• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dithenylpyrrole Structure Bridged with Phenyl or Biphenyl Rings: Molecular Configuration and Electrochromic Properties

    2018-01-15 07:19:56DAIYuYuLIWeiJunYANShuanMaWANGShiZhaoYUYueOUYANGMiCHENLiTaoZHANGCheng
    物理化學(xué)學(xué)報(bào) 2017年11期
    關(guān)鍵詞:電致吡咯噻吩

    DAI Yu-Yu LI Wei-Jun YAN Shuan-Ma WANG Shi-Zhao YU YueOUYANG Mi CHEN Li-Tao ZHANG Cheng

    ?

    Dithenylpyrrole Structure Bridged with Phenyl or Biphenyl Rings: Molecular Configuration and Electrochromic Properties

    DAI Yu-Yu LI Wei-Jun*YAN Shuan-Ma WANG Shi-Zhao YU YueOUYANG Mi CHEN Li-Tao ZHANG Cheng*

    ()

    A series of multi-branched dithienylpyrrole (SNS) monomers with rigid phenyl (PhSNS) and biphenyl rings (BPhSNS) as bridges were designed and synthesized, and were fabricated to form cross-linked polymers (pPhSNS, pBPhSNS) by electrochemical polymerization. Cyclic voltammetry (CV) results showed that PhSNS and BPhSNS exhibited similar oxidative properties except for one new higher-potential oxidative peak appearing in the curves of PhSNS. Theoretical calculations indicated that it should be attributed to the different steric configuration between the two dithienylpyrrole (SNS) units in PhSNS. One SNS unit possessed a larger twist angle (40.2°) between thiophene and pyrrole rings than the other one (21.2°), which indicated that PhSNS possessed a relatively larger energy gap (~0.4 eV) between HOMO-1 and HOMO than BPhSNS, for which HOMO and HOMO-1 levels were of almost the same energy. However, both PhSNS and BPhSNS showed similar onset oxidation potentials. The CV curves of pPhSNS and pBPhSNS showed that they presented similar oxidative properties, which enabled their corresponding electrochemical polymers to exhibit similar electrochromic properties. The UV-vis spectra of the corresponding polymers showed that both pPhSNS and pBPhSNS possessed similar optical absorption and similar multicolor switching between yellow (?0.8 V), greyish-green (0.9 V) and gray (1.1 V) colors. Besides, pPhSNS and pBPhSNS showed fast switching times of 0.57 s and 0.93 s at 1100 nm, respectively and reasonable contrasts of 46% and 31% at 1100 nm, respectively. These investigations may help understand the relationship between structural configuration and the electrochemistry/electrochromic properties for polymer electrochromic (PEC) materials research.

    Dithienylpyrrole; Molecular configuration; Theoretical calculation; Electorpolymerization; Electrochromic

    1 Introduction

    Conjugated polymers (CPs) have attracted increasing attention due to their multiple potential applications including sensors1,2, light-emitting diodes3,4, field effect transistors5,6and electrochromic devices (ECDs)7,8. Especially, conjugated polymers as electrochromic materials exhibit superior advantages such as easy of processability, fast switching time, outstanding coloration efficiency and color adjustment9–12. However, to achieve the demand of commercial application, the effort for synthesizing novel, simple and effective electrochromic materials is still important and indispensable13.

    Polythiophenes, one of CPs, were investigated widely by the researchers owing to oxidative stability and ease of synthesis or modification14. However, the high oxidation potential of thiophene causes the corresponding polymers to exhibit poor chemical and physical properties15. Extending the conjugation length of thiophene through designing multi-units conjugated molecule may be a good method to decrease the high onset potential of thiophene. A series of these derivatives such as dithienylbenzene16,17and dithienylpyrrole (SNS)18,19were reported and investigated by many researchers. Among them, dithienylpyrrole is one of the most investigated core units owing to the low oxidation potential and easy modification of chemical structure at the N-substitution of the pyrrole unit. Thus, a series of SNS derivatives were designed and studied with-substituted functional group such as alkyl derivatives20, phenyl derivatives21–24and anthraquinone25. Currently, the relationship between molecular configuration of the monomers and electrochemical properties or electrochromic properties in the case of SNS Structure-based monomers and polymers need to be further studied.

    Recently, some groups reported that the introduction of rigid units into the main chain or side chain may form the specific twisted configuration and the corresponding polymers might exhibit excellent electrochromic properties26,27. Usluer.26reported a spiro[cyclododecane-1,9′-fluorene] bicarbazole molecular structure by introduction rigid spiro [cyclododecane- 1,9′-fluorene] units into the main structure, which exhibited a specific steric configuration. As a result, the corresponding polymers exhibited high contrast and fast switching time (less than 1 s). Besides, Tieke.27reported that the introduction of rigid terpyridine (tpy) units into the polyiminofluorene acted as ligands for complexing with metal ions (Zn, Co, Ni) and the coordinative interactions enabled the corresponding polymers to form the twisty network structure. The corresponding polymer twisty network was rather rigid and highly porous, which enable rapid ion transfer and fast switching times.

    In this work, we introduced different phenyl and biphenyl rigid units into dithienylpyrrole structure to form the phenyl bridged-SNS (PhSNS) and biphenyl bridged-SNS (BPhSNS), respectively. The obtained compounds PhSNS and BPhSNS possessed four thiophene polymerization sites, which is beneficial to generate cross-linked polymer structure and maybe possess microporous structure in the polymer films. These may be expected to obtain excellent electrochromic materials with good film stability and fast color switching. Besides, the different rigid unit of phenyl and biphenyl may enable PhSNS and BPhSNS to exhibit different molecular configuration, which may exhibit different properties for the monomers or the corresponding polymers. PhSNS and BPhSNS were synthesized successfully (Scheme 1), and then they were fabricated to form the cross-linked polymer (pPhSNS, pBPhSNS) by electrochemical polymerization (Scheme 2). The electrochemical, geometric, electronic and optical properties of PhSNS and BPhSNS were studiedsystematically. Correspondingly, the electrochemical and electrochromic character of the resulting polymers (pPhSNS, pBPhSNS) were investigated in this work. The experimental data and results will be showed as followed in detail.

    Scheme 1 The synthetic route and chemical structures of PhSNS and BPhSNS.

    Scheme 2 Synthetic route and possible cross-linked structure of pPhSNS and pBPhSNS.

    2 Experimental

    2.1 Chemicals

    All the reagents or chemicals were commercial and analytical products without further purification. Indium tin oxide (ITO) glass substrates (CSG HOLDING Co., Ltd.,S≤ 10 Ω?􀀀?1, area: 0.9 cm × 4 cm) were cleaned by ultrasonic in a series of solvents including distilled water, ethanol, methylbenzene and acetone solutions for 15 min, respectively.

    2.2 Characterization

    1H (500MHz) NMR spectra of the synthesized compounds were recorded on Bruker AVANCE III instrument (Bruker, Switzerland). Mass spectra (MALDI-TOF-MS) analysis was recorded using an AXIMA-CFRTM plus instrument. The DFT calculations of PhSNS and BPhSNS were performed via Gaussian 03 at the B3LYP/6-311+G(,) level. The electrochemical and optical properties of PhSNS and BPhSNS were conducted by CHI660E electrochemical analyzer (Chenhua, China) and Shimadzu UV-1800 spectrophotometer (Shimadzu, Japan), respectively. Electrochemical polymerization of the monomers and electrochemical properties of the corresponding films were performed on CHI660E electrochemical analyzer.The surface morphologies of the films were carried out by S-4800 scanning electron microscope (SEM) (Hitachi, Japan), respectively. Spectroelectrochemistry test, optical contrast and switching time were investigated by Shimadzu UV-1800 spectrophotometer integrated with the CHI660E electrochemical analyzer.

    2.3 Synthesis

    PhSNS, and BPhSNS were synthesized by two steps as described in Scheme 1. Firstly, 1,4-di(2-thienyl)-butane-1,4-dione (1) was synthesized by Friedel-Crafts reaction14. Secondly, the target compounds were synthesized by the dyhydrative cyclization between 1,4-di(2-thienyl)-butane-1,4-dione (1) and corresponding aniline derivatives as the Knorr-Paal reaction22,28.

    2.3.1 1,4-di(2-thienyl)-butane-1,4-dione (1)

    A solution of thiophene (9.6 mL, 0.12 mol) and succinychloride (5.4 mL, 0.05 mol) were added dropwise to a suspension containing AlCl3(16.2 g, 0.12 mol) in 100 mL of dichloromethane. After stirring for 4 h at 40 °C, the mixture solution was poured into a mixture of 100 g ice and 10 mL hydrochloric acid and stirred for 30 min. The resulting solution was extracted with CHCl2and washed with NaHCO3solutions and water before desiccation with anhydrous MgSO4. The solvent was evaporated off, and the solid residues were purified by column chromatography to afford white product with a yield of 76%.1H NMR (500 MHz, CDCl3, 25 °C, TMS,): 7.84 (dd,= 3.8, 1.1 Hz, 2H), 7.67 (dd,= 5.0, 1.1 Hz, 2H), 7.17 (dd,= 4.9, 3.8 Hz, 2H), 3.42 (s, 4H). MALDI-TOF MS (mass/): 251.1 [M++ H].

    2.3.2 Phenyl bridged-di[2,5-di(2-thienyl)-1H-pyrrole (PhSNS)

    Under a nitrogen atmosphere,1,4-di(2-thienyl)-butane-1,4-dione (5 mmol, 1.25 g),p-Phenylenediamine(2 mmol, 0.216 g) and acetic acid(15 mL) were putted into a round bottom flask and refluxed for 72 h. Over the reaction, the acetic acid was removed by NaHCO3solution .Then, the resulting solution was filtrated and the residue was re-dissolved in CHCl3for extraction. Evaporation of the solvent, the crude product was purified by column chromatography with dichloromethane. A white product was obtained.1H NMR (500 MHz, CDCl3, 25 °C, TMS,): 7.36 (s, 4H), 7.14 (dd,= 5.1, 1.1 Hz, 4H), 6.87 (dd,= 5.1, 3.7 Hz, 4H), 6.62 (dd,= 3.6, 1.1 Hz, 4H), 6.55 (s, 4H). MALDI-TOF MS (mass/): 536.75 [M++ H].

    2.3.3 Biphenyl bridged-di[2,5-di(2-thienyl)-1H-pyrrole (BPhSNS)

    BPhSNS was synthesized by the similar procedure for PhSNS. Finally, a white product BPhSNS was also obtained.1H NMR (500 MHz, CDCl3, 25 °C, TMS,): 7.72 (d,= 8.4 Hz, 4H), 7.41 (d,= 8.4 Hz, 4H), 7.10 (d,= 5.1 Hz, 4H), 6.89–6.83 (m, 4H), 6.62 (d,= 2.5 Hz, 4H), 6.57 (s, 4H). MALDI-TOF MS (mass/): 612.85 [M++ H].

    2.4 Prepartion of polymer films

    The corresponding polymers pPhSNS and pBPhSNS films were prepared by cyclic voltammetry polymerization for 5 scans between ?0.8 to 1.4 V in a conventional three-electrode cell with an ITO-coated glass (Kaivo Optoelectronic Technology Co., Ltd.,s≤ 10 Ω?□?1, the active area: 9 mm × 20 mm) as working electrode, a platinum sheet and a double-junction Ag/AgCl electrode (silver wire coated with AgCl in saturated KCl solution, 0.1 mol?L?1tetrabutylammonium perchlorate (TBAP) in acetonitrile solution as the second junction) were applied as the counter electrode and the reference electrode, respectively.The synthesis routes of pPhSNS and pBPhSNS were given in Scheme 2. Meanwhile, the above scheme exhibits the possible cross-linked structure of pPhSNS, and pBPhSNS (Scheme 2), which is attributed to the corresponding monomer with four thiophene sites for polymerization in the peripheral part. The monomer concentration of all polymers is 0.5 mmol?L?1dichloromethane containing 0.1 mol?L?1tetrabutylammonium perchlorate (TBAP). All the polymer films measurement was performed at the acetonitrile solution containing 0.1 mol?L?1TBAP. The electrochemistry experiments were carried out at 25 °C under N2atmosphere.

    3 Results and discussion

    3.1 Electrochemistry of PhSNS and BPhSNS

    Fig.1 exhibited the cyclicvoltammetry curves of PhSNS (0.5 mmol?L?1) and BPhSNS (0.5 mmol?L?1) in DCM solution containing 0.1 mol?L?1TBAP. PhSNS and BPhSNS showed the same onset oxidation potential, which may reflect that HOMO of two compounds was similar according to equations: HOMO = ?oxonset (Ag/AgCl) (eV) ? 4.66 eV29. Besides, it was obvious that PhSNS displayed two oxidation and reduction peaks compared with BPhSNS possessing only one oxidation and reduction peak. This may be attributed to the different molecular configuration for PhSNS and BPhSNS. The reason was furthermore presented through the theoretical calculation.

    3.2 Theoretical calculations

    To elucidate the influence of the phenyl and biphenyl unit as a bridge on the geometric and electronic properties of PhSNS and BPhSNS, we conducted theoretical calculations. The DFT calculations were performed via Gaussian 03 at the B3LYP/6-311+G (,) level.Fig.2 and Fig.3 exhibited the optimized structure and calculated spatial electron distribution of HOMO-1, HOMO and LUMO of PhSNS and BPhSNS. From the optimized structure of PhSNS and BPhSNS, it was obvious that PhSNS and BPhSNS presented different molecular configuration. The theoretical results showed that the two SNS groups of PhSNS were different. The sulphur atom in one SNS group of PhSNS faced the phenyl unit and the dihedral angle (40.2°) of this SNS group between thiophene and pyrrole was larger than the dihedral angle (21.2°) of the other SNS group of PhSNS. As a results, the two SNS group of PhSNS displayed different conjugated levels. Thus, PhSNS showed larger energy gap (~0.4 eV) between HOMO?1 and HOMO. On the contrary, there was nearly none difference in steric configurations between the two SNS group in BPhSNS molecule, and of course the HOMO?1 and HOMO of BPhSNS exhibited nearly the similar electron cloud character with nearly the same energy level. This may reflect that PhSNS upon losing one electron from HOMO can furthermore lose one electron from HOMO-1 orbits, which may cause PhSNS to present two oxidation and reduction peaks. Correspondingly, BPhSNS just exhibited one oxidation and reduction peaks due to the similar HOMO?1 and HOMO. Besides, HOMO and LUMO of PhSNS and BPhSNS were very similar, which enabled them to exhibit the similar onset oxidative potential and optical energy gap. This theoretical calculation well explained the electrochemistry behavior of PhSNS and BPhSNS.

    Fig.1 Cyclic voltammetry curves of PhSNS (0.5 mmol?L?1) and BPhSNS (0.5 mmol?L?1) in DCM solution containing 0.1 mol?L?1 TBAP at a scan rate of 100 mV?s-1.

    Fig.2 Optimized conformation of PhSNS and calculated spatial electron distribution of HOMO?1, HOMO and LUMO of PhSNS.

    Fig.3 Optimized conformation of BPhSNS and calculated spatial electron distribution of HOMO?1, HOMO and LUMO of BPhSNS.

    3.3 UV-vis absorption of PhSNS and BPhSNS

    Fig.4 exhibited the UV-vis absorption curves of PhSNS and BPhSNS monomer in dichloromethane (DCM) solution. Obviously, the maximum absorption peak of PhSNS showed blue-shift slightly compared with BPhSNS. The reason may be that one SNS of PhSNS possessed relatively larger twisted angle of 40.2° between thiophene and pyrrole unit and so as to this SNS of PhSNS presented low conjugated levels compared with that of BPhSNS, as seen from theoretical calculations. Besides, as shown in the above figure,PhSNS and BPhSNS exhibited similar the onset value of the absorption peak (onset). We may obtain similargaccording tog= 1240/onset. This result was consistent with theoretical calculations.

    3.4 Electropolymerization

    Fig.5 presented the multisweep voltammogram (10 scans) curves during electrochemical polymerization of PhSNS (0.5 mmol?L?1) and BPhSNS (0.5 mmol?L?1) in dichloromethane (DCM) solution containing 0.1 mol?L?1TBAP at a potential scan rate of 100 mV?s?1. Obviously, PhSNS and BPhSNS showed similar cyclic voltammetry except for one new oxidative peak appearing at the higher potential in the first curve of PhSNS. With the number of cycles increasing, the cyclic voltammetry curves of PhSNS and BPhSNS were similar, which was attributed to the formation of similar cross-linked polymers structure through cyclic voltammetry polymerization. With the number of cycles increasing, oxidation peaks and their reverse reduction peaks appeared at the lower potentials due to the formation of the corresponding polymers coated on the ITO/glass surface. Besides, the current densities also increased with the number of cycles increasing, which indicated that their polymer films were well adhered on the electrode30.

    Fig.4 UV-Vis absorption spectra of PhSNS and BPhSNS in DCM solution.

    Concentration: 10?5mol?L?1.

    Fig.5 Multisweep voltammogram (10 scans) curves for polymerization of (a) PhSNS (0.5 mmol?L?1) and (b) BPhSNS (0.5 mmol?L?1) in DCM solution ontaining 0.1 mol?L?1 TBAP at a scan rate of 100 mV?s?1.

    3.5 Morphological charcterisation

    The morphological characterisation of dithienylpyrrole derivatives with N-substituted benzene was rarely studied. Fig.6 depicted the SEM of pPhSNS and pBPhSNS polymers films. It was obvious that all films exhibited particle morphology. The reason may be that the dithienylpyrrole structure by introducing the rigid phenyl or biphenyl units was inclined to form relatively low degree of polymerization polymers during the electropolymerizaiton process of PhSNS and BPhSNS, which may enable the corresponding polymers to exhibit the particle instead of fibril and golobule-like morphology.

    3.6 Electrochemistry of pPhSNS and pBPhSNS

    Fig.7 exhibited the CV curves of pPhSNS and pBPhSNS polymers films at different scan rate between 50 to 200 mV?s?1in acetonitrile solution containing 0.1 mol?L?1TBAP. It is clear that both pPhSNS and pBPhSNS polymers showed similar two oxidation and reduction peaks, which may be attributed to the similar SNS structure-based cross-linked polymer structure. As a result, the resulting polymers pPhSNS and pBPhSNS displayed multicolor behavior of yellow, greyish-green and gray. Besides, the peak currents of the three polymers were proportional to the potential scan rate, as seen from the inset of Fig.7. This indicated that the electrochemical process of pPhSNS and pBPhSNS were reversible and not diffusion limited31.

    3.7 Spectroelectrochemistry

    Fig.8 exhibited the UV-vis absorbance spectra of pPhSNS and pBPhSNS films at different applied voltages in acetonitrile solution containing 0.1 mol?L?1TBAP without the monomer. The two polymers pPhSNS and pBPhSNS showed similar spectroeletrochemical curves. At the neutral state, the absorption peak at about 400nm was the main absorption of the two polymers and they presented yellow color, which was attributed to the–* transition of the polymer backbone. With the increase of potential, the absorption decreased at 400 nm and two new absorption peaks appeared at about 600 nm and 1100 nm, which was ascribed to the electron transition of ‘polaron’ and ‘bipolaron’, respectively. Besides, as shown in the inset of Fig.8, both pPhSNS and pBPhSNS presented the similar multicolor color switching from yellow (?0.8 V) to greyish-green (0.9 V) and the final color was gray (1.1 V).

    Fig.6 SEM of (a) pPhSNS and (b) pBPhSNS polymers films.

    Fig.7 Cyclic voltammetry curves of (a) pPhSNS and (b) pBPhSNS in monomer free acetonitrile solution containing 0.1 mol?L?1TBAP at different scan rates between 50 and 200 mV?s?1.

    Insets of (a) and (b) were the anodic and cathodic peak current versus scan rate curves of pPhSNS and pBPhSNS.

    Fig.8 UV-vis absorbance curves of pPhSNS and pBPhSNS polymers in applied potential between -0.8 to 1.3 V in monomer free acetonitrile solution containing 0.1 mol?L?1 TBAP.

    Insets were the switching color of pPhSNS and pBPhSNS polymers.

    Fig.9 Optical contrast and switching time of pPhSNS and pBPhSNS polymers films monitored at 1100 nm in acetonitrile solution containing 0.1 mol?L?1 TBAP between -0.8 to 1.1 V with a residence time of 10 s.

    3.8 Kenetic studies

    Kinetic studies were carried out to elucidate the optical contrast and switching time of the polymer films. Fig.9 depicted the contrast and switching time of pPhSNS and pBPhSNS polymers at 1100 nm under a repeated potential between ?0.8 to 1.1 V with a residence of 10 s in a monomer-free acetonitrile solution containing TBAP. As seen in the above figure, the contrasts of pPhSNS and pBPhSNS polymer films at 1100 nm were calculated as 46% and 31%, respectively. Obviously, the contrasts of pPhSNS and pBPhSNS showed small difference, which may be attributed to pPhSNS with the higher doping levels in the oxidation state compared with pBPhSNS polymer films. As shown in Fig.5, this may be that the peak current intensity of PhSNS compound was higher than that of BPhSNS during the electropolymerizaiton of the corresponding monomer, which may reflects that the injected charge of PhSNS was more than BPhSNS during the electropolymerization process at the same cycle numbers. Thus, the resulting polymers pPhSNS may exhibit compact structure, which may display higher doping levels. Besides, the switching time of the two polymers were also calculated in Fig.9. Both pPhSNS and pBPhSNS showed similar fast discoloring time of 0.57, 0.93 s and coloring times of 1.39, 0.95 s, respectively. Compared with pSNS32,33and N-submitted Phenyl pSNS34derivatives, pPhSNS and pBPhSNS presented superior electrochromic properties. Especially, the switching time of them has been improved about 1 s, which was attributed to the formed similar cross-kinked polymer structure through introducing phenyl and biphenyl groups as a bridge.

    4 Conclusions

    A series of multi-branched dithienylpyrrole (SNS) monomers with rigid phenyl (PhSNS) and biphenyl rings (BPhSNS) as a bridge were designed and synthesized, and then they were fabricated to form the cross-linked polymer by electrochemical polymerization. The cyclic voltammetry results of PhSNS and BPhSNS exhibited that them showed similar oxidative properties except for one new oxidative peak appearing at the higher potential of PhSNS. Theoretical calculation results indicated that it should be attributed to the different molecular configuration between the two dithienylpyrrole (SNS) in PhSNS′s case. The UV-Vis absorption curves presented that PhSNS displayed blue-shift slightly compared with BPhSNS. However, both PhSNS and BPhSNS showed similar onset oxidation potential. PhSNS and BPhSNS were inclined to form the similar cross-linked polymer structure through electrochemical polymerization. The cyclic voltammetry curves of pPhSNS and pBPhSNS showed that both them presented similar oxidative properties. This enabled their corresponding polymers to exhibit similar electrochemistry and electrochromic properties. The UV-Vis spectra of the corresponding polymers showed that both pPhSNS and pBPhSNS possessed similar optical absorption and similar multicolor switching of yellow (?0.8 V), greyish-green (0.9 V) and gray (1.1 V). Besides, pPhSNS and pBPhSNS showed fast switching time of 0.57 and 0.93 s at 1100 nm, respectively and reasonable contrast of 46% and 31% at 1100 nm, respectively. These investigations may be of some supports to the understanding of the relationship between structural configuration and electrochemistry/electrochromic properties for PEC materials research.

    (1) Thomas, S. W.; Joly, G. D.; Swager, T. M.2007,, 1339. doi: 10.1021/cr0501339

    (2) Ji, X. F.; Yao, Y.; Li, J. Y.; Yan, X. Z.; Huang, F. H.2013,, 74. doi: 10.1021/ja3108559

    (3) Thompson, B. C.; Kim, Y. G.; McCarley, T. D.2006,, 12714. doi: 10.1021/ja061274a

    (4) Zhou, H. X.; Yang, L. Q.; You, W.2012,, 607. doi: 10.1021/ma201648t

    (5) Chen, H. J.; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q.2012,, 4618. doi: 10.1002/adma.201201318

    (6) Chen, Z. Y.; Lee, M. J.; Ashraf, R. S.; Gu, Y.; Albert-Seifried, S.; Nielsen, M. M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.2012,,647. doi: 10.1002/adma.201102786

    (7) Schwendeman, I.; Hickman, R.; Sonmez, G.; Schottland, P.; Zong, K.; Welsh, D. M.; Reynolds, J. R.2002,, 3118. DOI: 10.1021/cm020050y

    (8) Nielsen, C. B.; Angerhofer, A.; Abboud, K. A.; Reynolds, J. R.2008,, 9734. doi: 10.1021/ja7112273

    (9) Beaujuge, P. M.; Reynolds, J. R.2010,, 268. doi: 10.1021/cr900129a

    (10) Sassi, M.; Salamone, M. M.; Ruffo, R.; Patriarca, G. E.; Mari, C. M.; Pagani, G. A.; Posset, U.; Beverina, L.2016,, 5240. doi: 10.1002/adfm.201601819

    (11) Bian, G. F.; Hu, B.; Ouyang, M.; Wang, P. J.; Lu, X. J.; Dai, Y. Y.; Zhang, C.2015,, 1888. [邊高峰, 胡 彬, 歐陽密, 王萍靜, 呂曉靜, 戴玉玉, 張 誠. 物理化學(xué)學(xué)報(bào), 2015,, 1888.] doi: 10.3866/PKU.WHXB201509062

    (12) Ouyang, M.; Fu Z. Y.; Lu, X. J.; Chen, H. L.; Hu, B.; Xia, X. F.; Zhang C.2013,, 996. [歐陽密, 付志艷, 呂曉靜, 陳歡樂, 胡 彬, 夏旭峰, 張 誠. 物理化學(xué)學(xué)報(bào), 2013,, 996.] doi: 10.3866/PKU.WHXB201302282

    (13) Gunbas, G.; Toppare, L.2012,, 1083. doi: 10.1039/c1cc14992j

    (14) Alkan, S.; Cutler, C. A.; Reynolds, J. R.2003,, 331. doi: 10.1002/adfm.200304307

    (15) Hwang, J.; Son, J. L.; Shim, Y. B.2010,, 1286. doi: 10.1016/j.solmat.2010.03.027

    (16) Yang, C.; Abley, M.; Holdcroft, S.1999,, 6889. doi: 10.1021/ma990937o

    (17) Zhang, C.; Hua, C.; Wang, G. H.; Ouyang, M.; Ma, C. A.2010,, 50.doi: 10.1016/j.jelechem.2010.04.009

    (18) Otero, T. F.; Carraco, J.; Figuras, A.; Brillas E.1994,, 231. doi: 10.1016/0022-0728(93)03155-I

    (19) Camurlu, P.; Gultekin, C.2012,, 142. doi: 10.1016/j.solmat.2012.07.031

    (20) Pinar, C.; Cemil, G.; Zeynep, B.2012,, 50. doi: 10.1016/j.electacta.2011.11.079

    (21) Wu, T. Y.; Liao, J. W.; Chen, C. Y.2014,, 245. doi: 10.1016/j.electacta.2014.10.116

    (22) Tarkuc, S.; E. Sahmetlioglu, C.; Tanyeli, I. M.; Toppare, A. L.2006,, 5412. doi: 10.1016/j.electacta.2006.02.011

    (23) Wang, G.; Fu, X. K.; Huang, J.; Wu, C. L.; Wu, L.; Deng, J.; Du, Q. L.; Zou, X. C.2011,, 6352. doi: 10.1016/j.electacta.2011.05.023

    (24) Kiralp, S.; Camurlu, P.; Gunbas ,G.; Tanyeli, C.; Akhmedov, I.; Toppare, L.2009,, 1082. doi:10.1002/app.29544

    (25) Wang, G.; Fu, X. K.; Huang, J.; Wu, L.; Du, Q.

    2010,, 6933. doi: 10.1016/j.electacta.2010.07.012

    (26) Usluer, O.; Koyuncu, S.; Demic, S.; Janssen, R. A. J.2011,, 333. doi: 10.1002/polb.22190

    (27) Maier, A.; Rabindranath, A. R.; Tieke, B.2009,, 3668. doi: 10.1021/cm901158t

    (28) Just, P. E.; Chane-Ching, K. I. and Lacaze, P. C.2002,, 3467. doi: 10.1016/S0040-4020(02)00328-9

    (29) Hu, B.; Lv, X. J.; Sun, J. W.; Bian, G. F.; Ouyang, M.; Fu, Z. Y.; Wang, P. J.; Zhang, C.2013,, 1521.doi: 10.1016/j.orgel.2013.03.024

    (30) Carbas, B. B.; ?nal, A. M.2012,, 38.doi: 10.1016/j.electacta.2012.01.026

    (31) Nie, G. M.; Yang, H. J.; Chen, J.; Bai, Z. M.2012,, 2167.doi: 10.1016/j.orgel.2012.05.055

    (32) Camurlu, P.; Karagoren, N.. 2013,, 847. doi: 10.1016/j.reactfunctpolym.2013.03.014

    (33) Pozo-Gonzalo, C.; Pomposo, J. A.; Alduncin, J. A.; Salsamendi, M.; Mikhaleva, A. I.; Krivdin, L. B.; Trofimov, B. A.2007,, 4784. doi:10.1016/j.electacta.2007.01.050

    (34) Tarkuc, S.; Sahmetlioglu, E.; Tanyeli, C.; Akhmedov, I. M.; Toppare, L.2006,, 5412. doi: 10.1016/j.electacta.2006.02.011

    苯/二聯(lián)苯為橋的噻吩-吡咯-噻吩結(jié)構(gòu):分子構(gòu)型及電致變色性質(zhì)

    戴玉玉 李維軍*閆拴馬 王士昭 俞 越 歐陽密 陳麗濤 張 誠*

    (浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,科技部能源材料及應(yīng)用國際科技合作基地,杭州 310014)

    合成了兩種以苯或二聯(lián)苯為橋鍵單元的噻吩-吡咯-噻吩衍生物(PhSNS、BPhSNS),并通過電化學(xué)聚合形成具有交聯(lián)結(jié)構(gòu)的聚合物薄膜(pPhSNS、pBPhSNS)。兩種單體的循環(huán)伏安曲線表明,相比BPhSNS的一個(gè)氧化峰,PhSNS表現(xiàn)出兩個(gè)氧化峰,理論計(jì)算結(jié)果表明這可能主要是由于PhSNS化合物中的兩條噻吩-吡咯-噻吩具有不同的分子構(gòu)型,其中一條噻吩-吡咯-噻吩中噻吩與吡咯單元的扭曲角為21.2°,另一條噻吩-吡咯-噻吩中噻吩與吡咯單元的扭曲角為40.2°,這使得PhSNS的HOMO-1和HOMO表現(xiàn)出比較大的能隙(~0.4 eV),因而導(dǎo)致出現(xiàn)兩個(gè)峰;BPhSNS結(jié)構(gòu)中兩條噻吩-吡咯-噻吩的分子構(gòu)型相同,使得HOMO-1和HOMO很相似,因此其電化學(xué)只出現(xiàn)一個(gè)峰。然而,兩個(gè)單體表現(xiàn)出相同的起始氧化還原電位,同時(shí)相應(yīng)的聚合物表現(xiàn)出相似的氧化還原曲線,使得兩種聚合物薄膜表現(xiàn)出相似的電致變色性質(zhì)。光譜電化學(xué)表明,pPhSNS和pBPhSNS表現(xiàn)出相似的光學(xué)吸收及相似的顏色變化(黃色-灰綠色-灰色);此外,pPhSNS和pBPhSNS表現(xiàn)出快速的響應(yīng)速度(1100 nm 處分別為0.57和0.93 s),同時(shí)表現(xiàn)出合理的光學(xué)對比度(1100 nm處分別為46%和31%);這些研究將為關(guān)聯(lián)分子構(gòu)型與單體的電化學(xué)、聚合物的電致變色性質(zhì)三者之間的關(guān)系提供一定的借鑒與幫助。

    噻吩-吡咯-噻吩;分子構(gòu)型;理論分析;電化學(xué)聚合;電致變色

    O646

    10.3866/PKU.WHXB201705252

    March 30, 2017;

    May 11, 2017;

    May 25, 2017.

    Corresponding authors. ZHANG Cheng, Email: czhang@zjut.edu.cn. LI Wei-Jun, liwj@zjut.edu.cn; Tel: +86-571-88320929.

    The project was supported by the National Natural Science Foundation of China (51603185, 51673174, 51573165, 51273179), Zhejiang Provincial Natural Science Foundation, China (LY17E030001, LY15E030006, LY12B03008), and Special Fund for Scientific Research from Zhejiang University of Technology, China (3817101101T).

    國家自然科學(xué)基金(51603185, 51673174, 51573165, 51273179), 浙江省自然科學(xué)基金(LY17E030001, LY15E030006, LY12B03008)及浙江工業(yè)大學(xué)科研專項(xiàng)基金(3817101101T)資助項(xiàng)目

    猜你喜歡
    電致吡咯噻吩
    電致變色玻璃的節(jié)能效果分析
    上海建材(2022年3期)2022-11-04 02:25:20
    Au/聚吡咯復(fù)合材料吸附與催化性能的研究
    聚多巴胺對氧化鎢膜電致變色性能的影響探究 *
    功能材料(2021年6期)2021-07-13 01:30:02
    探討醫(yī)藥中間體合成中噻吩的應(yīng)用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    超聲波促進(jìn)合成新型吡咯α,β-不飽和酮
    直接合成法制備載銀稻殼活性炭及其對苯并噻吩的吸附
    Au/BaTiO3/SrRuO3異質(zhì)結(jié)的制備與電致電阻效應(yīng)研究
    聚吡咯結(jié)構(gòu)與導(dǎo)電性能的研究
    吡咯甲酮基鈷配合物:一種水氧化催化劑
    欧美日韩乱码在线| 丰满的人妻完整版| 中文字幕免费在线视频6| 男人舔奶头视频| 69av精品久久久久久| 我的老师免费观看完整版| 欧美日韩亚洲国产一区二区在线观看| 国产精品免费一区二区三区在线| 欧美日本视频| 成年免费大片在线观看| 欧美xxxx黑人xx丫x性爽| 美女免费视频网站| 老师上课跳d突然被开到最大视频| 嫩草影院新地址| 精品一区二区三区人妻视频| 国产综合懂色| 国产成人福利小说| 精品人妻偷拍中文字幕| 男女之事视频高清在线观看| 亚洲精品一区av在线观看| 伊人久久精品亚洲午夜| 亚洲精品456在线播放app | 午夜免费男女啪啪视频观看 | 国产伦精品一区二区三区视频9| 欧美日韩综合久久久久久 | 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 老熟妇乱子伦视频在线观看| 亚洲欧美激情综合另类| 亚洲七黄色美女视频| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 亚洲在线自拍视频| 成年人黄色毛片网站| 一区二区三区四区激情视频 | 成人亚洲精品av一区二区| 国国产精品蜜臀av免费| 人人妻,人人澡人人爽秒播| 少妇高潮的动态图| 亚洲av成人精品一区久久| 麻豆精品久久久久久蜜桃| 免费搜索国产男女视频| eeuss影院久久| 最近最新中文字幕大全电影3| 国产精品女同一区二区软件 | 国产精品福利在线免费观看| 国产探花极品一区二区| 亚洲美女搞黄在线观看 | 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 日韩人妻高清精品专区| 看黄色毛片网站| 女的被弄到高潮叫床怎么办 | 非洲黑人性xxxx精品又粗又长| 欧美日韩黄片免| 国产精品电影一区二区三区| 男女那种视频在线观看| 乱系列少妇在线播放| 一级毛片久久久久久久久女| 少妇人妻一区二区三区视频| 变态另类成人亚洲欧美熟女| 国产精品野战在线观看| 欧美中文日本在线观看视频| 嫩草影院新地址| 久久久久久久久久黄片| 悠悠久久av| 日日摸夜夜添夜夜添小说| 婷婷丁香在线五月| 日本欧美国产在线视频| 久久久久久大精品| 波多野结衣高清作品| 国产免费av片在线观看野外av| 永久网站在线| 又黄又爽又免费观看的视频| 精品午夜福利视频在线观看一区| 日本一二三区视频观看| 色综合亚洲欧美另类图片| 免费在线观看影片大全网站| 免费在线观看日本一区| 美女 人体艺术 gogo| 高清毛片免费观看视频网站| 丰满乱子伦码专区| 亚洲精品亚洲一区二区| 日本熟妇午夜| 99热精品在线国产| 最新在线观看一区二区三区| 亚洲人与动物交配视频| 我要搜黄色片| 97超视频在线观看视频| 又粗又爽又猛毛片免费看| 久久久久国产精品人妻aⅴ院| 可以在线观看毛片的网站| 成人亚洲精品av一区二区| 一本久久中文字幕| 亚洲国产精品成人综合色| 亚洲av成人av| 久久热精品热| netflix在线观看网站| 亚洲第一电影网av| 又爽又黄无遮挡网站| 成年人黄色毛片网站| 91在线精品国自产拍蜜月| 色综合站精品国产| 免费不卡的大黄色大毛片视频在线观看 | 一级黄片播放器| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区久久| 美女免费视频网站| 免费看a级黄色片| 久久久久久九九精品二区国产| 永久网站在线| 成人一区二区视频在线观看| 久久久久久久亚洲中文字幕| 国内精品久久久久久久电影| 亚洲五月天丁香| 亚洲内射少妇av| 亚洲一级一片aⅴ在线观看| 网址你懂的国产日韩在线| 又爽又黄a免费视频| 久久久久国内视频| 久久久精品欧美日韩精品| 久久久久久伊人网av| 亚洲乱码一区二区免费版| 波野结衣二区三区在线| 18+在线观看网站| 真实男女啪啪啪动态图| 亚洲人与动物交配视频| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在 | 97超视频在线观看视频| 亚洲自偷自拍三级| 男女视频在线观看网站免费| 亚洲五月天丁香| 久久人人爽人人爽人人片va| 亚洲自拍偷在线| 毛片女人毛片| 床上黄色一级片| 一区福利在线观看| 精品人妻视频免费看| 午夜福利在线在线| 国产爱豆传媒在线观看| av在线蜜桃| 全区人妻精品视频| 少妇高潮的动态图| 国产精品乱码一区二三区的特点| 看黄色毛片网站| 亚洲性久久影院| 久久久久久九九精品二区国产| 美女高潮喷水抽搐中文字幕| 日本免费a在线| 中国美女看黄片| 亚洲美女搞黄在线观看 | 看片在线看免费视频| 少妇的逼好多水| 少妇猛男粗大的猛烈进出视频 | 国产真实乱freesex| eeuss影院久久| 人人妻,人人澡人人爽秒播| 久久久午夜欧美精品| 久久国产乱子免费精品| 国产午夜精品久久久久久一区二区三区 | 少妇的逼好多水| 亚洲狠狠婷婷综合久久图片| 波多野结衣高清作品| 国产一区二区激情短视频| 久久人人爽人人爽人人片va| 日本爱情动作片www.在线观看 | 九九热线精品视视频播放| 18禁在线播放成人免费| 一区二区三区免费毛片| 国产亚洲av嫩草精品影院| 麻豆成人午夜福利视频| 日本黄色片子视频| 干丝袜人妻中文字幕| 国产精品美女特级片免费视频播放器| 国产精华一区二区三区| 日本a在线网址| 男女边吃奶边做爰视频| 亚洲av日韩精品久久久久久密| 99九九线精品视频在线观看视频| 啪啪无遮挡十八禁网站| 中国美女看黄片| 成人性生交大片免费视频hd| 干丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲中文日韩欧美视频| 中文资源天堂在线| 伦理电影大哥的女人| 亚洲人成网站在线播放欧美日韩| 麻豆精品久久久久久蜜桃| 亚洲av熟女| 男女视频在线观看网站免费| 国产精品久久视频播放| 中亚洲国语对白在线视频| 午夜免费激情av| 成人av在线播放网站| x7x7x7水蜜桃| 国产精品伦人一区二区| 女的被弄到高潮叫床怎么办 | 国产精品亚洲一级av第二区| 夜夜看夜夜爽夜夜摸| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 神马国产精品三级电影在线观看| 久久人人精品亚洲av| 久久这里只有精品中国| 在线免费观看的www视频| 波多野结衣高清作品| 亚洲精品粉嫩美女一区| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看| 久久久久性生活片| 久9热在线精品视频| 极品教师在线视频| 精品久久久噜噜| 在线播放无遮挡| 精品福利观看| 动漫黄色视频在线观看| 色哟哟哟哟哟哟| 人妻夜夜爽99麻豆av| av中文乱码字幕在线| 久久精品国产自在天天线| 欧美日韩中文字幕国产精品一区二区三区| 黄色视频,在线免费观看| 中国美女看黄片| 午夜激情福利司机影院| 久久草成人影院| 99久久成人亚洲精品观看| 又黄又爽又刺激的免费视频.| 欧美激情国产日韩精品一区| av福利片在线观看| 亚洲国产高清在线一区二区三| 久久香蕉精品热| 无遮挡黄片免费观看| 日日撸夜夜添| 日韩强制内射视频| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 十八禁国产超污无遮挡网站| 国产成人一区二区在线| 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 国产一区二区三区av在线 | 日本黄色片子视频| 精品国内亚洲2022精品成人| 国内精品一区二区在线观看| 伦理电影大哥的女人| 国产高清视频在线播放一区| 亚洲性久久影院| 久久久国产成人免费| 国产淫片久久久久久久久| 亚洲国产色片| 精品日产1卡2卡| 精品一区二区三区av网在线观看| 亚洲性久久影院| ponron亚洲| 亚洲18禁久久av| 岛国在线免费视频观看| 麻豆精品久久久久久蜜桃| 国产精品永久免费网站| 搡老熟女国产l中国老女人| 亚洲专区国产一区二区| 国产爱豆传媒在线观看| av中文乱码字幕在线| 亚洲av免费在线观看| 听说在线观看完整版免费高清| 午夜福利在线观看吧| 欧美色视频一区免费| 精品99又大又爽又粗少妇毛片 | 精品久久久久久,| 日韩欧美三级三区| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 亚洲在线自拍视频| av在线蜜桃| 免费av毛片视频| 乱人视频在线观看| 国内精品宾馆在线| 亚洲图色成人| 国产精品不卡视频一区二区| 国产亚洲精品久久久久久毛片| 午夜福利18| 久久6这里有精品| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 哪里可以看免费的av片| 欧美黑人巨大hd| 欧美3d第一页| 国产精品99久久久久久久久| 国产极品精品免费视频能看的| 国产主播在线观看一区二区| 嫩草影院新地址| 可以在线观看的亚洲视频| 成人综合一区亚洲| 欧美三级亚洲精品| 美女黄网站色视频| 日本 欧美在线| 亚洲av不卡在线观看| 又黄又爽又免费观看的视频| 色在线成人网| 国产精品爽爽va在线观看网站| 一本久久中文字幕| 国产精品永久免费网站| 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 国产黄a三级三级三级人| 欧美日韩乱码在线| 三级毛片av免费| 亚洲人成网站在线播| 日韩国内少妇激情av| 亚洲av中文av极速乱 | 久9热在线精品视频| 九色国产91popny在线| 亚洲经典国产精华液单| 一a级毛片在线观看| 一级毛片久久久久久久久女| aaaaa片日本免费| 真人做人爱边吃奶动态| av.在线天堂| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| 99在线视频只有这里精品首页| 最新在线观看一区二区三区| 国产欧美日韩精品一区二区| 成年女人看的毛片在线观看| 亚洲av.av天堂| 最后的刺客免费高清国语| 精品午夜福利视频在线观看一区| 精品久久久久久久人妻蜜臀av| av在线蜜桃| 欧美精品国产亚洲| 久久久色成人| 看片在线看免费视频| 久久热精品热| 女生性感内裤真人,穿戴方法视频| 午夜免费激情av| 黄色丝袜av网址大全| 黄色配什么色好看| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 久久久久久久久久久丰满 | 动漫黄色视频在线观看| 99热网站在线观看| 日韩高清综合在线| 老司机福利观看| .国产精品久久| 香蕉av资源在线| 亚洲精华国产精华精| 内地一区二区视频在线| 又紧又爽又黄一区二区| 亚洲自偷自拍三级| 午夜精品在线福利| 亚洲第一电影网av| 欧美区成人在线视频| 亚洲国产欧洲综合997久久,| 日韩亚洲欧美综合| 麻豆一二三区av精品| 国产免费一级a男人的天堂| 亚洲精品粉嫩美女一区| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 88av欧美| www.www免费av| 国产在线精品亚洲第一网站| 内射极品少妇av片p| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 在线观看一区二区三区| 欧美黑人巨大hd| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 两人在一起打扑克的视频| 国产精品不卡视频一区二区| 深夜a级毛片| 丝袜美腿在线中文| 亚洲男人的天堂狠狠| 在线观看66精品国产| 日本五十路高清| 国产一区二区三区在线臀色熟女| 男插女下体视频免费在线播放| 精品日产1卡2卡| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看| 日日撸夜夜添| 一本一本综合久久| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 露出奶头的视频| 亚洲欧美激情综合另类| 国产探花极品一区二区| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 日韩欧美国产在线观看| 久久热精品热| 免费大片18禁| 亚洲欧美精品综合久久99| 国产老妇女一区| 国产精品一区二区三区四区久久| 在线免费十八禁| 亚洲成av人片在线播放无| 亚洲国产精品sss在线观看| 色播亚洲综合网| 日韩欧美国产在线观看| 成人毛片a级毛片在线播放| a级毛片a级免费在线| 色视频www国产| 亚洲电影在线观看av| av在线天堂中文字幕| 乱码一卡2卡4卡精品| 搡老岳熟女国产| 最近最新免费中文字幕在线| 一本精品99久久精品77| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 97超视频在线观看视频| 午夜爱爱视频在线播放| 搡老熟女国产l中国老女人| 午夜a级毛片| 成年人黄色毛片网站| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 一区二区三区四区激情视频 | 永久网站在线| 少妇裸体淫交视频免费看高清| 桃色一区二区三区在线观看| 内射极品少妇av片p| 高清日韩中文字幕在线| 午夜激情福利司机影院| 网址你懂的国产日韩在线| 国国产精品蜜臀av免费| 91麻豆av在线| av在线蜜桃| 精品免费久久久久久久清纯| 国产 一区 欧美 日韩| 人人妻,人人澡人人爽秒播| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| 欧美日韩精品成人综合77777| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人免费电影在线观看| 亚洲美女黄片视频| 久久久国产成人免费| 色综合色国产| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 99国产极品粉嫩在线观看| 禁无遮挡网站| 欧美人与善性xxx| 日本色播在线视频| 嫁个100分男人电影在线观看| av在线老鸭窝| 美女大奶头视频| www.www免费av| 亚洲经典国产精华液单| 亚洲精品粉嫩美女一区| 亚洲美女搞黄在线观看 | 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 国内少妇人妻偷人精品xxx网站| 精品免费久久久久久久清纯| 黄色欧美视频在线观看| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看 | 日韩欧美精品v在线| 成人av在线播放网站| 小说图片视频综合网站| 国产精品精品国产色婷婷| 亚洲男人的天堂狠狠| 午夜福利在线在线| 在线观看午夜福利视频| av在线亚洲专区| 精品一区二区免费观看| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 美女xxoo啪啪120秒动态图| 级片在线观看| 久久精品国产亚洲av香蕉五月| 97超级碰碰碰精品色视频在线观看| 在线天堂最新版资源| a级毛片a级免费在线| 亚洲在线自拍视频| 精华霜和精华液先用哪个| 1024手机看黄色片| 伦理电影大哥的女人| 91久久精品国产一区二区三区| 一区二区三区高清视频在线| 欧美zozozo另类| 亚洲无线观看免费| 99久久中文字幕三级久久日本| 简卡轻食公司| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 99热这里只有是精品50| 成人国产麻豆网| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 一个人免费在线观看电影| 欧美潮喷喷水| 国产高清激情床上av| 简卡轻食公司| 欧美三级亚洲精品| 女人十人毛片免费观看3o分钟| 99热精品在线国产| 国产精品一区二区三区四区久久| av黄色大香蕉| 午夜福利欧美成人| xxxwww97欧美| 嫩草影视91久久| 国产亚洲精品久久久com| 一个人看的www免费观看视频| 九九热线精品视视频播放| 亚洲在线观看片| 午夜a级毛片| 久久草成人影院| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区免费观看 | 免费看av在线观看网站| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 内射极品少妇av片p| 久久精品综合一区二区三区| 淫妇啪啪啪对白视频| 美女黄网站色视频| 99久久成人亚洲精品观看| 亚洲成人中文字幕在线播放| 日本撒尿小便嘘嘘汇集6| 我的老师免费观看完整版| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 日日干狠狠操夜夜爽| 免费看光身美女| 在线观看美女被高潮喷水网站| 天天一区二区日本电影三级| 91在线精品国自产拍蜜月| 欧美日韩瑟瑟在线播放| 亚洲五月天丁香| 尾随美女入室| 少妇裸体淫交视频免费看高清| 欧美精品啪啪一区二区三区| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 久久6这里有精品| 天天一区二区日本电影三级| 毛片一级片免费看久久久久 | 黄色丝袜av网址大全| 久久精品夜夜夜夜夜久久蜜豆| xxxwww97欧美| 精品久久久久久,| 久久久国产成人精品二区| 97碰自拍视频| 精品人妻熟女av久视频| 亚洲 国产 在线| 一进一出抽搐动态| 亚洲专区中文字幕在线| 久9热在线精品视频| 精品一区二区三区人妻视频| 嫁个100分男人电影在线观看| 国产高清不卡午夜福利| 欧美黑人巨大hd| 一级黄色大片毛片| 亚洲欧美日韩卡通动漫| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 欧美+日韩+精品| 最近中文字幕高清免费大全6 | 美女免费视频网站| 久久精品国产99精品国产亚洲性色| av中文乱码字幕在线| 国产麻豆成人av免费视频| ponron亚洲| 无人区码免费观看不卡| 久久精品人妻少妇| 午夜激情福利司机影院| av天堂在线播放| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区 | 国产伦在线观看视频一区| 久久久久久久午夜电影| 免费人成在线观看视频色| 欧美精品国产亚洲| 啦啦啦韩国在线观看视频| 久久久久久大精品| 亚洲性久久影院| 深爱激情五月婷婷| 久久久久国产精品人妻aⅴ院| 日本免费a在线| 黄色一级大片看看| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 午夜免费激情av| 色哟哟哟哟哟哟| 成人av在线播放网站| 午夜福利高清视频| 精品无人区乱码1区二区| 日本与韩国留学比较| 久久草成人影院| eeuss影院久久| 亚洲美女搞黄在线观看 | www日本黄色视频网| 日韩欧美在线二视频|