馬宗艷,蔡宏斌,葛朝明
認(rèn)知障礙在中老年人中高發(fā),常見的認(rèn)知障礙主要有輕度認(rèn)知障礙和癡呆[1]。據(jù)2015年全球癡呆報(bào)告,平均每3s即有新診斷為癡呆的患者1例,其中年齡大于60歲的老年癡呆患者約4850萬(wàn),而老年癡呆的主要原因包括阿爾茨海默病(Alzheimer's disease,AD)、血管性癡呆(vascular dementia,VD)、路易體癡呆(dementia with Lewy bodies,DLB)和額顳葉癡呆(frontotemporal dementia,F(xiàn)TD)等,其中最常見的為AD,約占全部癡呆患者的60%[2-4]。越來(lái)越多的研究關(guān)注到晚期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)與認(rèn)知功能障礙的關(guān)系,并認(rèn)為AGEs可能也是引起AD的原因之一[5]。
1.1 AGEs的化學(xué)結(jié)構(gòu)及特征 AGEs是蛋白質(zhì)、脂質(zhì)、核酸等大分子的游離氨基與葡萄糖或其他還原糖的羰基經(jīng)非酶催化反應(yīng)生成的穩(wěn)定的終末產(chǎn)物[6],反應(yīng)早期生成不穩(wěn)定的Schiff堿,當(dāng)葡萄糖濃度下降時(shí),Schiff堿即可發(fā)生逆轉(zhuǎn),通過(guò)結(jié)構(gòu)重排形成比較穩(wěn)定的酮胺化合物,成為早期糖基化產(chǎn)物,經(jīng)過(guò)復(fù)雜的脫水、氧化、縮合等過(guò)程,形成穩(wěn)定、不可逆的AGEs[7]。AGEs根據(jù)其結(jié)構(gòu)和生成途徑的不同可分為兩種:一種類似于咪唑衍生物,如戊糖苷素(pentosidine)、羧乙基賴氨酸(Nε-carboxyethyllysine,CEL)等;另一種如羧甲基賴氨酸(Nε-carboxymethyllysine,CML)、吡咯素(pyrraline)等[8]。AGEs的主要分子結(jié)構(gòu)類型有吡咯醛、羧甲基絲氨酸、苯妥西定、咪唑酮以及一些交聯(lián)產(chǎn)物[9]。AGEs的共同特征如下:呈棕色,有特殊的吸收光譜及熒光特性;與氨基酸基團(tuán)之間有物理性交聯(lián)特性;與氧化修飾有關(guān);對(duì)酶穩(wěn)定,不易降解;可與許多細(xì)胞膜特異性受體結(jié)合發(fā)揮生物學(xué)效應(yīng)等[9]。在正常情況下,AGEs修飾蛋白作為一種信號(hào)參與機(jī)體清除衰老組織及結(jié)構(gòu)重建的過(guò)程,病理狀態(tài)下,AGEs可引起組織的細(xì)胞結(jié)構(gòu)和功能異常,從而產(chǎn)生一系列病理變化,在年齡相關(guān)的退行性病變?nèi)鏏D、動(dòng)脈粥樣硬化性疾病、帕金森病中均有重要作用[10]。
1.2 AGEs在AD患者大腦內(nèi)的分布 Horie等[11]研究發(fā)現(xiàn),AD患者大腦海馬區(qū)和海馬旁區(qū)的神經(jīng)細(xì)胞核周體和神經(jīng)細(xì)胞核周體外沉積的脂褐素中,以及神經(jīng)纖維網(wǎng)的纖維樣結(jié)構(gòu)和老年斑中存在AGEs結(jié)構(gòu);他們的免疫組化研究還發(fā)現(xiàn),AD患者大腦內(nèi)老年斑和神經(jīng)元纖維纏結(jié)(neurofibrillary tangles,NFTs)中均有AGEs聚積,修飾大腦內(nèi)的NFTs和Tau蛋白。同時(shí),與AD病理改變有關(guān)的異常結(jié)構(gòu)成分如極低密度脂蛋白(very low-density lipoprotein,VLDL)、C反應(yīng)蛋白(C-reactive protein,CRP)、載脂蛋白E(apolipoprotein E,ApoE)均存在糖基化現(xiàn)象[12];體外實(shí)驗(yàn)證實(shí),神經(jīng)元中也存在AGEs[13],提示中樞神經(jīng)系統(tǒng)中AGEs 蓄積與AD患者神經(jīng)元的變性死亡有關(guān)。
1.3 AGEs受體RAGE的化學(xué)結(jié)構(gòu)及特性 RAGE是一組完整的膜蛋白,由400 多個(gè)氨基酸組成,分別由較大的細(xì)胞外段、跨膜段及短的細(xì)胞內(nèi)段3個(gè)部分構(gòu)成[14]。其細(xì)胞外域含3個(gè)免疫球蛋白樣區(qū)域:一個(gè)V型結(jié)構(gòu)域和緊連的兩個(gè)C型結(jié)構(gòu)域(C1/C2),V結(jié)構(gòu)域?yàn)榕潴w結(jié)合區(qū)域[15]??扇苄訰AGE (soluble RAGE,sRAGE) 即RAGE 細(xì)胞外段,為配體結(jié)合部位,具有V型片段緊接著兩個(gè)C型片段的免疫球蛋白樣結(jié)構(gòu)[14]。RAGE在正常人的肺、腎等器官中也存在,但表達(dá)低下,在阿爾茨海默病、糖尿病、透析相關(guān)性腎病、動(dòng)脈粥樣硬化及多種腫瘤等疾病狀態(tài)下表達(dá)明顯升高[16]。RAGE配體主要包括AGEs、β-淀粉樣肽(β-amyloid,Aβ)、高遷移率族蛋白B1(high mobility group box 1,HMGB1),S100/鈣粒蛋白等[17]。
2.1 AGEs與Aβ和Tau蛋白的關(guān)系 大量研究表明,AD的病理學(xué)特征主要包括神經(jīng)元內(nèi)的NETs和神經(jīng)元外的老年斑形成,NETs則主要由過(guò)度磷酸化的Tau蛋白構(gòu)成,而老年斑主要由Aβ聚集而成[18-19]。通過(guò)免疫組織化學(xué)研究也發(fā)現(xiàn)AGEs與AD的兩大病理特征為NETs與老年斑的共定位[20]。AGEs的修飾可以延長(zhǎng)Aβ的半衰期,導(dǎo)致可溶性Aβ變成不溶性的纖維樣聚合體而沉積,AGEs再通過(guò)交聯(lián)作用促使更多的Aβ生成淀粉樣纖維不斷沉積,從而形成惡性循環(huán);同時(shí),Aβ可激活小膠質(zhì)細(xì)胞,誘導(dǎo)前炎癥因子白細(xì)胞介素-1β(interleukin-1β,IL-1β)和轉(zhuǎn)化生長(zhǎng)因子-α(transforming growth factor-α,TGF-α)的釋放,誘發(fā)AD早期的炎癥反應(yīng),而糖基化的Aβ可以通過(guò)上調(diào)RAGE和糖原合成酶激酶-3(glycogen synthase kinase,GSK-3)的表達(dá)加劇神經(jīng)毒性[21]。
外源性AGEs可誘導(dǎo)體內(nèi)、體外Tau蛋白多個(gè)位點(diǎn)的過(guò)度磷酸化,伴隨有RAGE的激活、蛋白激酶B(protein kinase B,PKB/Akt)的抑制、p38激活、GSK-3激活和細(xì)胞外調(diào)節(jié)蛋白激酶(ERK1/2)的激活,并且通過(guò)抑制興奮性突觸后電位的長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP)、減少樹突棘數(shù)目以及降低突觸蛋白水平,從而影響空間記憶功能[21];過(guò)度磷酸化的Tau蛋白與微管的結(jié)合能力降低,喪失了促進(jìn)微管裝配的功能,引起微管解聚,降低軸突的轉(zhuǎn)運(yùn)效率,損害突觸功能,導(dǎo)致神經(jīng)損傷和認(rèn)知功能障礙[22]。
2.2 AGEs與細(xì)胞代謝的關(guān)系 AGEs激活RAGE,上調(diào)細(xì)胞內(nèi)的活性氧基團(tuán)(reactive oxygen species,ROS)水平,使煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的活性增加,有助于增強(qiáng)Ras相關(guān)的C3肉毒素底物1(Ras-related C3botulinum toxin substrate 1,Rac1)的表達(dá),從而促進(jìn)細(xì)胞凋亡、抑制細(xì)胞增殖。同時(shí),AGEs可以通過(guò)刺激內(nèi)皮祖細(xì)胞上的RAGE受體,激活c-Jun氨基末端激酶(c-jun-N-terminal kinase,JNK)信號(hào)通路,與AGEs相互作用誘導(dǎo)細(xì)胞凋亡[23]。Chen等[24]研究發(fā)現(xiàn),抑制RAGE和氧化應(yīng)激能明顯降低AGEs誘導(dǎo)的細(xì)胞損傷,使凋亡相關(guān)因子caspase-3,caspase-9等表達(dá)明顯降低。Ko等[25]在神經(jīng)母細(xì)胞瘤細(xì)胞中發(fā)現(xiàn)AGEs誘導(dǎo)ROS生成增加,上調(diào)葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)表達(dá),啟動(dòng)內(nèi)質(zhì)網(wǎng)應(yīng)激,導(dǎo)致細(xì)胞凋亡增加。也有研究發(fā)現(xiàn)細(xì)胞內(nèi)的AGEs可使細(xì)胞骨架蛋白發(fā)生交聯(lián),通過(guò)干擾軸突運(yùn)輸和蛋白裝配干擾細(xì)胞功能,引起細(xì)胞損傷和凋亡[26]。還有研究表明,AGEs可通過(guò)自身的直接細(xì)胞毒性,特異性抑制功能性蛋白,促進(jìn)蛋白交聯(lián)、聚集,產(chǎn)生ROS,使蛋白質(zhì)、脂質(zhì)、核酸發(fā)生非酶糖基化,引起結(jié)構(gòu)和功能的改變,導(dǎo)致微血管的通透性增高[27],促進(jìn)神經(jīng)元細(xì)胞凋亡,Takeuchi等[28]發(fā)現(xiàn)AGEs可致BHK21倉(cāng)鼠成纖維細(xì)胞、人神經(jīng)母細(xì)胞瘤細(xì)胞、原代星型膠質(zhì)細(xì)胞、單核細(xì)胞和鼠小膠質(zhì)細(xì)胞死亡。
2.3 AGEs與神經(jīng)元的關(guān)系 研究表明 ,在AD患者中,細(xì)胞周期相關(guān)基因可在不同的神經(jīng)元中共表達(dá),這可能與異常的有絲分裂信號(hào)有關(guān)。小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞在淀粉樣斑塊附近增生,由斑塊活化的神經(jīng)膠質(zhì)細(xì)胞可分泌斑塊成分或細(xì)胞因子,從而誘導(dǎo)神經(jīng)元發(fā)出有絲分裂信號(hào)[13]。
AGEs可能是這些有絲分裂的化合物之一,在原代神經(jīng)元細(xì)胞中AGEs可激活P42/44絲裂原活化蛋白激酶(MAPK)級(jí)聯(lián)通路,刺激靜息神經(jīng)元重新進(jìn)入S/G2期,促進(jìn)AD患者的神經(jīng)變性過(guò)程[13];在AD患者的大腦中可見大量AGEs顆粒陽(yáng)性的神經(jīng)元,多沉積于多倍體神經(jīng)元附近;錐體細(xì)胞胞質(zhì)內(nèi)也有較強(qiáng)的AGEs免疫反應(yīng),AGEs通過(guò)MAPK級(jí)聯(lián)啟動(dòng)有絲分裂信號(hào),可能是觸發(fā)神經(jīng)元從細(xì)胞周期G0過(guò)渡到G1期的一個(gè)潛在因素[13]。
2.4 AGEs與線粒體功能障礙的關(guān)系 線粒體功能障礙可能是導(dǎo)致AGEs所致的神經(jīng)細(xì)胞病變的一個(gè)重要原因。有研究表明,用AGEs處理的細(xì)胞會(huì)失去線粒體功能的完整性,產(chǎn)生的ROS導(dǎo)致線粒體膜電位的破壞,使線粒體通透性發(fā)生變化,細(xì)胞同時(shí)還釋放細(xì)胞色素C,促進(jìn)caspase-3的表達(dá),誘導(dǎo)細(xì)胞凋亡[29]。AGEs-RAGE還能導(dǎo)致能量代謝障礙和線粒體功能障礙,從而影響認(rèn)知功能[30]。線粒體呼吸鏈通過(guò)激活RAGE誘導(dǎo)ROS的產(chǎn)生,這使得AGEs處理的內(nèi)皮細(xì)胞上血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)表達(dá)上調(diào)和增加[31]。RAGE可以作為一種神經(jīng)元細(xì)胞表面的載體,依賴p38絲裂原激活蛋白激酶(p38MAPK)信號(hào)途徑而發(fā)生活化,導(dǎo)致細(xì)胞線粒體功能障礙、氧化應(yīng)激,最終發(fā)生神經(jīng)損傷[32]。
2.5 AGEs與氧化應(yīng)激的關(guān)系 越來(lái)越多的研究表明,氧化應(yīng)激在AD的發(fā)病機(jī)制中有非常重要的作用。AGEs與RAGE結(jié)合導(dǎo)致ROS生成增加,攻擊細(xì)胞膜脂質(zhì)、DNA和蛋白質(zhì),產(chǎn)生氧化應(yīng)激損傷,而升高的細(xì)胞間ROS水平反過(guò)來(lái)又進(jìn)一步刺激AGEs的不斷生成,形成“氧化應(yīng)激-AGEs”的惡性循環(huán)[33]。Hayashi等[33]研究表明,氧化應(yīng)激引起內(nèi)質(zhì)網(wǎng)功能紊亂,在缺血性神經(jīng)細(xì)胞損傷中發(fā)揮著重要作用。也有研究表明,AGEs生成過(guò)程中的氧自由基生成增加,機(jī)體抗氧化能力下降,過(guò)量的氧自由基通過(guò)攻擊細(xì)胞膜脂質(zhì)、蛋白質(zhì)和DNA造成組織細(xì)胞損傷[34]。
2.6 AGEs與自噬的關(guān)系 自噬是一種高度保守的分解代謝過(guò)程,可以調(diào)節(jié)真核細(xì)胞能量平衡[35],而過(guò)度自噬可能導(dǎo)致細(xì)胞損傷[36]。研究表明,AGEs前體二羰基化合物可與蛋白質(zhì)、脂類和核酸直接反應(yīng),修改其結(jié)構(gòu)并影響其組織微環(huán)境,它們還可以誘導(dǎo)ROS升高,增強(qiáng)細(xì)胞的氧化應(yīng)激反應(yīng),AGEs-RAGE信號(hào)通路的激活則會(huì)介導(dǎo)炎癥、氧化應(yīng)激、自噬和細(xì)胞凋亡,導(dǎo)致基因組不穩(wěn)定和癌癥發(fā)生[37]。另有研究表明,AGEs可通過(guò)PI3K/AKT/mTOR和ERK信號(hào)通路誘導(dǎo)自噬過(guò)程[38]。
2.7 AGEs與血腦屏障(BBB)的關(guān)系 BBB通過(guò)特定的運(yùn)輸系統(tǒng)為大腦提供營(yíng)養(yǎng),同時(shí)促進(jìn)代謝產(chǎn)物的排除,保護(hù)大腦,避免有害物質(zhì)導(dǎo)致的損害[39]。糖基化使內(nèi)皮細(xì)胞和(或)底層基質(zhì)蛋白內(nèi)皮細(xì)胞的屏障功能下降;同時(shí)糖基化會(huì)導(dǎo)致RAGE的表達(dá)上調(diào),而使緊密連接蛋白(zonula occludens-1,ZO-1)的表達(dá)下降,促進(jìn)白細(xì)胞介素6(interleukin-6,IL-6)和白細(xì)胞介素8(interleukin-8,IL-8)等炎癥介質(zhì)分泌,從而影響B(tài)BB的通透性[40]。
2.8 AGEs與炎癥反應(yīng)的關(guān)系 研究表明,AGEs水平升高可刺激細(xì)胞因子或趨化因子的分泌。AGEs通過(guò)AGEs-RAGE信號(hào)軸,導(dǎo)致ROS生成增加,誘導(dǎo)活化轉(zhuǎn)錄因子,如核轉(zhuǎn)錄因子κB(NF-κB)、信號(hào)轉(zhuǎn)導(dǎo)子及轉(zhuǎn)錄因子活化子STAT3(signal transducer and activation of transcription 3,STAT3)、缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)等的產(chǎn)生,增加細(xì)胞因子(如IL-1β、IL-6)的分泌,促進(jìn)細(xì)胞間黏附分子-1(intercelular adhesion molecule-1,ICAM-1)、內(nèi)皮素 -1(endothelin-1,ET-1)生成,使內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthases,eNOS)的表達(dá)降低,而前述過(guò)程貫穿AD病變的始終[41]。研究表明AGEs可以濃度依賴的方式增加巨噬細(xì)胞脂質(zhì)積累,升高巨噬細(xì)胞膽固醇酯的水平,降低高密度脂蛋白(highdensity lipoprotein,HDL)介導(dǎo)的膽固醇流出,并通過(guò)激活過(guò)氧化物酶體增殖物活化受體γ(peroxisome proliferators-activated receptor gamma,PPARγ)和NF-κB信號(hào)通路導(dǎo)致ROS和活性氮(reactive nitrogen species,RNS)的產(chǎn)生,從而引發(fā)一系列炎癥反應(yīng)[42]。
AGEs可以通過(guò)多種途徑促進(jìn)AD的發(fā)生和發(fā)展,阻斷AGEs及其受體RAGE的作用途徑,有望成為治療的新靶點(diǎn),對(duì)認(rèn)知障礙的防治具有重要的實(shí)際意義。
3.1 阻斷AGEs作用途徑 AGEs抑制劑通過(guò)減少Aβ的聚集及毒性,改變AGEs的結(jié)構(gòu),從而抑制AGE與其受體結(jié)合,通過(guò)多種保護(hù)性作用機(jī)制而發(fā)揮治療AD的作用。AGEs抑制劑氨基胍可減少AGEs介導(dǎo)的糖尿病血管并發(fā)癥的發(fā)生;替尼西坦可與糖和糖基化蛋白反應(yīng),在離體條件下抑制AGEs導(dǎo)致的氨基酸和蛋白質(zhì)交聯(lián),作為改善認(rèn)知的抗癡呆藥[43]。Ishibashi等[44]的研究表明,諾麗果正丁醇提取物可以抑制AGEs的有害影響,打破RAGE在內(nèi)皮細(xì)胞表達(dá)與ROS產(chǎn)生之間的惡性循環(huán);也有研究表明西地那非能保護(hù)線粒體免受AGEs引起的損傷,阻止由于線粒體功能障礙途徑和線粒體膜電位降低等原因所致的細(xì)胞凋亡,從而改善AD患者的認(rèn)知功能障礙[29]。
3.2 阻斷AGEs-RAGE通路作用途徑 大量研究表明,通過(guò)阻斷AGEs-RAGE軸可改善認(rèn)知障礙[45-49]。Liu等[45]研究發(fā)現(xiàn),過(guò)表達(dá)肌動(dòng)蛋白解聚因子(actin depolymerizing factor,ADF)可抑制AGEs誘導(dǎo)的蛋白質(zhì)表達(dá),上調(diào)RAGE并減少ROS的形成,表明ADF可通過(guò)與AGEs相互作用改善認(rèn)知障礙。Chen等[46]研究證實(shí)法舒地爾和FPS-ZM1(一種RAGE特異性抑制劑)通過(guò)抑制AGEs/RAGE/Rho/ROCK通路,延緩AD的進(jìn)展。Hong等[47]研究發(fā)現(xiàn), FPS-ZM1可以阻斷RAGE的產(chǎn)生和AGEs-RAGE介導(dǎo)的氧化應(yīng)激,增強(qiáng)腦組織的抗氧化能力,降低AGEs誘導(dǎo)的神經(jīng)損傷,從而改善認(rèn)知功能,所以有望成為AD的防治藥物。Piperi等[48]研究發(fā)現(xiàn)激活胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)受體可抑制NADPH氧化酶的活性,并通過(guò)抑制NF-κB下調(diào)RAGE的表達(dá),降低ROS生成,可能對(duì)糖尿病相關(guān)的AD有治療價(jià)值。Matsui等[49]研究表明蘿卜硫素通過(guò)抑制AGEs-RAGE軸,減少AGEs誘導(dǎo)的內(nèi)皮細(xì)胞炎癥反應(yīng)。
3.3 生活方式干預(yù) 在機(jī)體內(nèi),飲食是AGEs親氧化和促炎反應(yīng)的一個(gè)主要環(huán)境來(lái)源,最近研究表明,來(lái)自高脂肪和干熱加工食品的AGEs消費(fèi)增加,可增加糖尿病患者和肥胖者大腦中AGEs的積累[50]。食品和吸煙衍生的AGEs也被證明在許多與衰老有關(guān)的疾病中發(fā)揮病理作用,減少食物中的AGEs水平,限制AGEs豐富的飲食,在食品的加工、貯藏和運(yùn)輸?shù)冗^(guò)程中可通過(guò)選擇性的縮短加工食品的時(shí)間、降低加工溫度、降低食品pH,阻止飲食中AGEs的吸收可能,這些措施可能是減緩老化過(guò)程的一種新的治療策略,有可能減少或阻止AD的破壞性癥狀的發(fā)生[51]。有研究表明,果糖和其代謝產(chǎn)物的高反應(yīng)性可能有助于促進(jìn)細(xì)胞內(nèi)AGEs的形成和血管并發(fā)癥的發(fā)生,減少果糖的攝入及拮抗果糖在體內(nèi)的作用可能改善認(rèn)知障礙[52]。
研究表明,血清AGEs和sRAGE水平可以作為認(rèn)知障礙患者的血清標(biāo)志物,預(yù)測(cè)2型糖尿病患者早期認(rèn)知功能下降[53];而Reynaert等[54]的研究表明,AGEs或sRAGE不太可能作為疾病的生物標(biāo)志物,仍需更多的研究明確其應(yīng)用價(jià)值。通過(guò)AGEs及其受體RAGE途徑改善認(rèn)知障礙的研究多為實(shí)驗(yàn)研究,人體試驗(yàn)相對(duì)較少,TTP488(也被稱為Azeliragon,一種選擇性RAGE小分子抑制劑)應(yīng)用于AD患者試驗(yàn),因其不良反應(yīng)導(dǎo)致試驗(yàn)終止,新的、安全有效藥物臨床應(yīng)用尚有待探索[55-56]。既往研究表明,AGEs受體RAGE的GLy82Ser基因多態(tài)性可導(dǎo)致sRAGE水平下降,在AD和糖尿病微循環(huán)并發(fā)癥的發(fā)生發(fā)展中起著重要作用[57],但相關(guān)研究仍較少,需要進(jìn)一步證實(shí)。大量動(dòng)物實(shí)驗(yàn)表明,中醫(yī)尤其是中藥通過(guò)AGEs/RAGE途徑治療認(rèn)知障礙有很大前景,但其臨床應(yīng)用尚待進(jìn)一步探索。臨床流行病學(xué)研究顯示,AD和VD共享血管危險(xiǎn)因素,但其共同發(fā)病機(jī)制仍不清楚[52,58],AGEs及其受體在AD和VD的共同作用機(jī)制仍須進(jìn)一步探索。
[1]Huo YC, Tao Y, Peng ZY,et al. Relationship between cognitive impairment and hypercholesterolemia in elderly patients with white matter lesions[J]. Med J Chin PLA, 2016, 41(12): 1010-1015. [霍穎超, 陶永, 彭澤艷, 等. 老年腦白質(zhì)病變患者認(rèn)知功能障礙與高膽固醇血癥的關(guān)系[J]. 解放軍醫(yī)學(xué)雜志,2016, 41(12): 1010-1015.]
[2]First MB. Diagnostic and statistical manual of mental disorders,5th edition, and clinical utility[J]. J Nerv Ment Dis, 2013,201(9): 727-729.
[3]Khachaturian ZS. Revised criteria for diagnosis of Alzheimer's disease: National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 253-256.
[4]Alzheimer's Association. 2015 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2015, 11(3): 332-384.
[5]Ko SY, Ko HA, Chu KH,et al. The Possible mechanism of advanced glycation end products (AGEs) for Alzheimer's disease[J]. PLoS One, 2015, 10(11): e0143345.
[6]Wang JQ, Jiang WY, Zhang L,et al. Hypoglycemic effects of saponins,flavonoids,and polysaccharides of fenugreek with different component compatibilities on type 1 diabetic rats[J]. J Jilin Univ (Med Ed), 2016, 42(6): 1081-1086, 12. [汪佳琦, 姜文月, 張琳, 等. 胡蘆巴中皂苷、黃酮和多糖組分不同配伍對(duì)1型糖尿病大鼠的降血糖作用[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2016, 42(6): 1081-1086, 12.]
[7]Nau JY. 100 years later, what to know about Maillard reaction and French fries toxicity?[J]. Rev Med Suisse, 2014, 10(424):772-773.
[8]Li J, Liu D, Sun L,et al. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective[J]. J Neurol Sci, 2012, 317(1-2): 1-5.
[9]Jakus V, Bauerova K, Rietbrock N. Effect of aminoguanidine and copper (Ⅱ) ions on the formation of advanced glycosylation end products.In vitrostudy on human serum albumin[J].Arzneimittelforschung, 2001, 51(4): 280-283.
[10]Salahuddin P, Rabbani G, Khan RH. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach[J]. Cell Mol Biol Lett, 2014,19(3): 407-437.
[11]Horie K, Miyata T, Yasuda T,et al. Immunohistochemical localization of advanced glycation end products, pentosidine,and carboxymethyllysine in lipofuscin pigments of Alzheimer's disease and aged neurons[J]. Biochem Biophys Res Commun,1997, 236(2): 327-332.
[12]Kudo T, Imaizumi K, Tanimukai H,et al. Are cerebrovascular factors involved in Alzheimer's disease?[J]. Neurobiol Aging,2000, 21(2):215-224.
[13]Kuhla A, Ludwig SC, Kuhla B,et al. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer's disease brain[J]. Neurobiol Aging, 2015,36(2): 753-761.
[14]Boulanger E, Dequiedt P, Wautier JL. Advanced glycosylation end products (AGE): new toxins?[J]. Néphrologie, 2002, 23(7):351-359.
[15]Sasaki N, Toki S, Chowei H,et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease[J]. Brain Res,2001, 888(2): 256-262.
[16]Yan SD, Chen X, Fu J,et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease[J]. Nature, 1996,382(6593): 685-691.
[17]Srikanth V, Maczurek A, Phan T,et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease[J].Neurobiol Aging, 2011, 32(5): 763-777.
[18]Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons[J]. Prog Neurobiol, 2008, 85(2): 148-175.
[19]Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: Sharing of a unique cerebrovascular amyloid fibril protein[J]. Biochem Biophys Res Commun, 1984, 122(3):1131-1135.
[20]Krautwald M, Münch G. Advanced glycation end products as biomarkers and gerontotoxins – A basis to explore methylglyoxallowering agents for Alzheimer's disease?[J]. Exp Gerontol, 2010,45(10): 744-751.
[21]Li XH, Lv BL, Xie JZ,et al. AGEs induce Alzheimer-like tau pathology and memory deficitviaRAGE-mediated GSK-3 activation[J]. Neurobiol Aging, 2012, 33(7): 1400-1410.
[22]Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far[J]. Nat Rev Neurol, 2016, 12(1): 15-27.
[23]Chen J, Jing J, Yu S,et al. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis[J]. Pharmacol Res Perspect, 2016, 8(5): 2169-2178.
[24]Chen S, Yin L, Xu Z,et al. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis[J]. Neurosci Lett, 2015,612: 193-198.
[25]Ko SY, Ko HA, Chu KH,et al. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer's disease[J]. PLoS One, 2015, 10(11): e0143345.
[26]Dukic-Stefanovic S, Schinzel R, Riederer P,et al. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs?[J]. Biogerontology, 2001, 2(1): 19-34.
[27]Daugherty A, Dunn JL, Rateri DL,et al. Myeloperoxidase,a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions[J]. J Clin Invest, 1994, 94(1): 437-444.
[28]Takeuchi M, Yamagishi S. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer's disease[J]. Curr Pharm Des, 2008, 14(10): 973-978.
[29]Sung SK, Woo JS, Kim YH,et al. Sildenafil ameliorates advanced glycation end products-induced mitochondrial dysfunction in HT-22 hippocampal neuronal cells[J]. J Korean Neurosurg Soc,2016, 59(3): 259-268.
[30]Dar TA, Sheikh IA, Ganie SA,et al. Molecular linkages between diabetes and Alzheimer's disease: current scenario and future prospects[J]. Cns Neurol Disord Drug Targets, 2014, 13(2):290-298.
[31]Basta G, Lazzerini G, Del TS,et al. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products[J].Arterioscler Thromb Vasc Biol, 2005, 25(7): 1401-1407.
[32]Takuma K, Fang F, Zhang W,et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction[J]. Proc Natl Acad Sci U S A, 2009,106(47): 20021.
[33]Hayashi T, Saito A, Okuno S,et al. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons[J]. J Cereb Blood Flow Metab, 2005,25(1): 41-53.
[34]Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria function[J]. Curr Diabetes Rev, 2009,5(2): 120-144.
[35]Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases[J]. Nat Rev Drug Discov, 2012, 11(9): 709-730.
[36]Fulda S. Autophagy and cell death[J]. Autophagy, 2012, 8(8):1250-1251.
[37]Piperi C, Adamopoulos C, Papavassiliou AG. Potential of glycative stress targeting for cancer prevention[J]. Cancer Lett,2017, 390: 153-159.
[38]Hou X, Hu Z, Xu H,et al. Advanced glycation endproducts trigger autophagy in cadiomyocyteviaRAGE/PI3K/AKT/mTOR pathway[J]. Cardiovasc Diabetol, 2014, 13: 78.
[39]Hawkins RA, O'Kane RL, Simpson IA,et al. Structure of the blood-brain barrier and its role in the transport of amino acids[J]. J Nutr, 2006, 136(1 Suppl): 218S-226S.
[40]Hussain M, Bork K, Gnanapragassam VS,et al. Novel insights in the dysfunction of human blood-brain barrier after glycation[J].Mech Ageing Dev, 2016, 155: 48.
[41]Riehl A, Németh J, Angel P,et al. The receptor RAGE: Bridging inflammation and cancer[J]. Cell Commun Signal, 2009, 7(1):1-7.
[42]Lei X, Wang YR, Li PC,et al. Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products:increasing uptake, esterification and decreasing efflux of cholesterol[J]. Lipids Health Dis, 2016, 15(1): 161.
[43]Braak H, Braak E. Neuropil threads occur in dendrites of tanglebearing nerve cells[J]. Neuropathol Appl Neurobiol, 1988,14(1): 39-44.
[44]Ishibashi Y, Matsui T, Isami F,et al. N-butanol extracts of Morinda citrifolia suppress advanced glycation end products(AGE)-induced inflammatory reactions in endothelial cells through its anti-oxidative properties[J]. BMC Complement Altern Med, 2017, 17(1): 137.
[45]Liu X, Zhang R, Di H,et al. The role of actin depolymerizing factor in advanced glycation endproducts-induced impairment in mouse brain microvascular endothelial cells[J]. Mol Cell Biochem, 2017, 433(1-2): 103-112.
[46]Chen J, Sun Z, Jin M,et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway[J]. J Neuroimmunol, 2017, 305: 108-114.
[47]Hong Y, Shen C, Yin Q,et al. Effects of RAGE-Specific inhibitor FPS-ZM1 on amyloid-β metabolism and AGEs-induced inflammation and oxidative stress in rat hippocampus[J].Neurochem Res, 2016, 41(5): 1192-1199.
[48]Piperi C, Adamopoulos C, Papavassiliou AG. Potential of glycative stress targeting for cancer prevention[J]. Cancer Lett,2017, 390: 153-159.
[49]Matsui T, Nakamura N, Ojima A,et al. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta[J]. Nutr Metab Cardiovasc Dis,2016, 26(9): 797-807.
[50]West RK, Moshier E, Lubitz I,et al. Dietary advanced glycation end products are associated with decline in memory in young elderly[J]. Mech Ageing Dev, 2014, 140(1): 10-12.
[51]Fukushima Y, Daida H, Morimoto T,et al. Relationship between advanced glycation end products and plaque progression in patients with acute coronary syndrome: The JAPAN-ACS Substudy[J]. Cardiovasc Diabetol, 2013, 12: 5.
[52]Perneczky R, Tene O, Attems J,et al. Is the time ripe for new diagnostic criteria of cognitive impairment due to cerebrovascular disease? Consensus report of the International Congress on Vascular Dementia working group[J]. Bmc Med,2016, 14(1): 162.
[53]Wang P, Huang R, Lu S,et al. RAGE and AGEs in mild cognitive impairment of diabetic patients: a cross-sectional study[J]. PLoS One, 2016, 11(1): e0145521.
[54]Reynaert NL, Gopal P, Rutten EP,et al. Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease[J]. Int J Biochem Cell Biol, 2016, 81(Pt B): 403-418.
[55]Burstein AH, Grimes I, Galasko DR,et al. Effect of TTP488 in patients with mild to moderate Alzheimer's disease[J]. Bmc Neurol, 2014, 14: 12.
[56]Godyń J, Jończyk J, Panek D,et al. Therapeutic strategies for Alzheimer's disease in clinical trials[J]. Pharmacol Rep, 2016,68(1): 127-138.
[57]Daborg J, Otter MV, Sj?lander A,et al. Replication of an association between the rage g82s polymorphism and Alzheimer's Disease[J]. Alzheimers Dement, 2010, 6(4): e25.
[58]Corriveau RA, Bosetti F, Emr M,et al. The science of vascular contributions to cognitive impairment and dementia(vcid): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline[J]. Cell Mol Neurobiol, 2016, 36(2): 281-288.