• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the Performance of Si-based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation

    2018-01-12 05:57:26PENGBoXUYaoLinMULDERFokko
    物理化學(xué)學(xué)報(bào) 2017年11期
    關(guān)鍵詞:黑磷硅基負(fù)極

    PENG Bo XU Yao-Lin MULDER Fokko M.,*

    ?

    Improving the Performance of Si-based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation

    PENG Bo1,2XU Yao-Lin2MULDER Fokko M.2,*

    (1;2)

    Si-based anode materials in Li-ion batteries (LIBs) suffer from severe volume expansion/contraction during repetitive discharge/charge, which results in the pulverization of active materials, continuous growth of solid electrolyte interface (SEI) layers, loss of electrical conduction, and, eventually, battery failure. Herein, we present unprecedented low-content phosphorene (single-layer black phosphorus) encapsulation of silicon particles as an effective method for improving the electrochemical performance of Si-based LIB anodes. The incorporation of low phosphorene amounts (1%, mass fraction) into Si anodes effectively suppresses the detrimental effects of volume expansion and SEI growth, preserving the structural integrity of the electrode during cycling and achieving enhanced Coulombic efficiency, capacity retention, and cycling stability for Li-ion storage. Thus, the developed method can also be applied to other battery materials with high energy density exhibiting substantial volume changes.

    Phosphorene; Li ion battery; Anode materials; Silicon

    1 Introduction

    In the recent years research on Li ion batteries (LIBs) has intensified due to the extremely high demand in large scale and high energy density energy storage devices all over the world, and LIBs are playing a dominant role in the market of rechargeable batteries1–4.

    Si based materials have been intensively studied as the anodes for LIBs due to its highest theoretical capacity for Li ion storage (4200 mAh?g?1for Li4.4Si)5–9. However, a large amount of volume expansion (> 300%) takes place when Li ions are inserted into the Si structure, while the structure collapses upon the extraction of Li ions which leads to the irreversible and adverse material pulverization, resulting in the loss of electrical conduction between the grains of the active materials7,9. Moreover, an irreversible solid electrolyte interface (SEI) grows continuously due to the decomposition of electrolyte solvents and their reactions with the active materials and causes the loss of active materials7,10.

    Various methods have been applied to address these issues. Surface encapsulation with nanostructured carbonaceous materials such as graphene has been reported to result in positive effects in suppressing the volume change upon Li ion uptake and in maintaining the electrode structural integrity, which enhances the cycling stability during the discharge/ charge11–15. Exhibiting a low band gap of 0.3–2 eV16,17and a similar layered structure as graphene, phosphorene (single layer black phosphorus) has recently attracted much research interest in semiconductor science and energy storage devices including LIBs due to its 2D structure, high charge carrier mobility and low band gap18–21. Zhang.20reported that Li ion diffusion in phosphorene is about 104times faster than in graphene which enables a remarkable high rate performance. Therefore the incorporation of phosphorene in Si anodes may lead to similar effects as graphene and may allow even facilitated Li ion uptake when compared to graphene.

    Moreover, phosphorus doping within the Si crystal lattice has also been proven to be an effective method to improve the electrochemical performance of Si anodes in LIBs22–26. The incorporation of phosphorus leads to the suppression of volume expansion, enhancement in the electronic conductivity and the improved structural stability of the electrodes, and thus the cycling stability is improved.

    Inspired by the methods of surface encapsulation and phosphorus doping, in this work, we have developed a Si anode that combines the above approaches. Ball milled nanoscale Si particles were encapsulated by mechanochemically synthesized and liquid-phase exfoliated phosphorene and the amount of phosphorene present next to Si is kept low (1%, mass fraction) with the rationale that it should serve as a thin coating only on Si particles and their aggregates. The phosphorene encapsulated Si particles exhibit a significantly improved capacity retention and cycling stability for reversible Li ion storage compared to bare Si by suppressing the volume swelling and SEI growth during discharge/charge.

    2 Experimental and computational section

    2.1 Synthesis of black phosphorus

    Black phosphorus was synthesizeda mechanochemical method. Specifically commercial red phosphorus (Alfa Aesar, 99%) was ball milled at 400 r?min?1for 70 h with a ball-to-powder mass ratio of 100:1 under argon atmosphere using a Fritsch Planetary Mono Mill PULVERISETTE 6, during which red phosphorus was mechanochemically transformed to black phosphorus.

    2.2 Synthesis of phosphorene

    Phosphorene was produceda liquid-phase exfoliation approach which was adopted from the previously reports27,28. The as-synthesized black phosphorus was dispersed in-methyl-2-pyrrolidone (NMP) in a concentration of 0.5 mg?mL–1and sonicated in a ultrasonic bath for 60 min, right after which it was centrifuged using an Eppendorf 5804 centrifuge for 60 min operating at 4000 r?min?1. This sonication-centrifugation treatment was repeated for 5 times. Subsequently, the supernatant fluid was decanted. The black phosphorus sediments could be reusable in the phosphorene production. This method resulted in a phosphorene yield of 17 μg?mL–1in NMP according to the previous report21.

    2.3 Synthesis of phosphorene encapsulated Si

    Phosphorene encapsulated Si (-Si) was prepared by the following procedures: Firstly, silicon powder (Aldrich, ?325 mesh, 99%) was ball milled for 10 h at 200 r?min?1with a ball-to-powder ratio of 50 : 1 in mass. Then, the ball milled Si particles were dispersed in NMP and sonicated in an ultrasonic bath for 5 h to reduce the aggregates formed in ball milling. Subsequently the phosphorene saturated NMP solution was added (phosphorene : Si mass ratio = 1 : 99) and uniformly mixed with the assistance of magnetic stirring. Finally, the well-mixed liquid was heated at 150 °C under argon environment to evaporate the solvent during which the solution was stirred continuously. The-Si sample was obtained when NMP was completely evaporated.

    2.4 Sample characterization

    X-ray diffraction (XRD) patterns were acquired using a PANalytical X’Pert Pro PW3040/60 diffractometer that uses a CuKsource working at 45 kV and 40 mA. Raman spectroscopy was performed with a Thermo Scientific Nicolet Almega XR Dispersive Raman Spectrometer. Scanning electron microscopy (SEM) was carried out with a JEOL JSM 6010F scanning electron microscope which operates at an accelerating voltage of 5 kV; SEM based Energy-dispersive X-ray spectroscopy (EDX) was conducted at an accelerating voltage of 20 kV. X-ray photoelectron spectroscopy (XPS) spectra were obtained using aKThermo Fisher Scientific spectrometer.

    2.5 Electrode preparation

    The working electrodes were prepared with a slurry based method. Bare Si/-Si powders, super P carbon black and sodium carboxymethyl cellulose (NaCMC) binder were mixed with a mass ratio of 8:1:1 in deionized water and ball milled for 2 h at 200 r?min?1to obtain a homogeneous slurry. Subsequently the slurry was cast onto a piece of Cu foil current collector (12.5 μm, Goodfellow) using a doctor blade. After drying in a vacuum oven operating at 70 °C overnight, the electrodes were mechanically pressed and punched into circular pieces for the final battery assembly. The mass loading of Si/-Si on the electrodes was about 1.0 mg?cm?2.

    2.5 Electrochemistry measurement

    Bare Si and-Si anodes based Li-ion coin cells (CR 2032) were assembled in an argon atmosphere glove box. Li metal was applied as the counter electrode and borosilicate glass fiber (Whatman) was used as the separator. The working electrolyte was 1 mol?L?1LiPF6dissolved in ethylene carbonate (EC) and diethyl carbonate (DEC) (EC/DEC volume ratio = 1 : 1) with the addition of 10% fluoroethylene carbonate (FEC). The electrochemical properties were characterized using a Maccor 4600 battery cycler and the voltage range for discharge/charge was limited to 0.01–1 VLi/Li+.

    3 Results and discussion

    SEM images (Fig.1(a, b)) shows that pristine red phosphorus appears as big particles mostly on tens of microns scale; after ball milling, the particle size is much reduced and the as-synthesized black phosphorus appears to be submicro-/ nanosized particles and agglomerations of these small particles.

    In the XRD pattern of the as-synthesized black phosphorus (Fig.1c), all peaks observed can be assigned to characteristic Bragg diffraction peaks of black phosphorus (Pearson’s Crystal Data (PCD) #1639521, space group:) indicating the formation of black phosphorus.

    The Raman spectrum of the pristine red phosphorus (Fig.1d) is consistent with that of the amorphous red phosphorus in previous reports29–32. The ball milled sample shows three distinct peaks at 358, 433, 461 cm?1corresponding to the1g,2gand2gvibrational Raman modes, respectively, of black phosphorus30,33,34. This is consistent with the XRD results indicating the mechanochemical transformation from red phosphorus to black phosphorus.

    The particle size of Si has been significantly reduced during the high energy ball milling, which is evidenced by the obvious peak broadening of the XRD peaks of crystalline Si (Fig.2a). Weak peaks corresponding to SiO2can also be recognized from the XRD patterns which corresponds to the unavoidable surface oxidation of Si particles when the ball milled Si sample was exposed to air35,36. The SEM image (Fig.2b) shows that ball milled Si consists of submicro-/ nanosized particles and agglomerations. SEM-EDX element mapping on the-Si sample (Fig.2(c–e)) reports the homogeneous distribution of elemental phosphorus next to Si, which indicates a uniform encapsulation of phosphorene on the Si particles.

    The Si 2XPS spectrum of ball milled Si (Fig.2f) shows a major peak of Si at 99.8 eV and a weak peak at 102.5 eV corresponding to the surface oxidation of Si particles, which is consistent with the XRD analysis; while in the XPS spectrum of the-Si sample (Fig.2g), except for the characteristic peak of Si at 99.4 eV, a strong peak is observedat 98.2 eV which can be assigned to the Si–P bond, and a peak at 102.3 eV that can be of allocated to Si–O/Si–O–P. The peaks corresponding to Si and Si–O shift slightly to lower binding energies due to their bonds with phosphorene, which reveals the intimate interactions between the phosphorene encapsulating layer and the Si particles. In addition, Si–O–P bond is also evident in the P 2spectrum of the-Si sample (Fig.2h).

    Fig.1 Characterization on the pristine red phosphorus and as-synthesized black phosphorus.

    (a) SEM image of the pristine red phosphorus; (b) SEM image of the as-synthesized black phosphorus; (c) XRD patterns and (d) Raman spectra.

    (reference XRD pattern of black phosphorus: Pearson's Crystal Data (PCD) entry No. 1639521).

    Fig.2 Characterization on the p-Si related samples.

    (a) XRD patterns on the pristine and ball milled Si samples; (b), SEM image of the ball milled Si sample; (c)–(e), SEM-EDX element mapping of the-Si sample: layered image and element mapping of Si and P, respectively. (f), Si 2spectra of the ball milled Si; (g), Si 2and (h), P 2spectra of the-Si sample.

    The electrochemical performance of the bare Si and the-Si based anodes for LIBshas been characterized within Li ion half-cells. The lithiation capacity of super P carbon black has been determined in our previous work37and subtracted from the Si electrode, and the capacity reported in this paper is the capacity calculated based on the mass of Si/-Si. Fig.3 demonstrates that the-Si based anode achieves an initial reversible capacity of 1577 mAh?g?1for Li ion storage cycling at 0.8 A?g?1, which is relatively lower compared to the bare Si based electrode (1911 mAh?g?1). However,-Si exhibits a much improved cycling stability for Li ion uptake compared with the bare Si. The delithiation capacity of the bare Si and-Si amounts to 743 and 1255 mAh?g?1, respectively, in 100 cycles. This can be explained by the observed higher Coulombic efficiency of the-Si anode than bare Si during the initial cycles. The initial Coulombic efficiencies amounted to 57.7% and 51.0% for the-Si and bare Si anodes, respectively. Such low initial Coulombic efficiencies originate from the irreversible SEI formation, which mostly occurs during the first cycle. Therefore the Coulombic efficiencies jump to 92.2% and 86.4% for the-Si and Si anodes, respectively, in the 2nd cycle, after which the Coulombic efficiency increases further gradually in both electrodes and-Si shows a higher efficiency than bare Si within the first ~40 cycles.

    Fig.3 Electrochemical performance.

    Capacity retentions and Coulombic efficiencies of the Si electrodes with and without phosphorene encapsulation cycling at 0.8 A?g–1.

    The low amount (1%) and the semiconductivity of phosphorene in the-Si sample are not expected to change the theoretical capacity or the electrical conductivity of the Si electrode. The significant improvement in capacity retention, Coulombic efficiency and cycling stability upon the addition of phosphorene may result from the following factors: (1) the encapsulating layer of phosphorene may work as a protective layer for Si to confine the volume expansion of Si aggregates and to prevent the material pulverization. (2) the presence of phosphorene on the surface of the Si particles may alter the formation of the SEI layer. The phosphorus based SEI layer appears to be thinner and more stable and thus the Coulombic efficiency is enhanced. (3) The strong interactions between phosphorene and Si help to maintain the structural integrity of the electrode facilitating the charge transfer in the electrodes and thus enabling a higher cycling stability. These factors are also consistent with the previous studies20–24.

    When the content of phosphorene increases to 3% and 5% in the-Si sample (Fig.S1in the Supporting Information), the capacity of the-Si electrode increases that may be attributed to the facilitated kinetics for Li ion uptake in phosphorene20. However, the Coulombic efficiency of the-Si electrode decreases with the increasing amount of phosphorene during the initial ~10 cycles, which may result from the increasing amount of irreversible phosphorene- related SEI formation due to the increasing total surface area of phosphorene nanosheets, and as a result, the cycling stability is compromised.

    4 Conclusions

    This work reports a facilely synthesized, low-content (1% in mass) phosphorene encapsulated Si based anode, which demonstrates a significantly improved electrochemical performance for reversible Li ion storage over prolonged cycling. This is, to the best of our knowledge, the first introduction of phosphorene encapsulation as a method to suppress the effects of volume expansion and SEI formation, and to promote the cycling stability. Phosphorene encapsulation may thus not onlybe applied in Si based Li ion anodes, but also may show promise for other high energy density battery materials suffering from substantial volume changes during discharge/charge.

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Tarascon, J. M.; Armand, M.2001,, 359. doi: 10.1038/35104644

    (2) Dunn, B.; Kamath, H.; Tarascon, J. M.2011,, 928. doi: 10.1126/science.1212741

    (3) Chu, S.; Majumdar, A.2012,, 294. doi: 10.1038/nature11475

    (4) Sun, Y.; Liu, N.; Cui, Y.2016,, 16071. doi: 10.1038/nenergy.2016.71

    (5) Guo, Z. L.; Wu, H.2016,, 499. [郭擇良, 伍 暉. 電化學(xué), 2016,, 499.] doi: 10.13208/j.electrochem.160546

    (6) Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J.2014,, 1300882. doi: 10.1002/aenm.201300882

    (7) Wu, H.; Cui, Y.2012,, 414. doi: 10.1016/j.nantod.2012.08.004

    (8) Wang, J. T.; Wang, Y.; Huang, B.; Yang, J. Y.; Tan, A.; Lu, S. G.2014,, 305. [王建濤, 王 耀, 黃 斌, 楊娟玉, 譚 翱, 盧世剛. 物理化學(xué)學(xué)報(bào), 2014,, 305.] doi: 10.3866/PKU.WHXB201312022

    (9) Obrovac, M. N.; Christensen, L.2004,, A93. doi: 10.1149/1.1652421

    (10) Pinson, M. B.; Bazant, M. Z.2013,, A243. doi: 10.1149/2.044302jes

    (11) Li, Y.; Yan, K.; Lee, H. W.; Lu, Z.; Liu, N.; Cui, Y.2016,, 15029. doi: 10.1038/nenergy.2015.29

    (12) Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G.2012,, 1086. doi: 10.1002/aenm.201200158

    (13) Hu, X.; Jin, Y.; Zhu, B.; Tan, Y.; Zhang, S.; Zong, L.; Lu, Z.; Zhu, J.2016,, 671. doi: 10.1002/cnma.201600105

    (14) Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J.2012,, 1824. doi: 10.1021/jz3006892

    (15) Wen, Y.; Zhu, Y.; Langrock, A.; Manivannan, A.; Ehrman, S. H.; Wang, C.2013,, 2810-2816. doi: 10.1002/smll.201202512

    (16) Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S.2015,, 4523. doi: 10.1073/pnas.1416581112

    (17) Zhang, G.; Huang, S.; Chaves, A.; Song, C.; ?z?elik, V. O.; Low, T.; Yan, H.2017,, 14071. doi:10.1038/ncomms14071

    (18) Carvalho, A.; Neto, A. H. C.2015,, 289. doi: 10.1021/acscentsci.5b00304

    (19) Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H.; Castro Neto, A. H.2016,, 16061. doi: 10.1038/natrevmats.2016.61

    (20) Congyan, Z.; Ming, Y.; George, A.; Ruchira Ravinath, D.; Gamini, S.2017,, 075401. doi: 10.1088/1361-6528/aa52ac

    (21) Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y.2015,, 980. doi: 10.1038/nnano.2015.194

    (22) Arie, A. A.; Lee, J. K.,2013,, 80. doi: 10.4028/www.scientific.net/MSF.737.80

    (23) Domi, Y.; Usui, H.; Shimizu, M.; Kakimoto, Y.; Sakaguchi, H.2016,, 7125. doi: 10.1021/acsami.6b00386

    (24) Kim, J. S.; Choi, W.; Byun, D.; Lee, J. K.2012,, 43. doi: 10.1016/j.ssi.2012.01.046

    (25) Song, J. O.; Shim, H. T.; Byun, D. J.; Lee, J. K.2007,, 1063. doi: 10.4028/www.scientific.net/SSP.124-126.1063

    (26) Yan, C.; Liu, Q.; Gao, J.; Yang, Z.; He, D.2017,, 222. doi: 10.3762/bjnano.8.24

    (27) Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P.2014,, 13338. doi: 10.1039/C4CC05752J

    (28) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.;2008,, 563. doi: 10.1038/nnano.2008.215

    (29) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T.2013,, 3045. doi: 10.1002/adma.201204877

    (30) Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M.2015,, 5572. doi: 10.1039/C4TA06186A

    (31) Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H.2012,, 8931. doi: 10.1039/C2CC34388F

    (32) Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C.2012,, 9034. doi: 10.1002/anie.201204591

    (33) Sun, J.; Zheng, G.; Lee, H. W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y.2014,, 4573. doi: 10.1021/nl501617j

    (34) Sun, L. Q.; Li, M. J.; Sun, K.; Yu, S. H.; Wang, R. S.; Xie, H. M.2012,, 14772. doi: 10.1021/jp302265n

    (35) Ray, M.; Sarkar, S.; Bandyopadhyay, N. R.; Hossain, S. M.; Pramanick, A. K.2009,, 074301. doi: 10.1063/1.3100045

    (36) Yim, C. H.; Courtel, F. M.; Abu-Lebdeh, Y.2013,, 8234. doi: 10.1039/C3TA10883J

    (37) Peng, B.; Xu, Y. L.; Wang, X. Q.; Shi, X. H.; Mulder, F. M.2017,, 064611. doi:10.1007/s11433-017-9022

    磷烯包覆的高性能硅基鋰離子電池負(fù)極材料

    彭 勃1,2徐耀林2Fokko M. Mulder2,*

    (1中國(guó)人民大學(xué)物理系,北京100872;2Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Science, Delft University of Technology, Delft 2629 HZ, The Netherlands)

    硅基鋰離子負(fù)極材料在脫嵌鋰離子的過程中顯著的體積效應(yīng)導(dǎo)致活性材料的粉化、固體電解質(zhì)介面膜(SEI)的持續(xù)生長(zhǎng)和電接觸的喪失并最終導(dǎo)致電池的失效。本文報(bào)道了一種新型的磷烯(單層黑磷)包覆來提升硅基負(fù)極材料的電化學(xué)性能。微量(1%,質(zhì)量分?jǐn)?shù))的磷烯包覆有效抑制了被包覆硅顆粒的體積膨脹和SEI生長(zhǎng)等問題,并保持了其電極結(jié)構(gòu)在持續(xù)充放電循環(huán)中的完整性,從而提升了其庫(kù)倫效率、容量以及循環(huán)穩(wěn)定性。這是首次利用磷烯包覆法來提升硅基鋰離子電池負(fù)極材料電化學(xué)性能的報(bào)道,而且也展現(xiàn)了此工藝在其他具有顯著體積效應(yīng)的電池材料中具有應(yīng)用前景。

    磷烯;鋰離子電池;負(fù)極材料;硅

    O646

    10.3866/PKU.WHXB201705244

    April 14, 2017;

    May 17, 2017;

    May 24, 2017.

    Corresponding author. Email: F.M.Mulder@tudelft.nl; Tel: +31-15-2785037.

    This project was supported by Chinese Scholarship Council (CSC) and the “A green Deal in Energy Materials” (ADEM) program.

    中國(guó)留學(xué)基金委和荷蘭經(jīng)濟(jì)事務(wù)部綠色能源材料項(xiàng)目資助

    猜你喜歡
    黑磷硅基負(fù)極
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    電化學(xué)剝離黑磷制備納米黑磷研究進(jìn)展
    塊狀和少層黑磷的合成
    黑磷的礦化法制備及其形成機(jī)制研究進(jìn)展
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    基于硅基液晶拼接的高對(duì)比度動(dòng)態(tài)星模擬器光學(xué)系統(tǒng)
    硅基互聯(lián)時(shí)代文化在商業(yè)空間景觀設(shè)計(jì)中的構(gòu)建
    硅基光電子學(xué)的最新進(jìn)展
    九草在线视频观看| 制服人妻中文乱码| 精品少妇内射三级| 国产一级毛片在线| 久久久久久久大尺度免费视频| 精品一品国产午夜福利视频| 久久久亚洲精品成人影院| 久久久精品94久久精品| 美国免费a级毛片| 亚洲av综合色区一区| 午夜福利乱码中文字幕| 亚洲激情五月婷婷啪啪| 国产高清videossex| 五月天丁香电影| 亚洲国产精品国产精品| 波野结衣二区三区在线| 七月丁香在线播放| av不卡在线播放| 人人妻,人人澡人人爽秒播 | 大香蕉久久成人网| 亚洲综合色网址| 午夜91福利影院| 天堂俺去俺来也www色官网| 国产淫语在线视频| 欧美精品人与动牲交sv欧美| 又粗又硬又长又爽又黄的视频| 久久精品国产综合久久久| 每晚都被弄得嗷嗷叫到高潮| 成人免费观看视频高清| 大香蕉久久成人网| 久久精品久久精品一区二区三区| 亚洲专区中文字幕在线| 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 欧美日韩成人在线一区二区| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 日本色播在线视频| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 高清视频免费观看一区二区| 日本色播在线视频| 亚洲欧美一区二区三区久久| 日韩 欧美 亚洲 中文字幕| 久久人妻福利社区极品人妻图片 | 欧美97在线视频| 一级毛片黄色毛片免费观看视频| xxx大片免费视频| 亚洲精品国产av成人精品| 三上悠亚av全集在线观看| 国产真人三级小视频在线观看| 99国产精品免费福利视频| 大型av网站在线播放| 在线观看免费午夜福利视频| 热99久久久久精品小说推荐| 亚洲av欧美aⅴ国产| 久久天躁狠狠躁夜夜2o2o | 国产精品免费大片| 国产成人av激情在线播放| 高清不卡的av网站| 2021少妇久久久久久久久久久| 精品福利观看| a 毛片基地| 18禁观看日本| 亚洲精品久久成人aⅴ小说| www.999成人在线观看| 一个人免费看片子| 久久亚洲精品不卡| 亚洲精品一二三| 久久亚洲精品不卡| kizo精华| 成在线人永久免费视频| 1024视频免费在线观看| bbb黄色大片| 国产成人一区二区三区免费视频网站 | 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 久久性视频一级片| 国产一区二区在线观看av| 欧美少妇被猛烈插入视频| 一级毛片女人18水好多 | 男女之事视频高清在线观看 | 国产麻豆69| 国产成人欧美在线观看 | 美女福利国产在线| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 看十八女毛片水多多多| 成人国语在线视频| 亚洲专区国产一区二区| 宅男免费午夜| 麻豆av在线久日| 亚洲精品国产色婷婷电影| 亚洲精品成人av观看孕妇| 人妻一区二区av| 欧美日韩成人在线一区二区| 亚洲精品国产一区二区精华液| www.熟女人妻精品国产| 日韩av在线免费看完整版不卡| 视频区图区小说| 国产99久久九九免费精品| 久久久久国产精品人妻一区二区| 久久久国产欧美日韩av| av有码第一页| 亚洲一区二区三区欧美精品| 国产成人一区二区三区免费视频网站 | 国产一区二区激情短视频 | 99久久99久久久精品蜜桃| 国产一区二区 视频在线| 2021少妇久久久久久久久久久| 老熟女久久久| 波野结衣二区三区在线| 中文欧美无线码| 久久久久精品国产欧美久久久 | 日韩中文字幕视频在线看片| av国产精品久久久久影院| 又黄又粗又硬又大视频| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 男的添女的下面高潮视频| 别揉我奶头~嗯~啊~动态视频 | 日本午夜av视频| bbb黄色大片| av天堂久久9| 热99国产精品久久久久久7| 中文字幕制服av| 免费少妇av软件| 免费高清在线观看日韩| 国产精品偷伦视频观看了| 国产男人的电影天堂91| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| 亚洲国产毛片av蜜桃av| 蜜桃在线观看..| 欧美在线一区亚洲| 一区二区av电影网| av在线播放精品| 亚洲精品第二区| 欧美97在线视频| 性色av乱码一区二区三区2| www.999成人在线观看| 国产av一区二区精品久久| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 日日夜夜操网爽| 亚洲成人免费电影在线观看 | 少妇人妻 视频| 国产成人精品久久二区二区免费| 欧美 日韩 精品 国产| 国产不卡av网站在线观看| 免费看十八禁软件| 国产成人啪精品午夜网站| a 毛片基地| av视频免费观看在线观看| 国产免费福利视频在线观看| 色综合欧美亚洲国产小说| 9热在线视频观看99| videos熟女内射| 波野结衣二区三区在线| 视频区图区小说| 丝袜美足系列| 日韩一区二区三区影片| 精品人妻在线不人妻| 国产精品久久久久久人妻精品电影 | 亚洲精品久久午夜乱码| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 91成人精品电影| 日本91视频免费播放| 久久精品国产a三级三级三级| 久久亚洲精品不卡| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 日韩av在线免费看完整版不卡| 欧美黄色淫秽网站| 青草久久国产| 国产精品三级大全| 夜夜骑夜夜射夜夜干| 一二三四在线观看免费中文在| 97在线人人人人妻| 色94色欧美一区二区| 久久九九热精品免费| 亚洲av电影在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| www.999成人在线观看| 天天操日日干夜夜撸| 亚洲激情五月婷婷啪啪| 女人精品久久久久毛片| 精品高清国产在线一区| 欧美 亚洲 国产 日韩一| 9热在线视频观看99| 色播在线永久视频| 中国国产av一级| 一级毛片女人18水好多 | 日本黄色日本黄色录像| 高清视频免费观看一区二区| 欧美97在线视频| 国产三级黄色录像| 国产成人精品久久二区二区91| 久久免费观看电影| 欧美人与善性xxx| 在线看a的网站| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| 亚洲av片天天在线观看| 999精品在线视频| 男人添女人高潮全过程视频| 久久人妻福利社区极品人妻图片 | 免费在线观看视频国产中文字幕亚洲 | 青春草亚洲视频在线观看| 97人妻天天添夜夜摸| 欧美黑人精品巨大| 国产女主播在线喷水免费视频网站| 国产成人av教育| 99久久综合免费| 成年av动漫网址| 久久国产精品大桥未久av| 老司机午夜十八禁免费视频| 好男人视频免费观看在线| 精品人妻1区二区| 大陆偷拍与自拍| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| 超碰97精品在线观看| 黄片小视频在线播放| 精品福利永久在线观看| 一级毛片我不卡| 亚洲成人国产一区在线观看 | 男女无遮挡免费网站观看| 日韩伦理黄色片| 丝袜脚勾引网站| 亚洲久久久国产精品| 99热网站在线观看| 国产老妇伦熟女老妇高清| 赤兔流量卡办理| 久久精品国产亚洲av涩爱| 丝瓜视频免费看黄片| 国产精品久久久人人做人人爽| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 侵犯人妻中文字幕一二三四区| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 首页视频小说图片口味搜索 | 一个人免费看片子| 免费观看av网站的网址| 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 久热这里只有精品99| 亚洲av国产av综合av卡| 免费在线观看日本一区| 成年av动漫网址| 99国产综合亚洲精品| 中文字幕色久视频| 亚洲国产精品成人久久小说| 亚洲视频免费观看视频| 国产一区二区三区av在线| 青青草视频在线视频观看| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 亚洲成国产人片在线观看| 婷婷色综合www| 一区福利在线观看| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 午夜两性在线视频| 国产一区二区激情短视频 | 成人影院久久| 国产精品一区二区精品视频观看| 亚洲国产毛片av蜜桃av| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 亚洲人成77777在线视频| 国产精品人妻久久久影院| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三| 人人妻人人澡人人看| 国产在视频线精品| 久久亚洲精品不卡| 国产一区二区三区av在线| 大片免费播放器 马上看| 久久狼人影院| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 美女午夜性视频免费| 国产精品国产三级专区第一集| 黄色a级毛片大全视频| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看| 一区二区av电影网| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 汤姆久久久久久久影院中文字幕| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 成年女人毛片免费观看观看9 | 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 国产黄频视频在线观看| 搡老乐熟女国产| 久久人人爽人人片av| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 久久av网站| 免费av中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 啦啦啦啦在线视频资源| 视频在线观看一区二区三区| 一级黄片播放器| 老鸭窝网址在线观看| 欧美人与性动交α欧美软件| 成年美女黄网站色视频大全免费| 欧美性长视频在线观看| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| 在线天堂中文资源库| 天堂8中文在线网| 午夜免费男女啪啪视频观看| 免费av中文字幕在线| 国产淫语在线视频| 亚洲欧洲日产国产| 午夜福利一区二区在线看| 大片电影免费在线观看免费| 精品一区二区三卡| 美女扒开内裤让男人捅视频| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 免费少妇av软件| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 精品一区二区三区四区五区乱码 | 大香蕉久久成人网| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 免费看十八禁软件| 建设人人有责人人尽责人人享有的| 色精品久久人妻99蜜桃| 亚洲精品第二区| 久久天躁狠狠躁夜夜2o2o | 99精品久久久久人妻精品| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久小说| 日韩电影二区| 麻豆av在线久日| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 午夜福利视频精品| 成人亚洲精品一区在线观看| 天天躁日日躁夜夜躁夜夜| 色网站视频免费| 好男人视频免费观看在线| 精品久久久久久久毛片微露脸 | 老司机在亚洲福利影院| 中国美女看黄片| 又紧又爽又黄一区二区| 大香蕉久久成人网| 欧美成人精品欧美一级黄| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 在线av久久热| 美女中出高潮动态图| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕| 中国国产av一级| 久久av网站| 亚洲情色 制服丝袜| 亚洲男人天堂网一区| 黑人欧美特级aaaaaa片| 久久久久精品人妻al黑| 中文字幕高清在线视频| 欧美激情高清一区二区三区| 2021少妇久久久久久久久久久| 日本a在线网址| 亚洲一区中文字幕在线| 丝袜人妻中文字幕| 国产成人欧美| 少妇人妻 视频| 人人妻,人人澡人人爽秒播 | 亚洲av成人不卡在线观看播放网 | 咕卡用的链子| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 国产成人精品无人区| 97人妻天天添夜夜摸| 亚洲一区二区三区欧美精品| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 亚洲av成人不卡在线观看播放网 | 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 一级黄色大片毛片| 日本色播在线视频| www.自偷自拍.com| 桃花免费在线播放| 日韩精品免费视频一区二区三区| 久久ye,这里只有精品| 午夜福利,免费看| 久久精品久久精品一区二区三区| 夫妻性生交免费视频一级片| 热99国产精品久久久久久7| 精品福利永久在线观看| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 日韩av在线免费看完整版不卡| 只有这里有精品99| 丰满少妇做爰视频| www.999成人在线观看| 99久久精品国产亚洲精品| 1024视频免费在线观看| 在线 av 中文字幕| 免费高清在线观看日韩| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| 亚洲一区二区三区欧美精品| www日本在线高清视频| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 精品国产乱码久久久久久小说| 如日韩欧美国产精品一区二区三区| a 毛片基地| 亚洲av欧美aⅴ国产| 亚洲一区中文字幕在线| 欧美日韩综合久久久久久| 午夜日韩欧美国产| 波野结衣二区三区在线| 国产老妇伦熟女老妇高清| 国产欧美日韩精品亚洲av| 欧美大码av| 91成人精品电影| 老司机午夜十八禁免费视频| 中文字幕制服av| 免费高清在线观看视频在线观看| a级毛片黄视频| 51午夜福利影视在线观看| 咕卡用的链子| 亚洲国产日韩一区二区| svipshipincom国产片| 美女视频免费永久观看网站| 午夜福利在线免费观看网站| 日本av手机在线免费观看| 午夜免费观看性视频| 亚洲国产av新网站| a 毛片基地| 一二三四社区在线视频社区8| 男女国产视频网站| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 国产高清国产精品国产三级| 亚洲国产看品久久| 各种免费的搞黄视频| 飞空精品影院首页| 国产精品国产三级专区第一集| 9热在线视频观看99| 男女之事视频高清在线观看 | 久久青草综合色| 高清视频免费观看一区二区| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 两人在一起打扑克的视频| 国产在线一区二区三区精| 人人妻人人澡人人看| 国产精品久久久久久精品古装| 国产亚洲精品久久久久5区| 欧美日韩视频高清一区二区三区二| 赤兔流量卡办理| av网站在线播放免费| 美女午夜性视频免费| 最新在线观看一区二区三区 | 蜜桃在线观看..| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服骚丝袜av| 丝袜脚勾引网站| 亚洲精品久久成人aⅴ小说| 午夜激情久久久久久久| 国产又爽黄色视频| 七月丁香在线播放| 人人妻,人人澡人人爽秒播 | 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 久久青草综合色| 19禁男女啪啪无遮挡网站| 午夜免费鲁丝| 欧美人与善性xxx| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 一二三四社区在线视频社区8| 精品少妇黑人巨大在线播放| svipshipincom国产片| h视频一区二区三区| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 制服诱惑二区| 色婷婷久久久亚洲欧美| 国产成人精品久久久久久| 亚洲自偷自拍图片 自拍| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 午夜福利乱码中文字幕| 婷婷丁香在线五月| 少妇精品久久久久久久| 18禁黄网站禁片午夜丰满| av天堂在线播放| 少妇的丰满在线观看| 丁香六月天网| 久久久久国产一级毛片高清牌| 精品国产一区二区三区四区第35| 国产精品免费大片| 国产欧美日韩一区二区三 | 黄色视频不卡| 国产1区2区3区精品| 精品国产一区二区三区久久久樱花| 欧美人与性动交α欧美软件| 永久免费av网站大全| 亚洲欧美激情在线| 最新的欧美精品一区二区| 狂野欧美激情性bbbbbb| 两性夫妻黄色片| 三上悠亚av全集在线观看| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| e午夜精品久久久久久久| 巨乳人妻的诱惑在线观看| 成人影院久久| 成年人免费黄色播放视频| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o | 国产精品成人在线| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 晚上一个人看的免费电影| 久久久国产欧美日韩av| 久久精品国产综合久久久| 精品一区二区三区av网在线观看 | 亚洲 国产 在线| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 夫妻午夜视频| 天堂8中文在线网| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄色视频免费看| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 午夜久久久在线观看| 精品亚洲成国产av| 日本一区二区免费在线视频| 亚洲欧美日韩高清在线视频 | 国产日韩欧美亚洲二区| 人成视频在线观看免费观看| 高清不卡的av网站| 一区福利在线观看| 国产成人91sexporn| 日韩 亚洲 欧美在线| 男女免费视频国产| 咕卡用的链子| 深夜精品福利| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 国产成人一区二区在线| 丰满人妻熟妇乱又伦精品不卡| 韩国高清视频一区二区三区| 大型av网站在线播放| 热re99久久国产66热| 丁香六月天网| 欧美精品一区二区免费开放| 亚洲精品一卡2卡三卡4卡5卡 | 又紧又爽又黄一区二区| 国产精品av久久久久免费| 国产精品一区二区免费欧美 | 老司机在亚洲福利影院| 最近中文字幕2019免费版| 男男h啪啪无遮挡| 午夜福利,免费看| 男女高潮啪啪啪动态图| 精品亚洲成a人片在线观看| 视频在线观看一区二区三区| av国产久精品久网站免费入址| 国产三级黄色录像| 久久久久久久精品精品| 少妇被粗大的猛进出69影院| 大码成人一级视频| videos熟女内射| 波多野结衣一区麻豆| 水蜜桃什么品种好| 男女床上黄色一级片免费看| 啦啦啦在线观看免费高清www| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶|