劉亮,胡月陽,巨英超,周榮秒
食管癌是我國(guó)較常見的惡性腫瘤,發(fā)病及病死率較高[1],其常規(guī)治療方法包括手術(shù)、放療、化療等,手術(shù)仍是食管癌治療的首選方法,術(shù)后輔以放療及化療[2]。對(duì)于一些晚期食管癌患者,失去手術(shù)治療時(shí)機(jī)后,化療及放療成為其主要治療方法,但藥物的毒副作用及耐藥會(huì)嚴(yán)重影響化療效果,甚至導(dǎo)致化療失敗。探尋食管癌多藥耐藥形成機(jī)制,對(duì)于耐藥逆轉(zhuǎn)研究具有重大意義。研究顯示三磷酸腺苷結(jié)合轉(zhuǎn)運(yùn)蛋白G2(ATP binding cassette G2,ABCG2)與多種腫瘤多藥耐藥的形成密切相關(guān)[3-5]。本課題組以往研究也顯示,ABCG2與食管癌多藥耐藥相關(guān)[6],但是其中機(jī)制目前尚未闡明。近來研究顯示,長(zhǎng)鏈非編碼RNA與腫瘤發(fā)生、發(fā)展及耐藥形成密切相關(guān)[7-8]。有研究顯示,在肝癌細(xì)胞中l(wèi)inc-VLDLR通過調(diào)控ABCG2表達(dá)對(duì)肝癌細(xì)胞耐藥性進(jìn)行調(diào)控[9]。胞外囊泡(extracellular vesicles,EVs)在細(xì)胞間信息傳遞中起著重要作用,包括細(xì)胞間耐藥性的產(chǎn)生[10-11]。本研究探討linc-VLDLR與食管癌多藥耐藥的關(guān)系以及耐藥細(xì)胞釋放的EVs中攜帶的linc-VLDLR對(duì)食管癌細(xì)胞耐藥性的調(diào)節(jié)作用。
1.1 主要材料及試劑 人食管癌細(xì)胞株Eca109由本實(shí)驗(yàn)室傳代培養(yǎng),接種于含10%胎牛血清的PRMI 1640培養(yǎng)基中(補(bǔ)充青霉素、鏈霉素各100U/L),置于37℃、5%CO2的細(xì)胞培養(yǎng)箱中。噻唑藍(lán)比色法(MTT)試劑購(gòu)自美國(guó)Sigma公司;RPMI 1640培養(yǎng)液購(gòu)自美國(guó)Gibco公司;總RNA提取試劑、反轉(zhuǎn)錄試劑盒、熒光定量RCR試劑購(gòu)自美國(guó)Vazyme公司;FC500型流式細(xì)胞儀購(gòu)自美國(guó)Beckman Coulter公司;引物購(gòu)自生工生物公司;紫外可見分光光度計(jì)(NanoDrop,美國(guó)Thermo公司);熒光定量PCR儀(MX3000P,美國(guó)Agilent公司)。
1.2 MTT法檢測(cè)阿霉素(ADM)作用Eca109細(xì)胞的半數(shù)抑制濃度(IC50)值 用0.25%胰蛋白酶消化單層培養(yǎng)的Eca109細(xì)胞,用含10%胎牛血清的RPMI 1640培養(yǎng)液懸浮制成單細(xì)胞懸液,調(diào)整細(xì)胞濃度至1×104個(gè)/ml,分別接種于96孔細(xì)胞培養(yǎng)板中,置37℃、5%CO2溫箱培養(yǎng)使細(xì)胞貼壁。24h貼壁后倒去培養(yǎng)液,分別加入不同濃度的ADM(0、0.001、0.005、0.01、0.05、0.1、0.5、1、5、10、50μg/ml),陰性對(duì)照組加入等體積培養(yǎng)液,反應(yīng)總體積200μl/孔;另設(shè)空白對(duì)照孔,只加培養(yǎng)液,每個(gè)藥物劑量均設(shè)3個(gè)復(fù)孔。37℃、5%CO2條件下孵育24h,每孔加入MTT溶液(5mg/ml)20μl,繼續(xù)孵育4h,終止培養(yǎng),傾去培養(yǎng)液;每孔加入180μl DMSO,振蕩10min。選擇490nm波長(zhǎng),以空白孔調(diào)零,在酶標(biāo)儀上測(cè)定各孔光吸收值(A490),按下列公式計(jì)算生長(zhǎng)抑制率,生長(zhǎng)抑制率IR(%)=(1-用藥組A490/對(duì)照組A490)×100%,計(jì)算IC50值。
1.3 EVs提取 根據(jù)ADM對(duì)Eca109細(xì)胞24h的IC50值選擇3個(gè)ADM濃度,分別為0.2、0.4、0.8μg/ml,以生理鹽水代替藥物作為對(duì)照組。不同濃度ADM(0、0.2、0.4、0.8μg/ml)作用Eca109細(xì)胞24h后,利用梯度離心法收集培養(yǎng)液中的EVs,分別標(biāo)記為EVs1、EVs2、EVs3、EVs4。梯度離心法的主要步驟包括,2000r/mim,10min;3000r/mim,30min;11 000r/min,1h,收集離心后的上清,以超高速110 000×g離心16h,棄上清,用適量PBS溶解得到EVs沉淀,Nanodrop法定量,–80℃分裝保存。
1.4 熒光定量RT-PCR方法檢測(cè)EVs中l(wèi)inc-VLDLR基因表達(dá) 將提取的EVs以冷PBS洗滌1次,加入1ml RNA分離試劑,常規(guī)一步法提取總RNA。按照說明書進(jìn)行反轉(zhuǎn)錄為cDNA,以cDNA為模板進(jìn)行PCR擴(kuò)增,引物如下。linc-VLDLR:上游,5'-AGCAGTCACATTCATCGCAC-3',下游,5'-GAGGAATAGGTGCGAACTGC-3';內(nèi)參RNU6B:上游,5'-CTCGCTTCGGCAGCACA-3',下游,5'-AACGCTTCACGAATTTGCGT-3'。應(yīng)用2–ΔCt值法計(jì)算linc-VLDLR mRNA的相對(duì)表達(dá)量,ΔCt=linc-VLDLR Ct值-RNU6B Ct值。
1.5 EVs干預(yù)Eca109細(xì)胞實(shí)驗(yàn) 采用0.25%胰蛋白酶消化單層培養(yǎng)Eca109細(xì)胞,用含10%胎牛血清的RPMI 1640培養(yǎng)液制成單細(xì)胞懸液,調(diào)整細(xì)胞濃度至1×105個(gè)/ml,分別接種于6孔板,37℃、5%CO2溫箱培養(yǎng)使細(xì)胞貼壁后,分別加入50μg/ml EVs(1–4),每組設(shè)置3個(gè)復(fù)孔,同時(shí)設(shè)置未加EVs(生理鹽水代替EVs)的對(duì)照組,分別標(biāo)記為EVs1、EVs2、EVs3、EVs4及對(duì)照組。培養(yǎng)細(xì)胞48h后收集細(xì)胞。調(diào)整單細(xì)胞懸液濃度為1×106個(gè)/ml,實(shí)驗(yàn)重復(fù)3次。
1.6 熒光定量RT-PCR檢測(cè)細(xì)胞中ABCG2及l(fā)inc-VLDLR基因表達(dá) 取上述細(xì)胞懸液1ml,冷PBS洗滌細(xì)胞1次,加入1ml RNA分離試劑,常規(guī)一步法提取總RNA。按照說明書反轉(zhuǎn)錄為cDNA,以cDNA為模板進(jìn)行PCR擴(kuò)增。按照標(biāo)準(zhǔn)的real-time PCR流程執(zhí)行,采用SYBR-Green Ⅰ作為熒光染料,每個(gè)樣品重復(fù)3次,引物如下。ABCG2:上游,5'-GGTCAGAGTGTGGTTTCTGTAGCA-3',下游,5'-GTGAGAGATCGATGCCCTGCTTTA-3';linc-VLDLR:上游,5'-AGCAGTCACATTCATCGCAC-3',下游,5'-GAGGAATAGGTGCGAACTGC-3';內(nèi)參GAPDH:上游,3'-CACTACCGTACCTGACACCA-5',下游,3'-ATGTCGTTGTCCCACCACCT-5';RNU6B:上游,5'-CTCGCTTCGGCAGCACA-3',下游,5'-AACGCTTCACGAATTTGCGT-3'。應(yīng)用2–ΔCt值法計(jì)算ABCG2及l(fā)inc-VLDLR mRNA的相對(duì)表達(dá)量,ΔCt=ABCG2 Ct值-GAPDH Ct值,ΔCt= linc-VLDLR CT值-RNU6B Ct值。
1.7 MTT方檢測(cè)細(xì)胞對(duì)ADM的24h IC50值 取一定量上述制備的單細(xì)胞懸液,接種至96孔板,按照1.2步驟進(jìn)行實(shí)驗(yàn),計(jì)算ADM作用細(xì)胞24h的IC50值。
1.8 流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期 取上述制備的單細(xì)胞懸液1ml,冷PBS洗滌細(xì)胞1次,70%乙醇4℃固定24h;PBS洗滌細(xì)胞2次,100μl PBS液懸浮細(xì)胞,向其中加入1ml碘化丙啶染液,4℃染色;30min后上流式細(xì)胞儀檢測(cè),用Multicycle AV分析軟件對(duì)DNA細(xì)胞周期進(jìn)行擬合分析。
1.9 統(tǒng)計(jì)學(xué)處理 采用SPSS 11.5軟件進(jìn)行分析。計(jì)量資料以±s表示,多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 MTT法檢測(cè)ADM對(duì)Eca109細(xì)胞24h的IC50MTT檢測(cè)結(jié)果顯示,ADM作用Eca109細(xì)胞24h的IC50為0.44±0.02μg/ml,后續(xù)提取EVs實(shí)驗(yàn)前ADM干預(yù)Eca109細(xì)胞的濃度設(shè)定為0.2、0.4、0.8μg/ml。
2.2 熒光定量RT-PCR法檢測(cè)EVs中l(wèi)inc-VLDLR基因表達(dá) 結(jié)果顯示,EVs1–4中l(wèi)inc-VLDLR基因表達(dá)水平呈現(xiàn)逐漸升高趨勢(shì),且組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.01,圖1)。
2.3 MTT檢測(cè)EVs干預(yù)后Eca109細(xì)胞對(duì)ADM的IC50結(jié)果顯示,EVs1–4組IC50值與對(duì)照組比較明顯增高(P<0.01)。EVs4組IC50明顯高于EVs1-3組(P<0.05,圖2)。
2.4 EVs干預(yù)后Eca109細(xì)胞周期的檢測(cè) 與對(duì)照組比較,EVs1–4組Eca109細(xì)胞增殖指數(shù)(PI)明顯增高(P<0.01),細(xì)胞周期G0/1期比例明顯降低(P<0.01)。EVs4組PI明顯高于EVs1、2、3組及對(duì)照組(P<0.01),而G0/1期比例明顯降低(P<0.01,圖3)。
2.5 EVs干預(yù)后Eca109細(xì)胞中l(wèi)inc-VLDLR及ABCG2基因表達(dá)水平 EVs1–4組Eca109細(xì)胞中ABCG2基因表達(dá)水平均明顯高于對(duì)照組(P<0.01)。EVs2、3、4組Eca109細(xì)胞中l(wèi)inc-VLDLR基因表達(dá)水平明顯高于對(duì)照組(P<0.01),而EVs1組Eca109細(xì)胞中l(wèi)inc-VLDLR基因表達(dá)水平與對(duì)照組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。EVs4組細(xì)胞中l(wèi)inc-VLDLR及ABCG2基因表達(dá)水平明顯高于EVs1、2、3組及對(duì)照組(P<0.05,圖4)。
圖1 熒光定量RT-PCR方法檢測(cè)EVs中l(wèi)inc-VLDLR基因表達(dá)Fig.1 Expression of linc-VLDLR gene in EVs detected by realtime RT-PCR
圖2 EVs干預(yù)Eca109細(xì)胞后對(duì)ADM的IC50Fig.2 The IC50 of ADM on Eca109 cells intervened with EVs
腫瘤微環(huán)境在腫瘤的發(fā)生、發(fā)展以及耐藥產(chǎn)生中起著至關(guān)重要的作用[12-13];腫瘤細(xì)胞可通過細(xì)胞間的信息傳遞營(yíng)造出更利于腫瘤發(fā)展的微環(huán)境[14-15],即種子、土壤新學(xué)說。因此,對(duì)這種微環(huán)境改變?cè)斐傻墨@得性耐藥等細(xì)胞應(yīng)激的機(jī)制研究為食管癌的治療提供了新的方向。
EVs是細(xì)胞遭受刺激時(shí)產(chǎn)生并釋放的超微囊性結(jié)構(gòu),是細(xì)胞旁分泌的生物活性物質(zhì)之一,包括微泡(MVs)和外泌體(exosomes)[16]。EVs是一種由細(xì)胞來源的脂質(zhì)雙分子層包繞的球狀膜性結(jié)構(gòu),其是一組直徑40~5000nm的囊泡狀小體,多種細(xì)胞均可向其生存的微環(huán)境中釋放EVs[17-19],包括多種造血系統(tǒng)的細(xì)胞,如血小板、巨核細(xì)胞、單核細(xì)胞、T及B淋巴細(xì)胞等,腫瘤細(xì)胞,間充質(zhì)干細(xì)胞,胚胎干細(xì)胞,肺泡上皮細(xì)胞等。在細(xì)胞培養(yǎng)液、血清、唾液、惡性腹水、乳汁及尿液中均可檢測(cè)到EVs的存在[20-22]。
圖3 流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期Fig.3 Cell cycle of Eca109 cells detected by flow cytometry
圖4 EVs干預(yù)后Eca109細(xì)胞中l(wèi)inc-VLDLR及ABCG2基因表達(dá)Fig.4 linc-VLDLR and ABCG2 gene expression of Eca109 cells intervened with EVs
在EVs的形成過程中,會(huì)功能性地選擇與來源細(xì)胞相關(guān)的蛋白質(zhì)、mRNA及非編碼RNA等信號(hào)分子,這些信號(hào)分子在EVs與靶細(xì)胞相互作用后被釋放到靶細(xì)胞中,通過改變靶細(xì)胞表型、遺傳型而發(fā)揮作用[23]。研究發(fā)現(xiàn),某些腫瘤細(xì)胞所釋放的EVs通過作用其微環(huán)境中的腫瘤細(xì)胞、內(nèi)皮細(xì)胞、腫瘤相關(guān)成纖維細(xì)胞及免疫細(xì)胞,促進(jìn)細(xì)胞增殖、血管形成、轉(zhuǎn)移及免疫逃逸進(jìn)而促進(jìn)了腫瘤的發(fā)生、發(fā)展[24-25]。Takahashi等[9]研究發(fā)現(xiàn),肝癌細(xì)胞所分泌的EVs通過linc-VLDLR調(diào)控靶細(xì)胞ABCG2表達(dá),從而引起靶細(xì)胞肝癌細(xì)胞產(chǎn)生獲得性耐藥。本課題組在以往的研究中發(fā)現(xiàn)ABCG2與食管癌的多藥耐藥性密切相關(guān),但ABCG2的調(diào)控機(jī)制并未闡明。因此,考慮腫瘤微環(huán)境中EVs在細(xì)胞間的信號(hào)傳遞對(duì)多藥耐藥的形成可能起關(guān)鍵性的調(diào)控作用,切斷腫瘤微環(huán)境-EVs-非編碼RNA-細(xì)胞表型蛋白通路,可有效防止腫瘤多藥耐藥的形成。
本研究結(jié)果顯示,通過不同濃度的ADM干預(yù)食管癌Eca109細(xì)胞24h,建立短暫的耐藥細(xì)胞模型后,收集釋放的EVs,可檢測(cè)到EVs中l(wèi)inc-VLDLR表達(dá)水平明顯高于對(duì)照組細(xì)胞,且隨著ADM藥物濃度的遞增,EVs中l(wèi)inc-VLDLR的表達(dá)水平遞增。與對(duì)照組比較,ADM干預(yù)Eca109細(xì)胞后,用細(xì)胞自身釋放的EVs再干預(yù)Eca109細(xì)胞48h,可檢測(cè)到細(xì)胞對(duì)ADM產(chǎn)生了不同程度耐藥,其IC50值明顯升高;細(xì)胞中l(wèi)inc-VLDLR及ABCG2基因表達(dá)水平亦明顯增高;PI明顯增高,細(xì)胞周期G0/1期比例明顯降低,且具有ADM濃度依賴性。高濃度的ADM作用Eca109細(xì)胞后,釋放的EVs中的linc-VLDLR基因表達(dá)水平明顯高于低濃度ADM及NS作用Eca109細(xì)胞,攜帶高表達(dá)linc-VLDLR的EVs干預(yù)Eca109細(xì)胞后使細(xì)胞中l(wèi)inc-VLDLR及ABCG2基因表達(dá)水平升高,ABCG2高表達(dá)則使Eca109細(xì)胞具有多藥耐藥性。
綜上所述,linc-VLDLR及ABCG2高表達(dá)參與了食管癌多藥耐藥的形成,食管癌耐藥細(xì)胞釋放的EVs中攜帶的linc-VLDLR通過調(diào)控靶細(xì)胞中ABCG2表達(dá),從而引起靶細(xì)胞產(chǎn)生獲得性耐藥。本研究探尋了EVs-linc-VLDLR-ABCG2通路引起食管癌多藥耐藥形成,為食管癌多藥耐藥的基礎(chǔ)和臨床研究提供了實(shí)驗(yàn)基礎(chǔ)和新思路。
[1]Lin F, Wang HJ, Li CX,et al. Effects of esophageal cancer cellderived exosomes on cancer cell migration and invasion and its mechanism research[J]. Med J Chin PLA, 2017, 42(4): 307-313.[林鋒, 王海娟, 李春曉, 等. 食管癌細(xì)胞來源的外泌體對(duì)腫瘤細(xì)胞遷移及侵襲能力的影響及機(jī)制研究[J]. 解放軍醫(yī)學(xué)雜志, 2017, 42(4): 307-313.]
[2]Zhang N, Wang JF, Cheng GH,et al. Evaluation on curative effect of Xihuang Capsule in patients with advanced esophageal cancer treated with chemoradiotherapy[J]. J Jilin Univ (Med Ed), 2017,43(4): 812-817. [張寧, 王劍鋒, 程光惠, 等. 西黃膠囊輔助放化療治療中晚期食管癌患者的療效評(píng)價(jià)[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2017, 43(4): 812-817.]
[3]Hu CF, Huang YY, Wang YJ,et al. Upregulation of ABCG2viathe PI3K-Akt pathway contributes to acidic microenvironmentinduced cisplatin resistance in A549 and LTEP-a-2 lung cancer cells[J]. Oncol Rep, 2016, 36(1): 455-461.
[4]Sui H, Zhou LH, Zhang YL,et al. Evodiamine suppresses ABCG2 mediated drug resistance by inhibiting p50/p65 NF-κB pathway in colorectal cancer[J]. J Cell Biochem, 2016, 117(6):1471-1481.
[5]Salvamoser JD, Avemary J, Luna-Munguia H,et al. glutamatemediated down-regulation of the multidrug-resistance protein BCRP/ABCG2 in porcine and human brain capillaries[J]. Mol Pharm, 2015, 12(6): 2049-2060.
[6]Liu L, Zuo LF, Guo JW. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance[J]. Mol Med Rep, 2014, 9(4): 1299-1304.
[7]Fang S, Gao H, Tong Y,et al. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells[J]. Lab Invest, 2016, 96(1): 60-68.
[8]Zhang CL, Zhu KP, Shen GQ,et al. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma[J].Tumour Biol, 2016, 37(2): 2737-2748.
[9]Takahashi K, Yan IK, Wood J,et al. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy[J]. Mol Cancer Res, 2014, 12(10):1377-1387.
[10]Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery[J]. Int J Pharm, 2017, 521(1-2): 167-175.
[11]Neven KY, Nawrot TS, Bollati V. Extracellular vesicles: How the external and internal environment can shape cell-to-cell communication[J]. Curr Environ Health Rep, 2017, 4(1): 30-37.
[12]Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer[J]. J Clin Invest, 2007,117(5): 1175-1183.
[13]Zhang YY, Wang LB, Zhao Q,et al. Advanced research on relationship between tumor microenvironment and radiosensitivity of tumor cells[J]. J Jilin Univ (Med Ed), 2016,42(5): 1038-1044. [張玉宇, 王利波, 趙欽, 等. 腫瘤微環(huán)境與腫瘤細(xì)胞放射敏感性關(guān)系的研究進(jìn)展[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2016, 42(5): 1038-1044.]
[14]Wu CZ, Liu F, Li N,et al. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment[J]. Med J Chin PLA, 2015, 40(7): 547-553.[吳朝真, 劉放, 李寧, 等. Fractalkine、IP-10及不同信號(hào)通路抑制劑對(duì)腫瘤微環(huán)境中NK細(xì)胞的影響[J]. 解放軍醫(yī)學(xué)雜志, 2015, 40(7): 547-553.]
[15]Zins K, Sioud M, Aharinejad S,et al. Modulating the tumor microenvironment with RNA interference as a cancer treatment strategy[J]. Methods Mol Biol, 2015, 1218: 143-161.
[16]Raposo G, Stoorvogel W. Extracellular vesicles: exosomes,microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
[17]Martins VR, Dias MS, Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer[J].Curr Opin Oncol, 2013, 25(1): 66-75.
[18]Aliotta JM, Lee D, Puente N,et al. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles[J]. Stem Cells Dev, 2012, 21(10): 1627-1638.
[19]D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles:shedding light on novel microenvironment modulators and prospective cancer biomarkers[J]. Genes Dev, 2012, 26(12):1287-1299.
[20]van der Vos KE, Balaj L, Skog J,et al. Brain tumor microvesicles:insights into intercellular communication in the nervous system[J]. Cell Mol Neurobiol, 2011, 31(6): 949-959.
[21]Raimondo F, Morosi L, Chinello C,et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery[J].Proteomics, 2011, 11(4): 709-720.
[22]Moon PG, You S, Lee JE,et al. Urinary exosomes and proteomics[J]. Mass Spectrom Rev, 2011, 30(6): 1185-1202.
[23]Camussi G, Deregibus MC, Bruno S,et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells[J]. Am J Cancer Res, 2011, 1(1): 98-110.
[24]Marton A, Vizler C, Kusz E,et al. Melanoma cell-derived exosomes alter macrophage and dendritic cell functionsin vitro[J]. Immunol Lett, 2012, 148(1): 34-38.
[25]Muralidharan-Chari V, Clancy JW, Sedgwick A,et al.Microvesicles: mediators of extracellular communication during cancer progression[J]. J Cell Sci, 2010, 123(Pt 10): 1603-1611.