reduction of PdO,small peaks around 180 and 260°C are ascribed to the reduction of MnOxfor the Pd-MnOx/Zr-Al2O3catalyst.The catalyst has less activity,which is related to poor reducibility of MnOx.

    Fig.8 H2-TPR profiles of samples co-impregnated Pd and MnO xon different supports

    Lin et al.26supposed an interaction of metal with catalyst support,and adsorption ability of support affected the activity of catalyst.According to the result of H2-TPR,MnOxhas high reducibility due to strong interaction between MnOxand SiO2support,in favor of Mnn+participating in O3decomposition.27SiO2is a good adsorbent for O3,and H2O molecules were weakly adsorbed on the surface of SiO2,hardly compete with O3for adsorption under high humidity.26Moreover,mild acidic SiO2support promotes the formation of oxygen species intermediates(e.g.,O3-and O-),which would enhance the adsorption and decomposition of O3.28These factors are in favor of O3decomposition.Therefore,the Pd-MnOx/SiO2catalyst has excellent catalytic activity.However,when the space velocity increased a lot,the activity of the Pd-MnOx/SiO2catalyst was drastically declined due to small pore diameter going against mass transfer of O3molecules and its products.For the Pd-MnOx/La-Al2O3catalyst,both high reducibility of PdO and MnOxand large average pore diameter are in favor of O3decomposition under high space velocity.Therefore,the catalyst shows the best catalytic performance.

    3.4 Durability of catalyst

    O3(6.0 ×10-7)was continuously decomposed at 90°C for 10 days on the Pd-MnOx/γ-Al2O3catalyst under space velocity of 580000 h-1and RH of 85%-90%.The activity of the catalyst hold steady,and the washcoat of catalyst did not desquamate,which are related to stable physicochemical properties of the γ-Al2O3support,active species of Pd and MnOx,and better viscidity of the support.

    4 Conclusions

    When active Pd and MnOxcoexist in the Pd-MnOx/γ-Al2O3catalyst,its activity is higher than that of the Pd or MnOxcatalyst(e.g.,Pd/γ-Al2O3or MnOx/γ-Al2O3).The catalyst co-impregnated Pd and MnOxhas better activity than the catalyst impregnated Pd or MnOxsequentially.The supports have significant impacts on catalytic activity for O3decomposition.The Pd-MnOx/La-Al2O3catalyst has the best activity.Next is the catalyst using SiO2as a support.Again is the catalyst using γ-Al2O3as a support.Finally,the Pd-MnOx/Zr-Al2O3sample has the worst catalytic performance in all of the catalysts.The activity of catalysts prepared on different supports is nearly in agreement with the reducibility of Pd and MnOx.Ground-level ozone would be completely decomposed if the Pd-MnOx/La-Al2O3catalyst was coated on vehicle radiators,in which their temperature ranged from 20 to 90°C.Therefore,the as-prepared catalyst has a potential applicable value.

    (1)Gryparis,A.;Forsberg,B.;Katsouyanni,K.;Analitis,A.;Touloumi,G.;Schwartz,J.;Samoli,E.;Medina,S.;Anderson,H.R.;Niciu,E.M.American Journal of Respiratory and Critical Care Medicine 2004,170,1080.doi:10.1164/rccm.200403-333OC

    (2)Wan,W.X.;Xia,Y.J.;Zhang,H.X.;Wang,J.;Wang,X.K.Acta Ecologica Sinica 2013,33(4),1098. [萬(wàn)五星,夏亞軍,張紅星,王 嬌,王效科.生態(tài)學(xué)報(bào),2013,33(4),1098.]doi:10.5846/stxb

    (3)Karlsson,P.E.;Pleijel,H.;Belhaj,M.;Danielsson,H.;Dahlin,B.;Andersson,M.;Haneeon,M.;Munthe,J.;Grennfelt,P.AMBIO 2005,34,32.

    (5)Dhandapani,B.;Oyama,S.T.Appl.Catal.B 1997,11,129.doi:10.1016/S0926-3373(96)00044-6

    (6)Japan Air Cleaning Association.Air Cleaning Handbook;Ohm Press:Tokyo,1981;p178

    (7)Zhang,B.;Shi,R.;Zhang,P.Y.;Xu,J.H.Rare Metal Mat.Eng.2010,39(4),692.[張 博,史 蕊,張彭義,徐九華. 稀有金屬材料與工程,2010,39(4),692.]

    (8)Zhang,B.;Zhang,P.Y.;Shi,R.;Wang,H.J.Chin.J.Catal.2009,30(3),235.[張 博,張彭義,史 蕊,王化軍.催化學(xué)報(bào),2009,30(3),235.]

    (9)Yu,Q.W.;Zhao,M.;Liu,Z.M.;Zhang,X.Y.;Zheng,L.M.;Chen,Y.Q.;Gong,M.C.Chin.J.Catal.2009,30(1),1.[余全偉,趙 明,劉志敏,張曉玉,鄭靈敏,陳耀強(qiáng),龔茂初.催化學(xué)報(bào),2009,30(1),1.]doi:10.1016/S1872-2067(08)60082-0

    (10)Pan,H.;Zhou,L.N.;Zhu,Y.;Peng,N.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(6),1040.[潘 浩,周麗娜,朱藝,彭 娜,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(6),1040.]

    (11)Zhou,L.N.;Chen,Y.Q.;Ren,C.J.;Gong,M.C.Chin.J.Inorg.Chem.2013,29(11),2363.[周麗娜,陳耀強(qiáng),任成軍,龔茂初.無(wú)機(jī)化學(xué)學(xué)報(bào),2013,29(11),2363.]

    (12)Thompson,A.M.Science 1992,256,1157.doi:10.1126/science.256.5060.1157

    (13)Russell,A.;Milford.J.;Bergin,M.S.;McBride,S.;McNair,L.;Yang,Y.;Stockwell,W.R.;Croes,B.Science 1995,269,491.doi:10.1126/science.269.5223.491

    (14)Yu,L.P.;Jia,J.J.J.Shandong Univ.Sci.Technol.Nat.Sci.2001,20(4),111.[于林平,賈建軍.山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,20(4),111.]

    (15)Sadao Terui,H.;Yoshiyuki Yokota,S.Catalyst and Method of Preparing the Catalyst.US Patent,5187137,1993-02-16.

    (16)Kameya,T.;Urano,K.J.Environ.Eng.2002,128,286.doi:10.1061/(ASCE)0733-9372(2002)128:3(286)

    (17)Wu,M.C.;Kelly,N.A.Appl.Catal.B 1998,18,93.doi:10.1016/S0926-3373(98)00028-9

    (18)Yao,Y.L.;Fang,R.M.;Shi,Z.H.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(4),589.[姚艷玲,方瑞梅,史忠華,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(4),589.]

    (19)Rezaei,E.;Soltan,J.;Chen,N.;Lin,J.R.Chem.Eng.J.2013,214,219.doi:10.1016/j.cej.2012.10.044

    (20)Xu,G.P.;Zhu,Y.X.;Ma,J.;Yan,H.J.;Xie,Y.C.Stud.Surf.Sci.Catal.1997,11,333.

    (21)Ren,C.J.;Qiu,W.;Chen,Y.Q.Sep.Purif.Technol.2013,107,264.doi:10.1016/j.seppur.2013.01.037

    (22)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487.[仇 偉,任成軍,龔茂初,侯云澤,陳耀強(qiáng).物理化學(xué)學(xué)報(bào),2011,27,1487.]doi:10.3866/PKU.WHXB20110621

    (23)Santos,V.P.;Pereira,M.F.R.;órfaˇo,J.J.M.;Figueiredo,J.L.Appl.Catal.B 2010,99,353.doi:10.1016/j.apcatb.2010.07.007

    (24)Wei,Y.J.;Yan,L.Y.;Wang,C.Z.;Xu,X.G.;Wu,F.;Chen,G.J.Phys.Chem.B 2004,108,18547.doi:10.1021/jp0479522

    (25)O′Shea,V.A.D.P.;álvarez-Galván,M.C.;Fierro,J.L.G.;Arias,P.L.Appl.Catal.B 2005,57,191.doi:10.1016/j.apcatb.2004.11.001

    (26)Lin,J.J.;Kawai,A.;Nakajima,T.Appl.Catal.B 2002,39,157.doi:10.1016/S0926-3373(02)00081-4

    (27)Einaga,H.;Harada,M.;Futamura,S.Chem.Phys.Lett.2005,408,377.doi:10.1016/j.cplett.2005.04.061

    (28)Kumar,N.;Konova,P.;Naydenov,A.;Salmi,T.;Murzin,D.Y.;Heikill?,T.;Lehto,V.P.Catal.Today 2007,119,342.doi:10.1016/j.cattod.2006.08.048

    猜你喜歡
    學(xué)報(bào)化學(xué)
    致敬學(xué)報(bào)40年
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    《深空探測(cè)學(xué)報(bào)》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    天天添夜夜摸| 欧美激情 高清一区二区三区| 亚洲专区中文字幕在线| 女性被躁到高潮视频| 午夜日韩欧美国产| 最近最新中文字幕大全电影3 | 成人国语在线视频| 99热国产这里只有精品6| 电影成人av| 国产伦人伦偷精品视频| 亚洲熟妇中文字幕五十中出 | 精品一区二区三区四区五区乱码| av超薄肉色丝袜交足视频| 国产伦人伦偷精品视频| 国产精品日韩av在线免费观看 | 欧美黑人精品巨大| 神马国产精品三级电影在线观看 | 男人舔女人的私密视频| 国产欧美日韩一区二区三区在线| 亚洲精品在线美女| 亚洲精品国产区一区二| 中文亚洲av片在线观看爽| 国产精品99久久99久久久不卡| 一本综合久久免费| 9191精品国产免费久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧洲精品一区二区精品久久久| 成人国语在线视频| 日韩有码中文字幕| 一区在线观看完整版| 久久精品成人免费网站| 亚洲黑人精品在线| 亚洲国产欧美一区二区综合| 日本a在线网址| 欧美激情高清一区二区三区| 久久久精品欧美日韩精品| 国产黄a三级三级三级人| 欧美激情极品国产一区二区三区| 欧美午夜高清在线| 国产91精品成人一区二区三区| 久久精品国产亚洲av香蕉五月| 国产真人三级小视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲第一av免费看| 亚洲成人免费av在线播放| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 国产午夜精品久久久久久| 黄色女人牲交| 在线观看免费视频网站a站| 女人高潮潮喷娇喘18禁视频| 黑人巨大精品欧美一区二区蜜桃| 久久久久久人人人人人| 午夜视频精品福利| 亚洲成人久久性| 午夜精品国产一区二区电影| 女人被躁到高潮嗷嗷叫费观| 999久久久精品免费观看国产| 一边摸一边做爽爽视频免费| 亚洲人成网站在线播放欧美日韩| 又紧又爽又黄一区二区| 亚洲人成网站在线播放欧美日韩| 757午夜福利合集在线观看| www日本在线高清视频| 亚洲专区字幕在线| 一本大道久久a久久精品| 欧美日韩国产mv在线观看视频| 国产成人免费无遮挡视频| 在线观看免费高清a一片| 麻豆一二三区av精品| 亚洲色图综合在线观看| 看片在线看免费视频| 欧美日韩国产mv在线观看视频| 搡老熟女国产l中国老女人| 黑人操中国人逼视频| 久久精品亚洲精品国产色婷小说| 热99国产精品久久久久久7| 久久久久国产精品人妻aⅴ院| 手机成人av网站| 一边摸一边做爽爽视频免费| 妹子高潮喷水视频| 成人特级黄色片久久久久久久| 一边摸一边做爽爽视频免费| 国产无遮挡羞羞视频在线观看| 老汉色∧v一级毛片| 淫秽高清视频在线观看| 露出奶头的视频| 国产精品爽爽va在线观看网站 | 国产欧美日韩综合在线一区二区| 亚洲人成电影免费在线| 欧美精品一区二区免费开放| 欧美日韩视频精品一区| 欧美人与性动交α欧美精品济南到| 国产欧美日韩综合在线一区二区| aaaaa片日本免费| 亚洲免费av在线视频| 高清av免费在线| 天堂影院成人在线观看| 精品国产乱子伦一区二区三区| 一区二区三区国产精品乱码| 精品久久久精品久久久| 女性被躁到高潮视频| 亚洲人成网站在线播放欧美日韩| 热re99久久精品国产66热6| 好男人电影高清在线观看| 免费看a级黄色片| 丁香欧美五月| 久久天堂一区二区三区四区| 国产欧美日韩精品亚洲av| 露出奶头的视频| 69av精品久久久久久| 欧美精品一区二区免费开放| 国产精品美女特级片免费视频播放器 | 夫妻午夜视频| xxx96com| 色综合婷婷激情| 国产精品乱码一区二三区的特点 | 亚洲欧美一区二区三区久久| 757午夜福利合集在线观看| 一级黄色大片毛片| 色哟哟哟哟哟哟| 神马国产精品三级电影在线观看 | 在线观看一区二区三区| a级片在线免费高清观看视频| 国产精品一区二区三区四区久久 | 99热国产这里只有精品6| 精品国产一区二区久久| 成人三级做爰电影| 制服人妻中文乱码| 午夜日韩欧美国产| 亚洲欧美精品综合一区二区三区| 身体一侧抽搐| 婷婷精品国产亚洲av在线| av欧美777| 天堂√8在线中文| 国产av精品麻豆| 免费人成视频x8x8入口观看| 亚洲五月婷婷丁香| 操出白浆在线播放| av片东京热男人的天堂| 欧美日韩亚洲国产一区二区在线观看| 在线播放国产精品三级| 亚洲精品久久午夜乱码| 亚洲av片天天在线观看| 亚洲一区中文字幕在线| 久久国产精品影院| 日本免费一区二区三区高清不卡 | 亚洲 国产 在线| av欧美777| 亚洲精品国产精品久久久不卡| 黑丝袜美女国产一区| 国产精品久久视频播放| 欧美日韩福利视频一区二区| av片东京热男人的天堂| 黄色丝袜av网址大全| 一级毛片高清免费大全| 日韩精品中文字幕看吧| 久久精品91蜜桃| 久久人人精品亚洲av| 国产欧美日韩一区二区三| 欧美激情极品国产一区二区三区| 大型av网站在线播放| 久久午夜亚洲精品久久| 亚洲成国产人片在线观看| 制服人妻中文乱码| 久久精品亚洲精品国产色婷小说| 亚洲 欧美 日韩 在线 免费| 嫩草影视91久久| 国产欧美日韩一区二区三| 精品久久久久久久毛片微露脸| 18美女黄网站色大片免费观看| av在线天堂中文字幕 | 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 日本一区二区免费在线视频| 欧美一级毛片孕妇| 久久人人爽av亚洲精品天堂| 午夜日韩欧美国产| 一二三四在线观看免费中文在| 国产一区二区三区视频了| 久久人妻av系列| 午夜免费鲁丝| 国产精品乱码一区二三区的特点 | 亚洲专区字幕在线| 日本黄色视频三级网站网址| 99久久人妻综合| 免费av毛片视频| 嫩草影院精品99| 免费看十八禁软件| 久久久国产成人精品二区 | 国产精品香港三级国产av潘金莲| 免费在线观看完整版高清| 性色av乱码一区二区三区2| 欧美色视频一区免费| www国产在线视频色| 看免费av毛片| 国产精品一区二区精品视频观看| 精品电影一区二区在线| 久久久精品欧美日韩精品| 亚洲av熟女| 久久性视频一级片| 精品欧美一区二区三区在线| av国产精品久久久久影院| 欧美国产精品va在线观看不卡| 国产成人欧美| 国产主播在线观看一区二区| 色综合站精品国产| 亚洲一区二区三区欧美精品| aaaaa片日本免费| 两个人看的免费小视频| 久久精品亚洲精品国产色婷小说| 热re99久久精品国产66热6| 久久久国产欧美日韩av| 成年人免费黄色播放视频| 夜夜爽天天搞| 性少妇av在线| 精品国内亚洲2022精品成人| 亚洲色图av天堂| 女人高潮潮喷娇喘18禁视频| 一二三四社区在线视频社区8| 大型av网站在线播放| 国产麻豆69| 夜夜躁狠狠躁天天躁| 国产精品国产高清国产av| 午夜精品国产一区二区电影| 国产蜜桃级精品一区二区三区| 国产av精品麻豆| 99香蕉大伊视频| 夜夜躁狠狠躁天天躁| 水蜜桃什么品种好| 女人高潮潮喷娇喘18禁视频| 天堂√8在线中文| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 黄色毛片三级朝国网站| 欧美成人午夜精品| 国产三级在线视频| 成年人免费黄色播放视频| 午夜福利在线观看吧| 精品无人区乱码1区二区| 亚洲欧美日韩高清在线视频| 一本综合久久免费| 国产高清视频在线播放一区| 黄片小视频在线播放| 日本a在线网址| 国产97色在线日韩免费| 夜夜躁狠狠躁天天躁| 亚洲精品成人av观看孕妇| 日韩成人在线观看一区二区三区| 国产三级黄色录像| 欧美成狂野欧美在线观看| 国产精品久久电影中文字幕| 欧美乱码精品一区二区三区| 999精品在线视频| 日韩欧美一区二区三区在线观看| 亚洲av第一区精品v没综合| 国产精品成人在线| 婷婷丁香在线五月| 色播在线永久视频| 国产高清视频在线播放一区| 免费在线观看完整版高清| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 亚洲久久久国产精品| 在线观看午夜福利视频| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 一边摸一边抽搐一进一小说| 亚洲精品国产一区二区精华液| 久久国产精品人妻蜜桃| 亚洲国产欧美网| 手机成人av网站| 丰满饥渴人妻一区二区三| 在线观看一区二区三区| 最近最新中文字幕大全免费视频| av片东京热男人的天堂| 精品久久久精品久久久| 乱人伦中国视频| 女性生殖器流出的白浆| 很黄的视频免费| 免费一级毛片在线播放高清视频 | 国产无遮挡羞羞视频在线观看| 99热只有精品国产| www.www免费av| 精品第一国产精品| 亚洲欧美日韩另类电影网站| 一区二区日韩欧美中文字幕| 久久亚洲真实| 黑人猛操日本美女一级片| 国产精品99久久99久久久不卡| 亚洲精品久久成人aⅴ小说| 亚洲五月天丁香| 美女扒开内裤让男人捅视频| 19禁男女啪啪无遮挡网站| 国产色视频综合| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 国产黄色免费在线视频| 制服人妻中文乱码| 国产亚洲精品久久久久久毛片| 少妇被粗大的猛进出69影院| 国产成人精品无人区| 老司机午夜福利在线观看视频| 不卡av一区二区三区| 免费少妇av软件| 久久99一区二区三区| 精品久久蜜臀av无| 欧美激情久久久久久爽电影 | 韩国精品一区二区三区| 久久久精品欧美日韩精品| 很黄的视频免费| 久久久久久久久中文| 99久久人妻综合| 99国产综合亚洲精品| 中文字幕色久视频| 不卡av一区二区三区| 在线观看一区二区三区| 亚洲精华国产精华精| 国产高清videossex| 国产视频一区二区在线看| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 一级毛片精品| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女 | 国产成人欧美| 国产一区二区激情短视频| 三级毛片av免费| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 免费观看人在逋| 精品欧美一区二区三区在线| 欧美国产精品va在线观看不卡| 一a级毛片在线观看| 久久久久九九精品影院| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 99国产精品免费福利视频| 亚洲人成电影免费在线| 成人精品一区二区免费| av中文乱码字幕在线| 久久人妻熟女aⅴ| 人妻久久中文字幕网| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 热re99久久国产66热| 亚洲精品在线观看二区| 精品国产乱码久久久久久男人| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 大型黄色视频在线免费观看| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 亚洲国产精品合色在线| 88av欧美| 久99久视频精品免费| 咕卡用的链子| av在线播放免费不卡| a级毛片在线看网站| 我的亚洲天堂| 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 美女扒开内裤让男人捅视频| 丰满饥渴人妻一区二区三| 美女高潮到喷水免费观看| 亚洲欧美激情综合另类| 欧美性长视频在线观看| 午夜福利一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 精品久久久精品久久久| 精品一品国产午夜福利视频| 久久久久九九精品影院| 91精品国产国语对白视频| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av高清一级| www.熟女人妻精品国产| 色哟哟哟哟哟哟| 99精国产麻豆久久婷婷| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸 | 18美女黄网站色大片免费观看| 一级毛片女人18水好多| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清在线视频| 国产深夜福利视频在线观看| 久久人妻福利社区极品人妻图片| 黄色丝袜av网址大全| 97碰自拍视频| 免费搜索国产男女视频| 高潮久久久久久久久久久不卡| 亚洲伊人色综图| 老鸭窝网址在线观看| 看免费av毛片| 亚洲av成人不卡在线观看播放网| 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 亚洲五月色婷婷综合| 91精品三级在线观看| 国产区一区二久久| 亚洲三区欧美一区| 国产精品爽爽va在线观看网站 | 激情在线观看视频在线高清| 国产精品免费一区二区三区在线| 日本wwww免费看| 国产精品一区二区精品视频观看| 天堂动漫精品| 久久久国产成人精品二区 | 亚洲五月天丁香| 成人精品一区二区免费| av欧美777| 中文字幕人妻熟女乱码| 国产成+人综合+亚洲专区| 亚洲第一青青草原| 少妇的丰满在线观看| 亚洲精品在线美女| 久久中文字幕人妻熟女| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 无遮挡黄片免费观看| 制服人妻中文乱码| 国产精品影院久久| 久久久久久久久久久久大奶| 亚洲av熟女| 神马国产精品三级电影在线观看 | √禁漫天堂资源中文www| 日韩成人在线观看一区二区三区| 国产单亲对白刺激| 久久狼人影院| 国产精品一区二区在线不卡| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 精品国产美女av久久久久小说| 最近最新中文字幕大全电影3 | 超碰97精品在线观看| 在线观看日韩欧美| 亚洲一区二区三区色噜噜 | 麻豆成人av在线观看| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 精品一区二区三区四区五区乱码| 在线视频色国产色| 夫妻午夜视频| 日韩三级视频一区二区三区| netflix在线观看网站| 亚洲精品中文字幕一二三四区| 一级黄色大片毛片| av福利片在线| 免费少妇av软件| av天堂久久9| 久久香蕉国产精品| 中文字幕精品免费在线观看视频| 久久精品91无色码中文字幕| 亚洲国产欧美日韩在线播放| 国产精品亚洲av一区麻豆| 一区福利在线观看| 久久人人爽av亚洲精品天堂| 亚洲人成77777在线视频| 亚洲一区中文字幕在线| 超色免费av| 欧美+亚洲+日韩+国产| 欧美一级毛片孕妇| 深夜精品福利| 欧美乱码精品一区二区三区| 夜夜爽天天搞| 在线观看www视频免费| 精品无人区乱码1区二区| 国产不卡一卡二| 人人澡人人妻人| 午夜福利在线免费观看网站| 9热在线视频观看99| 99riav亚洲国产免费| 国产精品综合久久久久久久免费 | 欧美久久黑人一区二区| 成在线人永久免费视频| 麻豆成人av在线观看| 女警被强在线播放| 午夜福利欧美成人| 一级毛片女人18水好多| 久久人妻福利社区极品人妻图片| 麻豆成人av在线观看| 国产欧美日韩综合在线一区二区| 午夜福利欧美成人| 精品国内亚洲2022精品成人| 国产伦人伦偷精品视频| 精品国产亚洲在线| 在线av久久热| 美女高潮喷水抽搐中文字幕| 欧美日韩国产mv在线观看视频| 日韩av在线大香蕉| 免费在线观看影片大全网站| 成人精品一区二区免费| 精品国产乱码久久久久久男人| 麻豆成人av在线观看| 国产成人av教育| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 黄频高清免费视频| 亚洲一区二区三区色噜噜 | 亚洲一区二区三区色噜噜 | 波多野结衣高清无吗| 法律面前人人平等表现在哪些方面| 国产精品免费一区二区三区在线| 在线观看舔阴道视频| 18美女黄网站色大片免费观看| 亚洲全国av大片| 高清av免费在线| 十八禁网站免费在线| 久久精品亚洲熟妇少妇任你| 日韩高清综合在线| 韩国精品一区二区三区| 在线播放国产精品三级| 亚洲av电影在线进入| 欧美日韩av久久| 国产欧美日韩一区二区精品| 丁香欧美五月| 欧美最黄视频在线播放免费 | netflix在线观看网站| 亚洲一区二区三区欧美精品| 日韩欧美国产一区二区入口| 多毛熟女@视频| 琪琪午夜伦伦电影理论片6080| 久久久久国产精品人妻aⅴ院| 后天国语完整版免费观看| 免费少妇av软件| 免费在线观看日本一区| 欧美在线一区亚洲| 天天躁夜夜躁狠狠躁躁| 日韩欧美在线二视频| videosex国产| 一级黄色大片毛片| 桃色一区二区三区在线观看| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | 男女高潮啪啪啪动态图| 久久久久久大精品| 国产精品亚洲一级av第二区| 欧美丝袜亚洲另类 | 欧美乱妇无乱码| 美女大奶头视频| 免费在线观看日本一区| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 日韩欧美在线二视频| 午夜福利在线免费观看网站| 中文亚洲av片在线观看爽| 国产97色在线日韩免费| www.999成人在线观看| 99国产精品一区二区三区| 69精品国产乱码久久久| 日韩欧美一区视频在线观看| 在线观看免费高清a一片| a级毛片在线看网站| 午夜免费成人在线视频| 精品第一国产精品| 男女之事视频高清在线观看| 久久久久久免费高清国产稀缺| www国产在线视频色| 老汉色av国产亚洲站长工具| 亚洲午夜精品一区,二区,三区| 人人妻人人澡人人看| 国产精品久久久人人做人人爽| 如日韩欧美国产精品一区二区三区| 新久久久久国产一级毛片| 精品第一国产精品| 在线看a的网站| 日韩免费av在线播放| 国产av一区在线观看免费| 国产av精品麻豆| 欧美日韩黄片免| 亚洲男人的天堂狠狠| 国产精品爽爽va在线观看网站 | 国产精品一区二区免费欧美| 欧美成人性av电影在线观看| 精品电影一区二区在线| www.熟女人妻精品国产| 中文字幕人妻丝袜制服| 老司机靠b影院| 国产成人啪精品午夜网站| 亚洲性夜色夜夜综合| 久久精品91蜜桃| 亚洲精品国产一区二区精华液| 亚洲人成77777在线视频| 妹子高潮喷水视频| 人妻久久中文字幕网| 淫秽高清视频在线观看| 精品一区二区三区视频在线观看免费 | 午夜福利影视在线免费观看| 久久香蕉激情| 久久天堂一区二区三区四区| 国产免费男女视频| 一进一出抽搐动态| 国产91精品成人一区二区三区| 欧美国产精品va在线观看不卡| 三级毛片av免费| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一出视频| 日本vs欧美在线观看视频| 久久精品影院6| 久热爱精品视频在线9| 老司机午夜福利在线观看视频|