• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    浸漬法制備的Pd-MnO x/γ-Al2O3催化劑及不同載體對(duì)地表O3降解的影響

    2014-10-18 05:28:08任成軍周麗娜尚鴻燕陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:學(xué)報(bào)化學(xué)

    任成軍 周麗娜 尚鴻燕 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都 610064)

    1 Introduction

    The researchers have found that ground-level ozone would increase cardiovascular mortality and respiratory disease,decrease lung function.1Ozone is a powerful oxidant.The woody plants including arbor and shrubs had already suffered the harm of ambient ozone.2Karlsson et al.3investigated the negative impacts of ozone on crop yields and forest production.Moreover,ozone can deteriorate valuable materials.4According to OSHA(Occupational Safety and Health Administration)regulations,the threshold level for allowable exposure during an 8 h time period is 1.0×10-7(volume fraction,the same below).5The allowable concentration in the working environment is also 1.0×10-7in Japan.6In March 2012,State Environmental Protection Administration of China promulgated“ambient air quality standard”regulation(GB3095-2012)that ozone average concentration must be lower than 100-160 μg·m-3(4.6×10-8-7.5×10-8)in 8 h and it will be carried out in January 2016.Therefore,the catalytic decomposition of ozone is an important area of research from the point of view of environmental protection and health.7-11

    Ground-level ozone was formed from nonlinear reactions between volatile organic compounds(VOCs)and nitrogen oxides(NOx)under ultraviolet light,12-14which are released from power plants and automobile exhaust gases.The numbers of vehicle are dramatically increased with rapid development of economy in recent years.Ozone gradually becomes one of the major air pollutions.Our group8-11focused on improving the activity of catalysts in early work.If the as-prepared catalysts were coated on vehicle radiators,where temperature ranged from 20 to 90°C,ozone would be completely decomposed.However,automobiles often run at high speed,and may jolt and rattle on the rough ground.The washcoat of catalysts could be fallen away.Therefore,it is necessary that the catalysts have not only excellent activity but also better viscosity.

    The Al2O3is used as both support and binder due to its large surface area and better viscosity in this paper.MnOxis acted as active species owing to its highly activity.5,11,15,16Moreover,there is high relative humidity on the surface of water tank in automobiles.H2O molecules would compete with ozone for adsorption leading to decrease of MnOxactivity.Therefore,Pd is employed both as a resistant to water vapor and active species.11,16,17The γ-Al2O3support was prepared by peptizing method,and Mn(NO3)2and Pd(NO3)2were impregnated on the γ-Al2O3support,and then,the Pd-MnOx/γ-Al2O3was coated on the cordierite substrate to obtain Pd-MnOx/γ-Al2O3monolith catalysts.In addition,Mn(NO3)2and Pd(NO3)2were impregnated on SiO2,La-Al2O3,and Zr-Al2O3supports,respectively.The performance of catalysts for O3decomposition was investigated under high space velocities(380000,450000,510000,and 580000 h-1)and high relative humidity(RH=85%-90%).The prepared catalysts were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),and temperature-programmed reduction(TPR)technologies.And the significant results were obtained.

    2 Experimental

    2.1 Preparation of catalysts

    2.1.1 Supports

    A support of γ-Al2O3was prepared by peptizing method.Firstly,concentrated nitric acid(A.R.)and water were added into an appropriate amount of boehmite(A.R.).Subsequently,a clear sol was formed after high-energy ball milling,and aged at 90°C for 6 h in water bath.Then,the precipitates were filtered via vacuum filtration,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    La-Al2O3support calcined at 900°C was purchased from Rhodia Corporation.

    SiO2support was prepared,for which the SiO2aqueous sol(A.R.)was heated in water bath until vapor was removed,and then,dried at 110°C overnight.The dried powders were calcined at 600°C for 3 h.

    Zr-Al2O3support was prepared by co-precipitation method.ZrOCO3·6H2O(A.R.)was dissolved into concentrated nitric acid.Then,the aqueous solutions of ZrOCO3and Al(NO3)3(A.R.)were mixed in a mass ratio of 1:9(ZrO2to Al2O3),and adjusted to pH 8.8 by NH3·H2O(A.R.).The precipitates were filtered off,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    2.1.2 Pd-MnOx/γ-Al2O3catalyst powders

    MnOx/γ-Al2O3catalyst powders were prepared,for which Mn(NO3)2(A.R.)was impregnated on the γ-Al2O3support,and then,was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of MnOxwas 8%(mass fraction).

    Pd/γ-Al2O3catalyst powders were prepared,for which Pd(NO3)2(ChengDu Guangming Equipment Company,A.R.)was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction).

    Catalyst(MP)was prepared.Firstly,Mn(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.Subsequently,Pd(NO3)2was impregnated on the MnOx/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(PM)was prepared.At first,Pd(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.Subsequently,Mn(NO3)2was impregnated on the Pd/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110 °C overnight.The dried powders were calcined at 400 °C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(CPM)was prepared,which Mn(NO3)2and Pd(NO3)2were co-impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    2.1.3 Pd-MnOx/γ-Al2O3monolith catalyst

    The above mentioned powders were ball-milled with distilled water to form slurry.The slurry was coated on cordierite substrate of 0.28 cm3(Coring Corporation in American,400 pore·inch-2,diameter(Φ)=5 mm,length(L)=14 mm)and the excess slurry was blown off.The catalyst was dried at 110°C overnight and calcined in air at 200°C for 3 h to prepare the Pd-MnOx/γ-Al2O3monolith catalyst.The loading of catalyst washcoat was 350 mg·mL-1.

    When the support was SiO2,La-Al2O3,or Zr-Al2O3,the monolith catalysts were prepared by the above-mentioned methods,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm)at 40 kV and 25 mA.The XRD data were recorded for 2θ values from 10°to 80°at an interval of 0.05(°)·s-1.The specific surface area and pore size of the catalysts were determined by N2adsorption-desorption at-196°C on a QUADRASORB SI,an automated surface area and pore size analyzer(Uuantachrome Instruments).Before the measurements,the samples were degassed in vacuum at 350°C for 1 h.X-ray photoelectron spectra of samples were acquired at room temperature using a Vacuum Generator Scientific XSAM800 system from Kratos Co.in U.K.The spectra were recorded with the Mg Kα(hν=1253.6 eV).X-ray radiation by setting the electron energy analyzer was operated at 180 W(12 kV,15 mA).Temperature programmed reduction of H2was carried out using an automated instrument.In a typical experiment,100 mg of sample was loaded in a U-shaped quartz micro-reactor.The sample was heated from room temperature to 550°C at a heating rate of 10 °C·min-1in a flowing hydrogen mixed gas of 5%(volume fraction)H2and 95%(volume fraction)N2at 30 cm3·min-1.Hydrogen consumption was monitored using a thermal conductivity detector.

    2.3 Catalytic tests

    The catalyst tests were carried out in a continuous flow tubular quartz reactor(inner diameter:10 mm)placed in a temperature-programmed furnace.The catalyst temperature was controlled by a thermocouple mounted internally.Ozone gases were generated from ozone generator(JY-3 type,Chengdu Qiangui Purification Equipment Company)and were fed from independent mass-flow controller.Air was come into being from air compressor,and then was separated by an oil-water separator and dried by a silica gel,its flow rate was controlled by a rotameter.Measurements over the samples were performed at a RH of 85%-90%using a gas hourly space velocity(GHSV)of 380000,450000,510000,and 580000 h-1,respectively.The feed consists of 6.0×10-7O3,and balance air.The outlet flow of the reactor was analyzed using an ozone analyzer(Nanjing 8Shang Technology Co.,Ltd.).The activity of the catalyst was calculated on the basis of the following equation:

    where Cinletand Coutletare inlet concentration of O3and outlet concentration of O3,respectively.

    3 Results and discussion

    3.1 Activity of catalysts and synergetic effect between Pd and MnO x

    As shown in Fig.1,initial O3conversions at 12°C are 53.3%,73.3%,and 30.0%,O3complete conversion temperatures are 56,38,and 70 °C,corresponding to MnOx/γ-Al2O3,Pd-MnOx/γ-Al2O3,and Pd/γ-Al2O3catalysts,respectively.The activity of the Pd/γ-Al2O3catalyst for decomposition of O3is poor,and the activity of MnOx/γ-Al2O3catalyst is better than Pd based catalyst.The performance of the Pd-MnOx/γ-Al2O3catalyst is the best,where both Pd and MnOxspecies are involved.Namely,there was some synergetic effect between Pd and MnOx.For the Pd-MnOx/γ-Al2O3catalyst,Pd is functionalized both as active spe-cies and resistant to humidity,which would suppress deactivation aroused by the adsorption of H2O molecules.16,17It benefits to O3molecules interacting with more MnOxactive species.Therefore,the Pd-MnOx/γ-Al2O3catalyst has an excellent activity under high relative humidity.

    Fig.1 O3conversion as a function of reaction temperature on Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 H2-TPR profiles of Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 shows H2-TPR profiles of Pd/γ-Al2O3,MnOx/γ-Al2O3,and Pd-MnOx/γ-Al2O3catalysts.It is seen that a weak peak at 121 °C was present in the Pd/γ-Al2O3catalyst,it is attributed to the reduction of PdO species.18,19For the MnOx/γ-Al2O3catalyst,the broad peaks around 150-370 °C and 420-610 °C are observed.The broad peak around 150-370°C can be divided into two peaks at 181 and 258°C,which are ascribed as MnO2and Mn2O3reduction to Mn3O4.19The broad peak around 420-610 °C can be divided into two peaks at 475 and 538 °C,which represent Mn3O4reducing to MnO.19For the Pd-MnOx/γ-Al2O3catalyst,a peak at 155°C is attributed to the reduction of PdO species,18and a peak around 210°C is due to MnO2and Mn2O3reduction to Mn3O4,19and a peak at 430°C is ascribed to Mn3O4reduction to MnO.19The reduction temperature of MnOxis lowered in the presence of Pd,implying that there is an obvious interaction between Pd and MnOx.Xu et al.20reported that the presence of Pd lowered the reduction temperature of MnO2due to hydrogen spillover from Pd to the oxides.This phenomenon can be explained as follows:PdO is easily reduced to Pd by H2.Namely,PdO has changed to Pd before MnO2reduction.The Pd adsorbs H2and dissociates it into H,and then,H spills over onto MnO2to promote its reduction.The interaction of Pd and MnOximproves the reducibility of MnOx.Dhandapani and Oyama5thought that the activity of MnOxis relevant to its reducibility.Therefore,the activity of the Pd-MnOx/γ-Al2O3catalyst is enhanced for decomposition of O3.

    3.2 Effect of impregnation orders of Pd and MnO xon performance of catalysts

    3.2.1 TPR results of catalysts

    Fig.3 H2-TPR profiles of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.3 displays the TPR profiles of the catalysts prepared by different impregnation orders of Pd and MnOx.For the catalyst co-impregnated Pd and MnOx,as mentioned in Fig.2,there are three reduction peaks around 155,210,and 430°C.A broad peak arround 60-330 °C and a peak at 426°C were observed in the catalyst impregnated MnOxand then impregnated Pd.The broad peak can be divided into two peaks at 153 and 218°C.For the catalyst impregnated Pd and then MnOx,three peaks at about 151,260,and 437°C were present,the peak at 260 °C shifted towards high temperature.Although there are slight difference of the reduction temperatures of Pd and MnOx,the reduction peak areas of Pd and MnOxare obviously different from the other two samples.The reduction peak area is the largest in the catalyst co-impregnated Pd and MnOx,indicating that the catalyst has the best reducibility.

    3.2.2 Textural property of catalysts

    As shown in Table 1,the surface areas are similar in three samples.However,the pore volume and average pore diameter of the catalyst co-impregnated Pd and MnOxare slightly larger than those of the catalysts impregnated Pd and MnOxsequentially.Large pore volume is favorable of more O3molecules activated by the active species on the surface of catalyst.Large pore diameter is in favor of O3coming into pores rapidly under high space velocity.Therefore,better textural property of the co-impregnated catalyst is beneficial to decomposition of O3.

    3.2.3 Activity of catalysts

    Fig.4 indicates the activity of catalysts impregnated Pd and MnOxby different impregnation orders.It is seen that initial O3conversions at 12°C are 73.3%,69.7%,and 66.7%,complete conversion temperatures of O3are 38,46,and 48°C,corresponding to the catalyst co-impregnated Pd and MnOx,the catalyst impregnated MnOxand then Pd,and the catalyst impregnated Pd and then MnOx,respectively.The impregnation order has some impacts on the activity of catalysts,the activity of the co-impregnated catalyst is the highest in the three samples.For the co-impregnated catalyst,Mn4+and Pd2+were uniformly mixed in ionic form before impregnation,in favorable of MnOxand Pd dispersion evenly onto the surface of γ-Al2O3support.It is possible that more active species were exposed on the surface of the co-impregnated catalyst.In general,the more the active species exposed(such as Pd or MnOx),the better the activity of the catalyst.Moreover,when Pd or MnOxwas loaded on the surface of γ-Al2O3support,the negative charges of Al2O3would be transferred into PdO or MnOxdue to strong interaction of metal and support.For the co-impregnated catalyst,the interaction could be more obvious,resulting in better reducibility of PdO and MnOx,which is helpful to O3decomposition.In addition,the activity of the catalyst impregnated MnOxand then Pd is slightly better than that of the catalyst impregnated Pd and then MnOx.It can be ascribed to good reducibility of MnOxin the catalyst(see Fig.3,H2-TPR).Furtherover,a little Pd was possibly covered by MnOxon the surface of the catalyst impregnated Pd and then MnOx,the amount of Pd exposed decreased more or less.

    Table 1 Textural property of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.4 O3catalytic performance of samples prepared by different impregnation orders of Pd and MnO x

    3.3 Effect of supports on the performance of the catalyst co-impregnated Pd and MnO x

    3.3.1 Activity of catalysts

    Fig.5 reveals the activity of the catalyst co-impregnated Pd and MnOxon various supports under different space velocities,respectively.For space velocity of 380000 h-1,O3conversions,at 14°C are 82%,82%,77%,and 68%,O3complete conversion temperatures are 36,36,38,and 48°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 450000 h-1,O3conversions at 14°C are 72%,68%,64%,and 58%,O3complete conversion temperatures are 50,56,59,and 65 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 510000 h-1,O3conversions at 14°C are 60%,52%,50%,and 40%,O3complete conversion temperatures are 66,78,80,and 88 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 580000 h-1,O3conversions at 14°C are 43%,34%,36%,and 28%,O3complete conversion temperatures are 86,100,94,and 112°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.It can be seen that the Pd-MnOx/La-Al2O3catalyst has the best activity;the Pd-MnOx/SiO2catalyst has better activity when the space velocity varied from 380000 to 510000 h-1,however,its activity is slightly weaker than that of the Pd-MnOx/γ-Al2O3catalyst at the space velocity of 580000 h-1;the activity of the Pd-MnOx/Zr-Al2O3catalyst is the worst in all the catalysts.

    Fig.5 Effect of supports on the catalytic performance of samples co-impregnated Pd and MnO xunder different space velocities

    3.3.2 XRD characterization of catalysts

    Fig.6 shows XRD patterns of samples co-impregnated Pd and MnOxon different supports.The diffraction peaks of supports were observed in XRD patterns for all of the samples.For example,SiO2was observed in the Pd-MnOx/SiO2catalyst.The γ-Al2O3was present in the Al2O3-based catalysts.The weak diffraction peaks of MnO2were appeared,indicating that MnO2was in the presence of microcrystalline due to low MnO2content and high dispersion on the surface of supports.In addition,a weak diffraction peak of PdO was also emerged,implying that PdO was evenly dispersed on the surface of supports,and was a microcrystalline.

    3.3.3 Textural property of catalysts

    Fig.6 XRD patterns of samples co-impregnated Pd and MnO xon different supports

    Table 2 Textural properties of the samples co-impregnated Pd and MnO xon different supports

    As shown in Table 2,the surface areas of the Pd-MnO2/SiO2,Pd-MnO2/γ-Al2O3,and Pd-MnO2/Zr-Al2O3are large,whereas the surface area of the Pd-MnO2/La-Al2O3is the least.Total pore volume is almost the same for the Pd-MnO2/γ-Al2O3,Pd-MnO2/La-Al2O3,and Pd-MnO2/Zr-Al2O3,while pore volume of the Pd-MnO2/SiO2is the least.The average pore diameter of the Pd-MnO2/La-Al2O3is the largest,in favor of O3mass transfer under high space velocity.The average pore diameter of the Pd-MnO2/SiO2catalyst is the least.The textural property of the Pd-MnO2/SiO2catalyst is related to its support,which has large surface area and small average pore diameter.21,22Large surface area is in favor of O3adsorption on the SiO2support.However,its small pore volume and small average pore diameter make against the mass transfer of O3molecules,especially,under high space velocity.Therefore,the activity of the Pd-MnO2/SiO2catalyst sharply declined with the increase of space velocity.

    3.3.4 XPS of catalysts

    Fig.7 Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnO xon different supports

    Table 3 XPS results of Mn 2p3/2for the samples co-impregnated Pd and MnO xon different supports

    Fig.7 shows Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnOxon different supports.According to literature,23,24the binding energies of Mn 2p3/2were 640.8,641.8,and 642.6 eV for Mn(II),Mn(III),and Mn(IV),respectively.24,25As shown in Fig.7,valence state of Mn is+3 on the surface of the Pd-MnOx/SiO2catalyst.Although XRD pattern(Fig.6)shows MnO2microcrystalline,it is possible that negative charge in SiO2support was transferred into Mn4+due to strong interaction between MnOxand SiO2support,resulting in the formation of Mn2O3on the surface of the catalyst.Valence states of Mn are+2 and+3 on the surface of the Pd-MnOx/La-Al2O3catalyst.It indicates that MnOxis in the presence of MnO and Mn2O3on the surface of the catalyst,and there is a strong interaction between MnOxand La-Al2O3support.Valence states of Mn are+2 and+4 on the surfaces of the Pd-MnOx/γ-Al2O3catalyst and the Pd-MnOx/Zr-Al2O3catalyst.Namely,MnO,Mn3O4,or Mn5O8formed by Mn4+got electrons from the support(γ-Al2O3or Zr-Al2O3)on the surface of the catalysts.The relative amount of Mn2+,Mn3+,and Mn4+species on the surface of samples is listed in Table 3.

    3.3.5 TPR of catalysts

    Fig.8 exhibits H2-TPR profiles of samples co-impregnated Pd and MnOxon different supports.It can be seen that support obviously affects the reducibility of PdO and MnOx.For the Pd-MnOx/SiO2catalyst,a large reduction peak around 66-160°C can be divided into two peaks at 102 and 132°C,which represent the reduction of PdO and MnOx,respectively.The reduction peak of MnOxobviously shifted towards low temperature due to strong interaction between MnOxand SiO2support,in agreement with the result of XPS analysis.Namely,MnOxspecies is highly active and is easily reduced for the Pd-MnOx/SiO2catalyst.For the Pd-MnOx/La-Al2O3catalyst,a large reduction peak around 58-200°C can be divided into two peaks at 116 and 145°C,which are ascribed to the reduction of PdO and MnOx,respectively.18The reduction temperatures of PdO and MnOxare low for Pd-MnOx/SiO2and Pd-MnOx/La-Al2O3,implying high reducibility and better activity of PdO and MnOx.The peak at 155°C is due to the reduction of PdO,18the peak at 210°C is ascribed as MnO2reduction to Mn3O4,the peak at 430°C belongs to Mn3O4reducing to MnO.19The reduction peak areas of PdO and MnOxare large for the Pd-MnOx/γ-Al2O3catalyst,leading to better catalytic performance for O3decomposition.A peak at 120°C is attributed to the reduction of PdO,small peaks around 180 and 260°C are ascribed to the reduction of MnOxfor the Pd-MnOx/Zr-Al2O3catalyst.The catalyst has less activity,which is related to poor reducibility of MnOx.

    Fig.8 H2-TPR profiles of samples co-impregnated Pd and MnO xon different supports

    Lin et al.26supposed an interaction of metal with catalyst support,and adsorption ability of support affected the activity of catalyst.According to the result of H2-TPR,MnOxhas high reducibility due to strong interaction between MnOxand SiO2support,in favor of Mnn+participating in O3decomposition.27SiO2is a good adsorbent for O3,and H2O molecules were weakly adsorbed on the surface of SiO2,hardly compete with O3for adsorption under high humidity.26Moreover,mild acidic SiO2support promotes the formation of oxygen species intermediates(e.g.,O3-and O-),which would enhance the adsorption and decomposition of O3.28These factors are in favor of O3decomposition.Therefore,the Pd-MnOx/SiO2catalyst has excellent catalytic activity.However,when the space velocity increased a lot,the activity of the Pd-MnOx/SiO2catalyst was drastically declined due to small pore diameter going against mass transfer of O3molecules and its products.For the Pd-MnOx/La-Al2O3catalyst,both high reducibility of PdO and MnOxand large average pore diameter are in favor of O3decomposition under high space velocity.Therefore,the catalyst shows the best catalytic performance.

    3.4 Durability of catalyst

    O3(6.0 ×10-7)was continuously decomposed at 90°C for 10 days on the Pd-MnOx/γ-Al2O3catalyst under space velocity of 580000 h-1and RH of 85%-90%.The activity of the catalyst hold steady,and the washcoat of catalyst did not desquamate,which are related to stable physicochemical properties of the γ-Al2O3support,active species of Pd and MnOx,and better viscidity of the support.

    4 Conclusions

    When active Pd and MnOxcoexist in the Pd-MnOx/γ-Al2O3catalyst,its activity is higher than that of the Pd or MnOxcatalyst(e.g.,Pd/γ-Al2O3or MnOx/γ-Al2O3).The catalyst co-impregnated Pd and MnOxhas better activity than the catalyst impregnated Pd or MnOxsequentially.The supports have significant impacts on catalytic activity for O3decomposition.The Pd-MnOx/La-Al2O3catalyst has the best activity.Next is the catalyst using SiO2as a support.Again is the catalyst using γ-Al2O3as a support.Finally,the Pd-MnOx/Zr-Al2O3sample has the worst catalytic performance in all of the catalysts.The activity of catalysts prepared on different supports is nearly in agreement with the reducibility of Pd and MnOx.Ground-level ozone would be completely decomposed if the Pd-MnOx/La-Al2O3catalyst was coated on vehicle radiators,in which their temperature ranged from 20 to 90°C.Therefore,the as-prepared catalyst has a potential applicable value.

    (1)Gryparis,A.;Forsberg,B.;Katsouyanni,K.;Analitis,A.;Touloumi,G.;Schwartz,J.;Samoli,E.;Medina,S.;Anderson,H.R.;Niciu,E.M.American Journal of Respiratory and Critical Care Medicine 2004,170,1080.doi:10.1164/rccm.200403-333OC

    (2)Wan,W.X.;Xia,Y.J.;Zhang,H.X.;Wang,J.;Wang,X.K.Acta Ecologica Sinica 2013,33(4),1098. [萬(wàn)五星,夏亞軍,張紅星,王 嬌,王效科.生態(tài)學(xué)報(bào),2013,33(4),1098.]doi:10.5846/stxb

    (3)Karlsson,P.E.;Pleijel,H.;Belhaj,M.;Danielsson,H.;Dahlin,B.;Andersson,M.;Haneeon,M.;Munthe,J.;Grennfelt,P.AMBIO 2005,34,32.

    (5)Dhandapani,B.;Oyama,S.T.Appl.Catal.B 1997,11,129.doi:10.1016/S0926-3373(96)00044-6

    (6)Japan Air Cleaning Association.Air Cleaning Handbook;Ohm Press:Tokyo,1981;p178

    (7)Zhang,B.;Shi,R.;Zhang,P.Y.;Xu,J.H.Rare Metal Mat.Eng.2010,39(4),692.[張 博,史 蕊,張彭義,徐九華. 稀有金屬材料與工程,2010,39(4),692.]

    (8)Zhang,B.;Zhang,P.Y.;Shi,R.;Wang,H.J.Chin.J.Catal.2009,30(3),235.[張 博,張彭義,史 蕊,王化軍.催化學(xué)報(bào),2009,30(3),235.]

    (9)Yu,Q.W.;Zhao,M.;Liu,Z.M.;Zhang,X.Y.;Zheng,L.M.;Chen,Y.Q.;Gong,M.C.Chin.J.Catal.2009,30(1),1.[余全偉,趙 明,劉志敏,張曉玉,鄭靈敏,陳耀強(qiáng),龔茂初.催化學(xué)報(bào),2009,30(1),1.]doi:10.1016/S1872-2067(08)60082-0

    (10)Pan,H.;Zhou,L.N.;Zhu,Y.;Peng,N.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(6),1040.[潘 浩,周麗娜,朱藝,彭 娜,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(6),1040.]

    (11)Zhou,L.N.;Chen,Y.Q.;Ren,C.J.;Gong,M.C.Chin.J.Inorg.Chem.2013,29(11),2363.[周麗娜,陳耀強(qiáng),任成軍,龔茂初.無(wú)機(jī)化學(xué)學(xué)報(bào),2013,29(11),2363.]

    (12)Thompson,A.M.Science 1992,256,1157.doi:10.1126/science.256.5060.1157

    (13)Russell,A.;Milford.J.;Bergin,M.S.;McBride,S.;McNair,L.;Yang,Y.;Stockwell,W.R.;Croes,B.Science 1995,269,491.doi:10.1126/science.269.5223.491

    (14)Yu,L.P.;Jia,J.J.J.Shandong Univ.Sci.Technol.Nat.Sci.2001,20(4),111.[于林平,賈建軍.山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,20(4),111.]

    (15)Sadao Terui,H.;Yoshiyuki Yokota,S.Catalyst and Method of Preparing the Catalyst.US Patent,5187137,1993-02-16.

    (16)Kameya,T.;Urano,K.J.Environ.Eng.2002,128,286.doi:10.1061/(ASCE)0733-9372(2002)128:3(286)

    (17)Wu,M.C.;Kelly,N.A.Appl.Catal.B 1998,18,93.doi:10.1016/S0926-3373(98)00028-9

    (18)Yao,Y.L.;Fang,R.M.;Shi,Z.H.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(4),589.[姚艷玲,方瑞梅,史忠華,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(4),589.]

    (19)Rezaei,E.;Soltan,J.;Chen,N.;Lin,J.R.Chem.Eng.J.2013,214,219.doi:10.1016/j.cej.2012.10.044

    (20)Xu,G.P.;Zhu,Y.X.;Ma,J.;Yan,H.J.;Xie,Y.C.Stud.Surf.Sci.Catal.1997,11,333.

    (21)Ren,C.J.;Qiu,W.;Chen,Y.Q.Sep.Purif.Technol.2013,107,264.doi:10.1016/j.seppur.2013.01.037

    (22)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487.[仇 偉,任成軍,龔茂初,侯云澤,陳耀強(qiáng).物理化學(xué)學(xué)報(bào),2011,27,1487.]doi:10.3866/PKU.WHXB20110621

    (23)Santos,V.P.;Pereira,M.F.R.;órfaˇo,J.J.M.;Figueiredo,J.L.Appl.Catal.B 2010,99,353.doi:10.1016/j.apcatb.2010.07.007

    (24)Wei,Y.J.;Yan,L.Y.;Wang,C.Z.;Xu,X.G.;Wu,F.;Chen,G.J.Phys.Chem.B 2004,108,18547.doi:10.1021/jp0479522

    (25)O′Shea,V.A.D.P.;álvarez-Galván,M.C.;Fierro,J.L.G.;Arias,P.L.Appl.Catal.B 2005,57,191.doi:10.1016/j.apcatb.2004.11.001

    (26)Lin,J.J.;Kawai,A.;Nakajima,T.Appl.Catal.B 2002,39,157.doi:10.1016/S0926-3373(02)00081-4

    (27)Einaga,H.;Harada,M.;Futamura,S.Chem.Phys.Lett.2005,408,377.doi:10.1016/j.cplett.2005.04.061

    (28)Kumar,N.;Konova,P.;Naydenov,A.;Salmi,T.;Murzin,D.Y.;Heikill?,T.;Lehto,V.P.Catal.Today 2007,119,342.doi:10.1016/j.cattod.2006.08.048

    猜你喜歡
    學(xué)報(bào)化學(xué)
    致敬學(xué)報(bào)40年
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    《深空探測(cè)學(xué)報(bào)》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    成人午夜精彩视频在线观看| 国产一级毛片在线| 午夜福利视频精品| 久久精品综合一区二区三区| 国产 一区精品| 国产熟女欧美一区二区| 国产精品99久久久久久久久| 又黄又爽又刺激的免费视频.| 国产单亲对白刺激| 午夜老司机福利剧场| 综合色丁香网| 少妇的逼好多水| 婷婷六月久久综合丁香| 汤姆久久久久久久影院中文字幕 | 成人国产麻豆网| 2022亚洲国产成人精品| 在线天堂最新版资源| 国产成人午夜福利电影在线观看| 伊人久久国产一区二区| 亚洲一区高清亚洲精品| av女优亚洲男人天堂| 欧美日韩视频高清一区二区三区二| 久久久国产一区二区| 色综合亚洲欧美另类图片| 街头女战士在线观看网站| av在线蜜桃| 欧美最新免费一区二区三区| 久久久久久久久久成人| 啦啦啦韩国在线观看视频| 亚洲国产精品国产精品| 蜜桃亚洲精品一区二区三区| 国产美女午夜福利| 高清欧美精品videossex| 国产黄片视频在线免费观看| 亚洲av成人av| 亚洲国产精品专区欧美| 久久国产乱子免费精品| 91午夜精品亚洲一区二区三区| 久久久久久久久久人人人人人人| kizo精华| 免费人成在线观看视频色| 色尼玛亚洲综合影院| 99热这里只有是精品在线观看| 亚洲va在线va天堂va国产| 啦啦啦中文免费视频观看日本| 国产视频首页在线观看| 亚洲综合色惰| 深夜a级毛片| 国产黄色免费在线视频| 永久网站在线| 三级经典国产精品| 国产伦理片在线播放av一区| 久久久久久久亚洲中文字幕| 日本三级黄在线观看| 亚洲成人一二三区av| 日韩 亚洲 欧美在线| 久久国内精品自在自线图片| 91久久精品国产一区二区成人| 一级毛片久久久久久久久女| 精品久久久久久久久av| 久久久久久久久大av| 国产不卡一卡二| 亚洲成人中文字幕在线播放| 日日啪夜夜撸| 国产精品熟女久久久久浪| 亚洲婷婷狠狠爱综合网| 91在线精品国自产拍蜜月| 狂野欧美激情性xxxx在线观看| 国产欧美另类精品又又久久亚洲欧美| 免费av毛片视频| 精品国产三级普通话版| 精品人妻视频免费看| 天天躁夜夜躁狠狠久久av| 插逼视频在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲精品视频女| 少妇人妻一区二区三区视频| 国产精品av视频在线免费观看| 欧美日韩精品成人综合77777| 婷婷色麻豆天堂久久| av网站免费在线观看视频 | 亚洲av免费在线观看| 搡女人真爽免费视频火全软件| av播播在线观看一区| 婷婷色麻豆天堂久久| 亚洲激情五月婷婷啪啪| 成人毛片60女人毛片免费| 人体艺术视频欧美日本| 国产黄片美女视频| 波野结衣二区三区在线| 欧美激情久久久久久爽电影| 亚洲在久久综合| 欧美+日韩+精品| 亚洲在久久综合| 国产伦在线观看视频一区| kizo精华| 亚洲欧美成人精品一区二区| 久久亚洲国产成人精品v| 久久久欧美国产精品| 久久这里有精品视频免费| 国产成人a区在线观看| 亚洲在线自拍视频| 国产亚洲av片在线观看秒播厂 | 成人亚洲精品一区在线观看 | 日韩大片免费观看网站| 亚洲精品色激情综合| 国产精品国产三级国产av玫瑰| 亚洲国产av新网站| 免费播放大片免费观看视频在线观看| 日韩伦理黄色片| 少妇被粗大猛烈的视频| 美女大奶头视频| 日韩欧美精品v在线| 免费观看a级毛片全部| 日本午夜av视频| 精品久久久久久久久亚洲| 国产 一区精品| 久久久久精品久久久久真实原创| 看非洲黑人一级黄片| 国产不卡一卡二| 成人国产麻豆网| 久久久成人免费电影| 久久精品久久久久久噜噜老黄| 久久久久国产网址| 80岁老熟妇乱子伦牲交| 精品久久久久久成人av| 欧美极品一区二区三区四区| 欧美成人午夜免费资源| 精品亚洲乱码少妇综合久久| 在线观看人妻少妇| 亚洲丝袜综合中文字幕| 中文字幕av在线有码专区| 小蜜桃在线观看免费完整版高清| 国产成人午夜福利电影在线观看| 搞女人的毛片| 日本熟妇午夜| 99久久九九国产精品国产免费| 少妇高潮的动态图| 欧美日韩综合久久久久久| 国产有黄有色有爽视频| 肉色欧美久久久久久久蜜桃 | 亚洲精品aⅴ在线观看| 欧美精品一区二区大全| 国产永久视频网站| 蜜臀久久99精品久久宅男| 精华霜和精华液先用哪个| 精品国产三级普通话版| 免费av毛片视频| 中文精品一卡2卡3卡4更新| 国产一区二区亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 综合色av麻豆| 日本免费a在线| 毛片一级片免费看久久久久| videossex国产| 国产精品熟女久久久久浪| 亚洲人与动物交配视频| 女人被狂操c到高潮| 水蜜桃什么品种好| 亚洲国产精品成人久久小说| 熟女人妻精品中文字幕| 秋霞在线观看毛片| 亚洲精品中文字幕在线视频 | 麻豆成人午夜福利视频| 最近的中文字幕免费完整| 建设人人有责人人尽责人人享有的 | 性插视频无遮挡在线免费观看| 免费观看的影片在线观看| a级毛色黄片| 男女那种视频在线观看| 直男gayav资源| 成人美女网站在线观看视频| 国产午夜精品一二区理论片| 熟妇人妻久久中文字幕3abv| 国产成人精品福利久久| 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 国产 一区精品| 99热网站在线观看| 777米奇影视久久| 激情 狠狠 欧美| 啦啦啦中文免费视频观看日本| 欧美日韩国产mv在线观看视频 | 日韩精品青青久久久久久| 中文欧美无线码| 热99在线观看视频| 国产av不卡久久| 18禁在线播放成人免费| 日韩av在线大香蕉| 国产精品熟女久久久久浪| 免费在线观看成人毛片| 亚洲人成网站在线播| 亚洲国产精品国产精品| 美女被艹到高潮喷水动态| 一个人看视频在线观看www免费| 亚洲成色77777| 成人毛片60女人毛片免费| 黄片无遮挡物在线观看| 久久久久久伊人网av| av一本久久久久| 久久韩国三级中文字幕| 久久久色成人| 一级爰片在线观看| 免费av观看视频| 一个人看的www免费观看视频| 大话2 男鬼变身卡| 亚洲成人精品中文字幕电影| 亚洲综合色惰| 久久久精品94久久精品| 最近中文字幕高清免费大全6| 一级毛片我不卡| 99热全是精品| 色尼玛亚洲综合影院| 亚洲av中文字字幕乱码综合| 免费大片黄手机在线观看| 国内精品美女久久久久久| 国产 一区精品| 亚洲18禁久久av| 国产精品女同一区二区软件| 午夜免费激情av| 日韩 亚洲 欧美在线| 国产久久久一区二区三区| 青春草视频在线免费观看| 欧美人与善性xxx| 天堂中文最新版在线下载 | 一个人看视频在线观看www免费| 免费观看av网站的网址| 午夜福利在线在线| 精品久久久久久电影网| 嫩草影院精品99| 亚洲欧美清纯卡通| 青春草国产在线视频| 观看免费一级毛片| 久久精品国产亚洲av涩爱| 在线天堂最新版资源| 91aial.com中文字幕在线观看| 97超视频在线观看视频| 国产精品女同一区二区软件| 毛片女人毛片| 99久国产av精品| 免费观看精品视频网站| 国产白丝娇喘喷水9色精品| 亚洲激情五月婷婷啪啪| 亚洲综合色惰| 视频中文字幕在线观看| 精品一区二区三区视频在线| 亚洲久久久久久中文字幕| 精品久久久噜噜| 久久久久国产网址| 日韩人妻高清精品专区| 色综合亚洲欧美另类图片| 国产综合精华液| 久久久久精品性色| av线在线观看网站| 亚洲无线观看免费| 我的老师免费观看完整版| 国产成人91sexporn| 天美传媒精品一区二区| 亚洲国产色片| 国产乱人偷精品视频| 免费看光身美女| 男的添女的下面高潮视频| 国产 亚洲一区二区三区 | 免费看美女性在线毛片视频| 毛片女人毛片| 亚洲精品乱码久久久v下载方式| 97超碰精品成人国产| 免费观看在线日韩| 亚洲欧美日韩无卡精品| 国产av不卡久久| 成人无遮挡网站| 亚洲一区高清亚洲精品| 成年女人在线观看亚洲视频 | av福利片在线观看| 只有这里有精品99| 国产成年人精品一区二区| 两个人视频免费观看高清| 99热6这里只有精品| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站 | 欧美精品国产亚洲| 亚洲精品影视一区二区三区av| 啦啦啦啦在线视频资源| av专区在线播放| 国产有黄有色有爽视频| 男女下面进入的视频免费午夜| av一本久久久久| 久久久久网色| 天堂影院成人在线观看| 大香蕉久久网| 欧美日韩在线观看h| 久久久久久久午夜电影| 插阴视频在线观看视频| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 美女高潮的动态| 一级爰片在线观看| 精品不卡国产一区二区三区| 在线观看一区二区三区| 综合色丁香网| 麻豆乱淫一区二区| a级一级毛片免费在线观看| 寂寞人妻少妇视频99o| 精品久久久久久电影网| 两个人视频免费观看高清| 三级国产精品片| 少妇的逼水好多| 麻豆久久精品国产亚洲av| 最近最新中文字幕免费大全7| 久久韩国三级中文字幕| 免费看av在线观看网站| 欧美高清成人免费视频www| av网站免费在线观看视频 | 国内精品宾馆在线| 午夜久久久久精精品| 伦理电影大哥的女人| 久久99蜜桃精品久久| 精品一区在线观看国产| 人妻少妇偷人精品九色| 日韩电影二区| 人妻夜夜爽99麻豆av| 国产精品一及| 欧美日韩国产mv在线观看视频 | 美女黄网站色视频| 国产精品久久视频播放| 亚洲精品乱码久久久v下载方式| 99久久九九国产精品国产免费| eeuss影院久久| 久久精品久久精品一区二区三区| 亚洲一区高清亚洲精品| av在线亚洲专区| 2022亚洲国产成人精品| 日韩强制内射视频| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 亚洲精品日本国产第一区| 国产色婷婷99| 亚洲精品aⅴ在线观看| 日韩av免费高清视频| 成人av在线播放网站| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 国产老妇伦熟女老妇高清| 中文字幕久久专区| 日韩欧美 国产精品| 九色成人免费人妻av| 成人性生交大片免费视频hd| 秋霞伦理黄片| 边亲边吃奶的免费视频| 亚洲国产欧美在线一区| 国产精品嫩草影院av在线观看| 日韩视频在线欧美| 麻豆久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 亚洲熟妇中文字幕五十中出| 亚洲最大成人手机在线| 黄色欧美视频在线观看| 国产老妇女一区| 永久免费av网站大全| 国产成人精品婷婷| 一级毛片久久久久久久久女| av女优亚洲男人天堂| 天堂av国产一区二区熟女人妻| 亚洲精品视频女| 99九九线精品视频在线观看视频| 99热这里只有是精品在线观看| 久久久久久久久久成人| 亚洲精品成人久久久久久| 欧美激情在线99| 亚洲av在线观看美女高潮| 插逼视频在线观看| 亚洲国产欧美在线一区| 国产人妻一区二区三区在| 赤兔流量卡办理| 亚洲真实伦在线观看| 观看美女的网站| 免费黄网站久久成人精品| 亚洲成人av在线免费| 国产欧美另类精品又又久久亚洲欧美| 好男人在线观看高清免费视频| 国产探花在线观看一区二区| 国产乱人视频| 欧美性感艳星| 亚洲av不卡在线观看| 夫妻性生交免费视频一级片| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 看黄色毛片网站| 只有这里有精品99| 日日干狠狠操夜夜爽| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| 一级a做视频免费观看| 人妻系列 视频| 岛国毛片在线播放| 亚洲av男天堂| 久久久久精品性色| 日日摸夜夜添夜夜添av毛片| 久久久久久久久大av| 国产片特级美女逼逼视频| 少妇熟女aⅴ在线视频| 精品午夜福利在线看| 午夜激情福利司机影院| 国产探花极品一区二区| 久久这里只有精品中国| 一本一本综合久久| a级一级毛片免费在线观看| 中文欧美无线码| 国产精品久久视频播放| 青春草视频在线免费观看| 2021天堂中文幕一二区在线观| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 日本av手机在线免费观看| av黄色大香蕉| 午夜福利高清视频| 视频中文字幕在线观看| 久久久久久久久久久丰满| 日本黄大片高清| 中国国产av一级| av线在线观看网站| 两个人的视频大全免费| 青青草视频在线视频观看| 久久精品国产鲁丝片午夜精品| 国产女主播在线喷水免费视频网站 | 久久久久网色| 高清视频免费观看一区二区 | 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 18禁动态无遮挡网站| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 色综合站精品国产| 久久草成人影院| 国产av码专区亚洲av| 2018国产大陆天天弄谢| 男人狂女人下面高潮的视频| 国产有黄有色有爽视频| 综合色av麻豆| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 日韩强制内射视频| 欧美成人午夜免费资源| 日本黄大片高清| 日本av手机在线免费观看| 最近最新中文字幕大全电影3| 亚洲av中文av极速乱| 午夜福利视频精品| 成年女人在线观看亚洲视频 | 汤姆久久久久久久影院中文字幕 | 久久精品久久久久久久性| 免费大片黄手机在线观看| 国产极品天堂在线| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 简卡轻食公司| 欧美不卡视频在线免费观看| 精品久久久久久久久av| 晚上一个人看的免费电影| 国内精品美女久久久久久| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| 18禁裸乳无遮挡免费网站照片| 赤兔流量卡办理| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 欧美最新免费一区二区三区| 欧美另类一区| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 国产成人精品一,二区| 国产一区二区三区av在线| 久久久久九九精品影院| 人妻一区二区av| 国产精品人妻久久久影院| 久久99热6这里只有精品| 全区人妻精品视频| 最近视频中文字幕2019在线8| 直男gayav资源| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 又大又黄又爽视频免费| 国产片特级美女逼逼视频| 国产精品一区二区三区四区免费观看| 丰满人妻一区二区三区视频av| 久久人人爽人人片av| av福利片在线观看| 激情 狠狠 欧美| 在线观看人妻少妇| 欧美日韩在线观看h| 亚洲图色成人| 三级男女做爰猛烈吃奶摸视频| 亚洲av.av天堂| 一级黄片播放器| 99视频精品全部免费 在线| 国产精品精品国产色婷婷| 一个人免费在线观看电影| 国产淫语在线视频| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 在线天堂最新版资源| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 热99在线观看视频| 三级国产精品片| 日本-黄色视频高清免费观看| 免费观看无遮挡的男女| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久久久久久性| av在线蜜桃| 成人无遮挡网站| 伦精品一区二区三区| 日韩大片免费观看网站| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 18禁裸乳无遮挡免费网站照片| 成年版毛片免费区| 两个人视频免费观看高清| 国产精品99久久久久久久久| 国产精品爽爽va在线观看网站| 久久久久久久大尺度免费视频| 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 国产毛片a区久久久久| 欧美另类一区| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久久丰满| 精品国产三级普通话版| 亚洲精品456在线播放app| 日韩欧美精品v在线| 国产69精品久久久久777片| 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 成人毛片60女人毛片免费| 久久久色成人| 亚洲欧美精品自产自拍| 亚洲最大成人手机在线| av.在线天堂| 毛片女人毛片| 免费观看在线日韩| 亚洲四区av| 亚洲av日韩在线播放| 久久久色成人| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 日本免费在线观看一区| 免费观看的影片在线观看| 免费观看av网站的网址| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 亚洲四区av| 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说| 一区二区三区高清视频在线| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 日日啪夜夜撸| 亚洲一区高清亚洲精品| 哪个播放器可以免费观看大片| 极品教师在线视频| 免费播放大片免费观看视频在线观看| 熟妇人妻不卡中文字幕| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂 | 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 春色校园在线视频观看| 国内精品美女久久久久久| 成人性生交大片免费视频hd| 久久久亚洲精品成人影院| 99热全是精品| 亚洲国产精品sss在线观看| 晚上一个人看的免费电影| 又大又黄又爽视频免费| 蜜桃久久精品国产亚洲av| 日韩制服骚丝袜av| 中文在线观看免费www的网站| 免费电影在线观看免费观看| 日本一本二区三区精品| 2018国产大陆天天弄谢| 国产成人午夜福利电影在线观看| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 插逼视频在线观看| 国产老妇伦熟女老妇高清| ponron亚洲| 日韩一区二区三区影片| 日本色播在线视频| 亚洲不卡免费看| www.色视频.com| 天堂网av新在线| 午夜激情久久久久久久| 成人欧美大片| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 大香蕉久久网| 亚洲精品国产av成人精品|