• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4 Microspheres with Controllable Sizes and Morphologies

    2018-01-12 06:09:01WANGDanLIUChuanYongLONGYueSONGKaiHUANGWei
    物理化學(xué)學(xué)報(bào) 2017年11期
    關(guān)鍵詞:三鐵醋酸鈉磁化強(qiáng)度

    WANG Dan LIU Chuan-Yong LONG Yue SONG Kai HUANG Wei

    ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4Microspheres with Controllable Sizes and Morphologies

    WANG Dan1,3LIU Chuan-Yong2LONG Yue3SONG Kai3,*HUANG Wei1

    (1;2;3)

    Monodisperse Fe3O4microspheres with tunable diameters and high magnetic saturation were synthesized by a solvothermal reduction method. It was found that the morphology and structure of the Fe3O4microspheres could be tuned by simply altering the amount of the reactants such as ferric chloride, sodium acetate, water, and the reaction time. The Fe3O4microspheres obtainedthis method possessed high purity, crystallinity, and a nearly spherical shape. Furthermore, they were monodispersed and no aggregation was found. Such monodisperse Fe3O4microspheres had tunable diameters of 400–700 nm and the fabrication time was only 2–4 h. The products showed high magnetic saturation values, and their yields were typically more than 94%.

    Monodisperse Fe3O4microspheres; Solvothermal; Time-saving; Tunable

    1 Introduction

    In the past few years, magnetic microspheres have gained much attention owing to their wide application areas, such as magnetic separation1?4, targeted drug delivery5, catalyst6, magnetic resonance imaging (MRI)7,8, magnetic ink9, magneto-optical applications10and self-assembly11. As the magnetic, transportation properties, catalysis, biomedicalare directly controlled by particlesize, size distribution, shape and surface chemistry12,13, the synthesisof nanostructured magnetic materials has become aparticularly important area of research14–16. Monodisperse Fe3O4microspheres with narrow size distribution, hollow space and high magnetic saturation (σ) can provide maximum signal in liquid media and show high performance in biological, separation and optical applications10,17,18.

    Numerous approaches have been developed to synthesize nanostructured monodisperse Fe3O4microspheres including hydrothermal reactions19, co-precipitation20, microemulsion21, solvothermal reduction22, thermal decomposition23, and high-temperature hydrolysis reaction24–27. Among these methods, solvothermal reduction is one of the most frequently-used means to prepare magnetic microspheres with narrow size distribution and high magnetic saturation for it is simple and inexpensive. Li.22used the solvothermal reduction method to prepare monodisperse Fe3O4microspheres with diameters ranging from 200 to 800 nm, and the size of Fe3O4microspheres was tuned by adjusting the reaction time from 8 h to 72 h. Fu.29prepared well-crystallized Fe3O4hollow microspheres with diameters of 200–300 nm, and the reaction was completed in 12 h. Zhao.21modified solvothermal method and tuned the size of Fe3O4microspheres by varying the concentration of the reactants, obtaining the microspheres with average diameters ranging from 80 to 410 nm after 10 h reaction. Zhu.30reported a facile solvothermal method to fabricate hollow Fe3O4microspheres with the diameter of 290 nm for 10 h at 200 °C. Xia31.reported a bisolvent solvothermal processto prepare monodisperse Fe3O4microsphereswith diameters of 55–500 nm for 20 h, and the size was controlled by adjusting the volume ratio of the solvent. From the above methods, magnetic Fe3O4microspheres with different sizes and morphologies were successfully prepared. However, one drawback of the solvothermal method is that the reaction time is relatively long to prepare microspheres with large sizes, e.g. 10 h reaction is required to prepare microspheres with diameter of 400 nm; microspheres with diameters of 600 and 800 nm requires 48 and 72 h to prepare, respectively.

    Fig.1 XRD diffraction patterns of the Fe3O4 microspheres.

    Herein, the solvothermal reduction method is modified to synthesize monodisperse Fe3O4microspheres with tunable diameters, high magnetic saturation in a short reaction time. The monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully obtaineda 4 h reaction, and the diameter can be tuned by the amount of ferric chloride, sodium acetate and the reaction time. Moreover, Hollow structure can also be obtained by simply altering the amount of water in the reaction system.

    2 Materials and methods

    2.1 Materials

    Ferric chloride (FeCl3, anhydrous, > 98%) and sodium acetate (CH3COONa, NaAc, anhydrous, > 99%) were purchased from Acros. Ferric chloride hexahydrate (FeCl3·6H2O, > 98%), ethylene glycol (EG, > 99%) and ethanol were obtained from Beijing Chemical Works and used without further purification.Polyethylene glycol (PEG,w ~2000) was purchased from Alfa Aesar. Water used throughout all experiments was purified with the Millipore system.

    X-ray diffraction (XRD) analysis was carried out on a D/Max 2500V/PC (Japan) X-ray diffractometer (= 0.154056 nm) in the 2range of 10°–70° using Cu-Kradiation. Scanning electron microscope (SEM) images were obtained by JEOL S-4800 (Japan) field emission scanning electron microscope. Transmission electron microscope (TEM) images and high resolution (HR) TEM images were taken on JEOL JEM-2100F (Japan) transmission electron microscope. The magnetic properties of the Fe3O4microspheres were investigated by SQUID vibration sample magnetometer (VSM) (America).

    2.2 Synthesis of monodisperse Fe3O4 microspheres.

    In a typical synthesis of Fe3O4microspheres, NaAc (2.87 g) was dissolved in EG (20 mL), and the solution was kept in a water bath at 40 °C. FeCl3·6H2O (2.70 g, 10 mmol) was dissolved in EG (10 mL) to form a clear solution, followed by the addition of PEG (0.75 g). After complete dissolution, the resulting solution was slowly poured into the as-prepared NaAc solution under vigorous stirring at 40 °C. After 30 min, brownish yellow solution was produced, and transferred into a 40 mL Teflon lined stainless-steel autoclave. The autoclave was maintained at 200 °C in oven for 4 h. After cooled down to room temperature, the dark product was collected by a magnet and washed with ethanol and water several times. Finally, the product was dried in room temperature and weighed.

    2.3 Characterization of the Fe3O4 microspheres

    XRD pattern of the Fe3O4microspheres synthesized by the method in section 2.2 is shown in Fig.1. The diffraction peaks match well with the database for magnetite in the JCPDS-International Center for Diffraction Data (JCPDS Card: 79-0419) file. The specific sharp and strong diffraction peaks also confirmed the well crystallization of the product, and no impurity was observed.

    SEM and TEM images were taken to investigate the morphology and structure of theproduct, as shown in Fig.2. It can be seen from Fig.2a that the Fe3O4microspheres are spherical with a uniform size distribution and the average diameter of the spheres is ~600 nm. Rough surface morphology of the microspheres is observed from the magnified SEM image shown in Fig.2b. More details can be found by the broken spheres (observed occasionally) shown in Fig.2c that Fe3O4microspheres are comprised by many aggregated Fe3O4nanocrystals. The TEM images shown in Fig.2d and 2e further confirmed the spherical structure of Fe3O4microspheres. The detailed structure information of the Fe3O4microspheres was investigated by using HRTEM (taken from the marked area in Fig.2e). Clear lattice fringes can be observed in the HRTEM image (Fig.2f), and it also displays the high crystalline and single-crystalline nature of Fe3O4microspheres. The spacing of the lattice fringes is ~0.48 nm, which matches well with the (111) lattice planes of Fe3O4crystal.

    The magnetic properties of the Fe3O4microspheres were investigated with VSM. Fig.3 shows the hysteresis loop measured at room temperature by cycling the field between ?10 and 10 kOe. Results show that the magnetic saturation value of the microspheres at room temperature is 80 emu·g-1, and the inset curve reveals the weak ferromagnetism behavior of the product with a remanence of 2.9 emu·g-1and a coercivity of 23.7 Oe.

    3 Results and discussion

    3.1 Modifed solvthermal method

    There are two dynamical stagesin the Fe3O4microspheres formation process32. The first stage is the burst-nucleation, forming nanocrystals in the supersaturated solution. The second stage is the oriented aggregation of nanocrystals formed in the first stage to minimize the surface energy. By adjusting these two processes, the morphology and structure of the product can be tuned. In previous studies, attentions were focused on adjusting the ratio of the reactants and solvents in the synthesis system.

    However, we found that the precursor solution also has a severe impact on the final product. The conventional way to prepare the precursor solution is to dissolve the FeCl3·6H2O, NaAc solid and surfactant (PEG) consecutively in the EG solution under vigorous stirring. Here, we report a new time-saving method to prepare Fe3O4microspheres: FeCl3·6H2O was dissolved in EG firstly, and then adding PEG to form solution A. NaAc was dissolved separately in EG to form solution B, followed by the combination of solutions A and B. For comparison, precursor solutions using both the conventional method and the new method were prepared, and heated at 200 °C for4 h to produce the Fe3O4microspheres. From the SEM image in Fig.4a, it can be seen that the Fe3O4microspheres prepared by the conventional method are heterodisperesed in size with diameters ranging from a few nanometers to few hundred nanometers. In contrast, the microspheres fabricated by the time-saving method are much more monodisperse with the average diameter of ~600 nm, as seen in Fig.4b. It is widely accepted that a homogenous system is the key for the preparation of monodisperse particles33, so it is important to make a homogenous precursor solution.

    The time-saving mechanism remains unclear, while a possible one could be due to the liquid-liquid mixing strategy in our method. In the conventional method, when NaAc was added to the EG solution of FeCl3·6H2O, it started to dissolve. As NaAc is in the solid form, the dissolved NaAc will react with the FeCl3·6H2O firstly, which results in the inhomogeneous of the whole system with dissolution and reaction occurs at the same time. Therefore, the Fe3O4microspheres synthesized from this method is also inhomogeneous in size. Comparatively, in the time-saving method, FeCl3·6H2O and NaAc are dissolved separately in EG first, after combination, reaction carries out simultaneously; hence, is more likely to form a homogeneous system and consequently monodispersed microspheres. In addition, liquid-liquid mixing has larger reaction interfaces than the liquid-solid one. The interface of the following reaction enlarges correspondingly due to the increased total surface of the precursor. In turn, the whole reaction time could be reduced. Hence, in accordance with our explanation, after 4 h of reaction at 200 °C, the yield of the products prepared by the conventional process was ~85%, and the yield of the time-saving process was ~94%.

    The synthesis conditions: 2.70 g FeCl3·6H2O, 0.75 g PEG, 2.87 g NaAc, 30 mL EG, 200 °C, and 4 h.

    Fig.3 Hysteresis loop of Fe3O4 microspheres.

    3.2 Size modification of monodispersed Fe3O4 microspheres

    3.2.1 Adjusting the amount of FeCl3·6H2O

    Amount of FeCl3·6H2O in the precursor solution affects the size distribution of the Fe3O4microspheres. It was found that no Fe3O4microspheres were obtained with 1 mmol of FeCl3·6H2O added in the precursor solution. When increasing the amount of FeCl3·6H2O to 2 mmol, aggregated Fe3O4microspheres were formed, which can be seen in Fig.5a. When the amount of FeCl3·6H2O increased to 3 mmol, uniform Fe3O4microspheres were produced with the average diameter of 500 nm, as depicted in Fig.5b. As further increasing the FeCl3·6H2Ocontent to 5 and 10 mmol, Fe3O4microspheres with average diameters of 570 nm (Fig.5c) and 600 nm (Fig.5d) were produced, respectively.

    The effect of amount of FeCl3·6H2O on the formation of Fe3O4microspheres can be explained withthe help of the two-stage growth model described in section 3.1. When the amount of FeCl3·6H2O was too low, the nucleation process was impeded, which resulted in low yield. With more FeCl3·6H2O added to the precursor solution, the nucleation and formation process of nanocrystals started off. At lower rate, slow formation of the nanocrystals caused the widening of the size distribution, as shown in Fig.5a. When the amount of FeCl3·6H2O increased, the nucleation of the nanocrystals became faster, which accelerated the rate of the nanocrystals formation, and resulted in narrower sizedistribution.

    3.2.2 Adjusting the amount of NaAc

    To investigate the effect of NaAc, a series of experiments were carried out with different amount of NaAc, whereas other parameters remained constant. When the molar ratio of NaAc/ Fe3+is 1 : 1, the product was polydispersed in size, as shown in Fig.6a. After adjusting the ratio to 2 and 3, uniform microspheres were produced with the average diameters of 400 nm (Fig.6b) and 700 nm (Fig.6c), respectively. However, as the ratio increased to 3.5, the average diameter of the Fe3O4microspheres decreased to 600 nm (Fig.6d). Further reduction of the average diameters was also observed when the NaAc/Fe3+molar ratio increased to 6 (550 nm, Fig.6e) and 9 : 1 (400 nm, Fig.6f). It was also found that the yields of the first two batches (Fig.6a and 6b) are 15% and 55%, respectively, while all the others are over 94%. It can be deduced from the results that low yields of the first two batches are caused by the shortage of NaAc.

    Fig.4 SEM image of Fe3O4 microspheres prepared through different processes.

    (a) conventional method; (b) time-saving method. All scale bars are 5 μm.

    Fig.5 SEM images of Fe3O4 microspheres prepared with different amount of FeCl3·6H2O.

    (a) 2 mmol, (b) 3 mmol, (c) 5 mmol, (d) 10 mmol. All scale bars are 2 μm.

    Fig.6 SEM images of Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+: (a) 1, (b) 2, (c) 3, (d) 3.5, (e) 6, (f) 9. All scale bars are 1 μm.

    The effect of NaAc on the size of the Fe3O4microspheres can be explained that when the amount of NaAc was low, it caused the slow nucleation of the nanocrystals; hence, resulted in the wider size distribution. As the amount of NaAc increased, the nucleation rate of the nanocrystals became faster, which accelerated the formationof the Fe3O4nanocrystals and resulted in the narrow size distribution31. High amount of NaAc can act as a electrostatic stabilizer which prevents the newly formed microspheres from aggregation. This is also helpful to narrow the size distribution. With the same amount of ferric chloride, faster nucleation leads to the decrease in particle size, which can explain the decrease of size when the molar ratio further increased to 6 and 9. Moreover, electrostatic stabilization also facilitates the oriented attachment. With the increase amount of NaAc, the diffraction peaks became sharper and stronger as one can be seen from the XRD patterns (Fig.7). The corresponding grain sizes increased from 20 to 64.8 nm, which were calculated by the Scherrer equation based on the strongest peak (311) in Fig.734.

    3.2.3 Adjusting the heating time

    Heating time also affects the size of Fe3O4microspheres. Results show that no Fe3O4microspheres were formed if the heating time is less than 2 h. As the heating time increased to 2 h, Fe3O4microspheres with average diameter of 400 nm were formed (Fig.8a). When the heating time further increased to 3 and 4 h, the diameters of the Fe3O4microspheres increased to 500 nm (Fig.8b) and 600 nm (Fig.8c), respectively. However, no increase in size was found with further prolonged heating (6 h, Fig.8d). This result shows that the diameter of the Fe3O4microspheres can be tuned from 400 to 600 nm by increasing the heating time from 2 h to 4 h, which is much shorter than the reaction time reported in the previous study22.

    Fig.7 XRD diffraction patterns of the Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+and the grain sizes of peak (311): (a) 1, 20 nm; (b) 2, 22.7 nm; (c) 3, 23.2 nm; (d) 3.5, 28.3 nm; (e) 6, 31.4 nm; (f) 9, 64.8 nm.

    Fig.9 SEM images of Fe3O4 microspheres prepared with different amount of water.

    The molar ratio of H2O/Fe3+: (a) 6, (b) 9, (c) 12, (d) 18.All scale bars are 2 μm.

    3.3 Tuning the morphology of the monodisperse Fe3O4 microspheres

    The amount of water can affect the morphology of the Fe3O4microspheres, and anhydrous FeCl3was used instead of FeCl3·6H2O in the preparation process. When the molar ratio of H2O/Fe3+was 6, the product showed uniform size distribution with the average diameter of 600 nm, as shown in Fig.9a. When the molar ratio increased to 9, slight decrease in the average diameter was observed, and small holes appeared on the surface of the microspheres (Fig.9b). After further increasing the molar ratio to 12, the average diameter decreased to 500 nm, as depicted in Fig.9c. It can be seen from the inset image that some of the microspheres became hollow structured. As the molar ratio increased to 18, the average diameter remained as 500 nm. However, a greater portion of the microspheres became hollow, some were even ruptured (Fig.9d).As mentioned earlier, faster nucleation leads to the decrease in particle size. High amount of water gives rise to fast hydrolysis of FeCl3and NaAc, which accelerates the nucleation of the Fe3O4nanocrystals26. Hence, it is comprehensible that the size of the microspheres decreased with the increase amount of water. In addition, the viscosity of the solution decreases with high amount of water, which facilitates the growth and aggregation of the nanocrystals. So the aggregation process at the beginning was very fast, and there is not enough time for the aggregated nanocrystals to adjust and rotate to the suitable configuration interface. Naturally the interior aggregated nanocrystals of Fe3O4microspheres were not oriented as well as the outer ones and had relatively higher surface energy and smaller size. Therefore, they were unstable and gradually dissolved and attached to the outer nanocrystals by the driving force to reduce the overall surface energy. This “solid-solution-solid” mass transportation resulted in the hollow structure of the products35,36.

    Fig.8 SEM images of Fe3O4 microspheres prepared with different reaction time.

    (a) 2 h, (b) 3 h, (c) 4 h, (d) 6 h.All bars are 1 μm.

    4 Conclusions

    In conclusion, monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully synthesized by a time-saving solvothermal reaction route for 2?4 h, and the size of Fe3O4microspheres can be tuned by variousmeans: amount of ferric chloride and sodium acetate, and reaction time. Moreover, hollow structure can also be obtained by simply altering the amount of water in the reaction system. The products have high magnetic saturation values, and the yield of the products is over 94%.

    (1) Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D.2008,, 8924. doi: 10.1002/anie.200803968.

    (2)Sheng, W.; Wei, W.; Li, J. J.; Qi, X. L.; Zuo, G. C.; Chen, Q.; Pan, X. H.; Dong, W.2016,, 1116. doi: 10.1016/j.apsusc.2016.07.061.

    (3) Yu, M.; Di, Y.; Zhang, Y.; Zhang, Y. T.; Guo, J.; Lu, H. J.; Wang, C. C.2016,, 74. doi: 10.3390/polym8030074.

    (4) Zhou, L. M.; Wang, Y. P.; Huang, Q. W.; Liu, Z. R.2007,(12), 1979. [周利民, 王一平, 黃群武, 劉峙嶸. 物理化學(xué)學(xué)報(bào), 2007,(12), 1979.]doi: 10.3866/PKU.WHXB20071228.

    (5) Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V.2005,, 194. doi: 10.1021/mp0500014.

    (6) Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D.2008,, 931. doi: 10.1021/nl080020f.

    (7) Qiao, R. R.; Yang, C. H.; Gao, M. Y.2009,, 6274. doi: 10.1039/b902394a.

    (8) Kim, D. H.; Chen, J.; Omary, R. A.; Larson, A. C.2015,, 477. doi: 10.7150/thno.10823.

    (9) Ge, J. P.; Goebl, J.; He, L.; Lu, Z. D.; Yin, Y. D.2009,, 4259. doi: 10.1002/adma.200901562.

    (10) Kim, H.; Ge, J. P.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y. D.; Kwon, S.2009,, 534. doi: 10.1038/NPHOTON.2009.141.

    (11) Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D.2007,, 8974. doi: 10.1021/ja0736461.

    (12) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A.2000,, 1989. doi: 10.1126/science.287.5460.1989.

    (13) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B.2001,, 12798. doi: 10.1021/ja016812s.

    (14) Yan, L.; Wang, Y. F.; Li, J.; Shen, H. D.; Wang, C.; Yang, S. B.2016,, 10616. doi: 10.1007/s10854-016-5156-3.

    (15) Bokharaei, M.; Schneider, T.; Dutz, S.; Stone, R. C.; Mefford, O. T.; Hafeli, U. O.2016,, 1. doi: 10.1007/s10404-015-1693-y.

    (16) Wang, X. M.; Huang, P. F.; Ma, X. M.; Wang, H.; Lu, X. Q.; Du, X. Z.2017,, 300. doi: 10.1016/j.talanta.2017.01.067.

    (17) Wang, Z.; Hong, R. Y.2016,, 1. doi: 10.1007/s10965-015-0897-x.

    (18) Gee, S. H.; Hong, Y. K.; Erickson, D. W.; Park, M. H.2003,, 7560. doi: 10.1063/1.1540177.

    (19) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D.2005,, 121. doi: 10.1038/nature03968.

    (20) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P.1996,, 2209. doi: 10.1021/cm960157j.

    (21) Chin, A. B.; Yaacob, I. I.2007,, 235. doi: 10.1016/j.jmatprotec.2007.03.011.

    (22) Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D.;2005,, 2782. doi: 10.1002/ange.200462551.

    (23) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X.2004,, 273. doi: 10.1021/ja0380852.

    (24) Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D.2007,, 4342. doi: 10.1002/anie.200700197.

    (25) Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P.2012,, 5818. doi: 10.1021/cr300068p.

    (26) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N.2008,, 2064. doi: 10.1021/cr068445e.

    (27) Lu, A. H.; Salabas, E. L.; Schüth F.2007, 46, 1222. doi: 10.1002/anie.200602866.

    (28) Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y.2009,, 5875. doi: 10.1002/anie.200901566.

    (29) Zhu, L. P.; Xiao, H. M.; Zhang, W. D.; Yang, G.; Fu, S. Y.2008,, 957. doi: 10.1021/cg700861a.

    (30) Liu, S. H.; Xing, R.M.; Lu, F.; Rana, R. K.; Zhu, J. J.2009,, 21042. doi: 10.1021/jp907296n.

    (31) Huang, Z. Z.; Wu, K. L.; Yu, Q. H.; Wang, Y. Y.; Xing, J. Y.; Xia, T. L.2016,, 219. doi: 10.1016/j.cplett.2016.10.036.

    (32) Libert, S.; Gorshkov, V.; Goia, D.; Matijevi?, E.; Privman, V.2003,, 10679. doi: 10.1021/la0302044.

    (33) Matijevi?, E.1993,, 412. doi: 10.1021/cm00028a004.

    (34) Penn, R. L.2004,, 12707. doi: 10.1021/jp036490+.

    (35) Jia, B. P.; Gao, L.2008,, 666. doi: 10.1021/jp0763477.

    (36) Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A.2006,, 2325. doi: 10.1002/adma.200600733.

    尺寸可控的單分散四氧化三鐵微球的省時制備

    王 丹1,3劉傳勇2龍 玥3宋 愷3,*黃 維1

    (1南京郵電大學(xué)先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國家重點(diǎn)實(shí)驗(yàn)室培育基地,南京 210023;2中國科學(xué)院化學(xué)研究所,北京 100190;3中國科學(xué)院理化技術(shù)研究所,北京 100190 )

    用溶劑熱法制備了單分散性較好、尺寸可控,飽和磁化強(qiáng)度高的四氧化三鐵磁性微球,并用多種手段調(diào)控制備了不同尺寸和形貌的四氧化三鐵微球,如氯化鐵、醋酸鈉、水的量以及反應(yīng)時間。結(jié)果表明所得四氧化三鐵產(chǎn)物純凈、結(jié)晶度高,形狀近乎球形、無團(tuán)聚,大小均一、具有很好的單分散性。此方法可以在2?4 h內(nèi)制備400?700 nm范圍內(nèi)尺寸可控、高飽和磁化強(qiáng)度的四氧化三鐵微球,產(chǎn)率達(dá)到了94%。

    單分散四氧化三鐵微球;溶劑熱法;省時;可控

    O649

    10.3866/PKU.WHXB201706093

    April 18, 2017;

    May 29, 2017;

    June 9, 2017.

    Corresponding author. Email: songkai@mail.ipc.ac.cn; Tel: +86-10-82543658.

    The project was supported by the National Natural Science Foundation of China (U1430128).

    國家自然科學(xué)基金(U1430128)資助

    猜你喜歡
    三鐵醋酸鈉磁化強(qiáng)度
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    納米級四氧化三鐵回收水中鉛離子實(shí)驗(yàn)
    無水醋酸鈉結(jié)構(gòu)及熱穩(wěn)定性
    淡水磁化灌溉對棉花出苗率·生長及干物質(zhì)量的影響
    磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
    Identifying vital edges in Chinese air route network via memetic algorithm
    二氯醋酸鈉提高膠質(zhì)母細(xì)胞瘤U251細(xì)胞的放療敏感性
    磁性四氧化三鐵制備及對廢水重金屬離子凈化*
    淺談對磁場強(qiáng)度H和磁感應(yīng)強(qiáng)度B的認(rèn)識
    水溶性四氧化三鐵納米粒子制備及其在大鼠體內(nèi)分布
    国产视频一区二区在线看| 国产精品影院久久| 国产一级毛片七仙女欲春2| 一个人看视频在线观看www免费| 成人一区二区视频在线观看| 亚洲av电影不卡..在线观看| 成人鲁丝片一二三区免费| 最近在线观看免费完整版| 99久久无色码亚洲精品果冻| 一个人免费在线观看电影| 久久人人爽人人爽人人片va | 色哟哟·www| 亚洲av美国av| 他把我摸到了高潮在线观看| 丁香欧美五月| 亚洲成人精品中文字幕电影| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| 男女下面进入的视频免费午夜| 日本五十路高清| 91久久精品电影网| 欧美日韩黄片免| 全区人妻精品视频| 在线观看66精品国产| 特级一级黄色大片| 中文资源天堂在线| 国产在线男女| 国产精品野战在线观看| 国产探花在线观看一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲人成网站在线播| 久久久国产成人精品二区| 在线看三级毛片| 亚洲欧美日韩高清专用| 热99在线观看视频| 亚洲av成人不卡在线观看播放网| 大型黄色视频在线免费观看| 999久久久精品免费观看国产| 欧美区成人在线视频| 久久久久久久久久成人| 国产欧美日韩精品一区二区| 日韩大尺度精品在线看网址| 国产精品一区二区免费欧美| 国产精品永久免费网站| 在线播放国产精品三级| 欧洲精品卡2卡3卡4卡5卡区| 成人亚洲精品av一区二区| 色综合欧美亚洲国产小说| 成人鲁丝片一二三区免费| 国产成人欧美在线观看| 国产精品伦人一区二区| 色视频www国产| 两人在一起打扑克的视频| 狂野欧美白嫩少妇大欣赏| 成人性生交大片免费视频hd| 能在线免费观看的黄片| 麻豆成人午夜福利视频| 一级作爱视频免费观看| av女优亚洲男人天堂| 别揉我奶头~嗯~啊~动态视频| 久久九九热精品免费| 午夜福利视频1000在线观看| 真人一进一出gif抽搐免费| 亚洲最大成人手机在线| 一区二区三区免费毛片| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 亚洲精品影视一区二区三区av| 啪啪无遮挡十八禁网站| 桃红色精品国产亚洲av| 久久久久九九精品影院| 99riav亚洲国产免费| 国产亚洲av嫩草精品影院| 亚洲欧美清纯卡通| 亚洲成av人片免费观看| 青草久久国产| 一级作爱视频免费观看| 精品熟女少妇八av免费久了| 热99re8久久精品国产| 欧美色欧美亚洲另类二区| 成人鲁丝片一二三区免费| 亚洲av不卡在线观看| 亚洲男人的天堂狠狠| 精品久久久久久成人av| 亚洲在线自拍视频| av专区在线播放| 亚洲午夜理论影院| 人人妻人人澡欧美一区二区| 亚洲精品日韩av片在线观看| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影| 欧美午夜高清在线| АⅤ资源中文在线天堂| a级毛片免费高清观看在线播放| 一级毛片久久久久久久久女| 午夜亚洲福利在线播放| 欧美黑人巨大hd| 成人无遮挡网站| 在现免费观看毛片| 日韩有码中文字幕| 性欧美人与动物交配| 欧美另类亚洲清纯唯美| 国产av一区在线观看免费| 国产高清三级在线| 国产av麻豆久久久久久久| 在线观看舔阴道视频| 又黄又爽又免费观看的视频| 波野结衣二区三区在线| 国产精品久久久久久久电影| 一进一出抽搐gif免费好疼| 国产爱豆传媒在线观看| 亚洲精品一区av在线观看| 搡老岳熟女国产| 久久这里只有精品中国| 我的女老师完整版在线观看| 一二三四社区在线视频社区8| 国产精品女同一区二区软件 | 久久久久久大精品| 观看美女的网站| 夜夜爽天天搞| 欧美乱妇无乱码| 久久久国产成人精品二区| 国产久久久一区二区三区| 亚洲在线观看片| 韩国av一区二区三区四区| 国产探花极品一区二区| 小说图片视频综合网站| 一区二区三区激情视频| 午夜福利高清视频| 日本与韩国留学比较| 一区福利在线观看| 在线免费观看的www视频| 国产一区二区在线av高清观看| 中文字幕熟女人妻在线| 欧美zozozo另类| 午夜福利视频1000在线观看| 国产成人aa在线观看| 久久精品国产99精品国产亚洲性色| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 美女大奶头视频| 国产精品一区二区三区四区久久| 成人特级av手机在线观看| 天美传媒精品一区二区| 在现免费观看毛片| 又爽又黄无遮挡网站| 日本三级黄在线观看| 成人一区二区视频在线观看| 人妻制服诱惑在线中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久久九九精品二区国产| 少妇丰满av| 精品久久久久久久久av| 欧美zozozo另类| 在现免费观看毛片| 在线看三级毛片| 国产aⅴ精品一区二区三区波| 国产av麻豆久久久久久久| 国产精品99久久久久久久久| 婷婷精品国产亚洲av| 又粗又爽又猛毛片免费看| 亚洲国产精品sss在线观看| 亚洲av美国av| 在线观看美女被高潮喷水网站 | 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 日韩欧美在线二视频| 啦啦啦观看免费观看视频高清| 欧美日本视频| 精品不卡国产一区二区三区| 国内少妇人妻偷人精品xxx网站| av在线观看视频网站免费| 99热只有精品国产| 最近视频中文字幕2019在线8| 一本久久中文字幕| 免费在线观看成人毛片| 亚洲美女搞黄在线观看 | 美女大奶头视频| 亚洲av成人av| 免费大片18禁| www.www免费av| 首页视频小说图片口味搜索| 老女人水多毛片| 国产熟女xx| 久久精品91蜜桃| 精品久久久久久久久亚洲 | 一进一出好大好爽视频| 亚洲无线在线观看| 欧美成人一区二区免费高清观看| 热99re8久久精品国产| 直男gayav资源| 久久久久免费精品人妻一区二区| 亚洲专区国产一区二区| 精品人妻1区二区| 久久久久久久久久黄片| 欧美一区二区亚洲| 欧美成狂野欧美在线观看| 99久国产av精品| 日日夜夜操网爽| 免费人成在线观看视频色| 国产成+人综合+亚洲专区| 全区人妻精品视频| 美女大奶头视频| 九色成人免费人妻av| 色播亚洲综合网| 美女 人体艺术 gogo| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 久久精品91蜜桃| av欧美777| 欧美性猛交黑人性爽| 久久性视频一级片| 色av中文字幕| 麻豆一二三区av精品| 亚洲 欧美 日韩 在线 免费| 人人妻人人澡欧美一区二区| 九色成人免费人妻av| 夜夜爽天天搞| 最新在线观看一区二区三区| 日韩大尺度精品在线看网址| 国产乱人伦免费视频| av在线观看视频网站免费| 天堂√8在线中文| 一本久久中文字幕| 中出人妻视频一区二区| 18+在线观看网站| 欧美日韩黄片免| 色综合亚洲欧美另类图片| 午夜福利免费观看在线| 久久九九热精品免费| 内地一区二区视频在线| 国产亚洲精品av在线| 精品一区二区三区视频在线观看免费| 色噜噜av男人的天堂激情| 露出奶头的视频| 麻豆国产av国片精品| 欧美极品一区二区三区四区| 欧美日本视频| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| 性插视频无遮挡在线免费观看| 亚洲成a人片在线一区二区| 99热精品在线国产| 夜夜看夜夜爽夜夜摸| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| 美女 人体艺术 gogo| 精品一区二区三区av网在线观看| 看黄色毛片网站| 伦理电影大哥的女人| 99国产极品粉嫩在线观看| 免费电影在线观看免费观看| 日本 欧美在线| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看| 12—13女人毛片做爰片一| 美女黄网站色视频| 天天躁日日操中文字幕| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 悠悠久久av| 亚洲,欧美精品.| 亚洲五月天丁香| 精品日产1卡2卡| 在线十欧美十亚洲十日本专区| 97碰自拍视频| 天堂√8在线中文| 欧美色视频一区免费| 久久久精品大字幕| 亚洲av二区三区四区| 国产不卡一卡二| 日韩欧美免费精品| 很黄的视频免费| 欧美高清成人免费视频www| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 亚洲七黄色美女视频| 99热这里只有是精品在线观看 | 高清日韩中文字幕在线| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| 精品人妻偷拍中文字幕| 亚洲18禁久久av| 午夜精品在线福利| 日本一本二区三区精品| 在线观看免费视频日本深夜| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 老司机福利观看| 99国产精品一区二区三区| av在线观看视频网站免费| 黄色视频,在线免费观看| 久久99热6这里只有精品| 色综合婷婷激情| 波多野结衣高清无吗| 琪琪午夜伦伦电影理论片6080| 欧美日韩福利视频一区二区| 看免费av毛片| 国产一区二区三区视频了| 亚洲自偷自拍三级| 国产亚洲精品久久久com| av在线老鸭窝| 色哟哟哟哟哟哟| 有码 亚洲区| 无人区码免费观看不卡| 国产探花在线观看一区二区| 两个人的视频大全免费| 变态另类丝袜制服| 99在线视频只有这里精品首页| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 高清日韩中文字幕在线| 亚洲五月婷婷丁香| 午夜精品一区二区三区免费看| 三级国产精品欧美在线观看| 波多野结衣高清作品| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 91字幕亚洲| 欧美性感艳星| 首页视频小说图片口味搜索| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 男女之事视频高清在线观看| 内地一区二区视频在线| 女同久久另类99精品国产91| 99热只有精品国产| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| 国产av在哪里看| 日本免费a在线| 99久国产av精品| 国产乱人伦免费视频| 国产精品久久久久久精品电影| 嫁个100分男人电影在线观看| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 亚洲熟妇熟女久久| 国产成人av教育| 国产精品亚洲美女久久久| 日韩成人在线观看一区二区三区| 日韩av在线大香蕉| 午夜久久久久精精品| 不卡一级毛片| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 欧美绝顶高潮抽搐喷水| 日韩中字成人| 啪啪无遮挡十八禁网站| 国产色婷婷99| 波多野结衣高清无吗| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 深夜精品福利| 亚洲成av人片免费观看| 欧美潮喷喷水| 人人妻,人人澡人人爽秒播| 精品免费久久久久久久清纯| 国产久久久一区二区三区| 精品国产亚洲在线| 成年女人永久免费观看视频| 久久久国产成人精品二区| h日本视频在线播放| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| eeuss影院久久| 亚洲精品久久国产高清桃花| 天堂网av新在线| 久久久久亚洲av毛片大全| 国产黄色小视频在线观看| 国产成人啪精品午夜网站| 999久久久精品免费观看国产| 噜噜噜噜噜久久久久久91| 91麻豆av在线| 国产老妇女一区| 少妇的逼好多水| 日本撒尿小便嘘嘘汇集6| 国产探花极品一区二区| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 看片在线看免费视频| 亚洲真实伦在线观看| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 欧美成人一区二区免费高清观看| 欧美一级a爱片免费观看看| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 极品教师在线免费播放| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 国产精品日韩av在线免费观看| 男人狂女人下面高潮的视频| 一级黄色大片毛片| 有码 亚洲区| 色av中文字幕| 色哟哟哟哟哟哟| 99国产综合亚洲精品| 尤物成人国产欧美一区二区三区| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 一本精品99久久精品77| 日韩免费av在线播放| 亚洲七黄色美女视频| 久久国产精品人妻蜜桃| 此物有八面人人有两片| 夜夜爽天天搞| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久 | 国产亚洲av嫩草精品影院| 看黄色毛片网站| av欧美777| 能在线免费观看的黄片| 一个人看视频在线观看www免费| 色吧在线观看| 国产亚洲欧美98| 国产视频一区二区在线看| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人久久性| 日韩av在线大香蕉| 看免费av毛片| 最新中文字幕久久久久| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 亚洲av一区综合| 乱码一卡2卡4卡精品| 亚洲av成人不卡在线观看播放网| 亚洲五月天丁香| 18+在线观看网站| www.色视频.com| 欧美色欧美亚洲另类二区| 久久香蕉精品热| 欧美一区二区亚洲| 亚洲av成人精品一区久久| 精品久久久久久,| 麻豆国产av国片精品| 黄色配什么色好看| 国产黄a三级三级三级人| 亚洲avbb在线观看| 精品人妻1区二区| 一本久久中文字幕| 国产免费男女视频| 亚洲精品亚洲一区二区| 一个人免费在线观看电影| 夜夜躁狠狠躁天天躁| 一级a爱片免费观看的视频| 久久九九热精品免费| 日韩精品中文字幕看吧| 国产一区二区在线av高清观看| 亚洲不卡免费看| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 色5月婷婷丁香| 国产成年人精品一区二区| 91麻豆av在线| 亚洲专区中文字幕在线| 日韩欧美精品免费久久 | 长腿黑丝高跟| 精品久久久久久成人av| 97碰自拍视频| 久久午夜亚洲精品久久| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 国产精品一区二区免费欧美| 久久国产乱子免费精品| 国产麻豆成人av免费视频| 久久国产精品影院| 一区二区三区四区激情视频 | 少妇的逼水好多| 高清日韩中文字幕在线| 婷婷丁香在线五月| 成人国产一区最新在线观看| 中国美女看黄片| 内射极品少妇av片p| 国产精品日韩av在线免费观看| 高清在线国产一区| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 欧美激情在线99| 91九色精品人成在线观看| 国产黄a三级三级三级人| 国产精品永久免费网站| 一级a爱片免费观看的视频| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在 | 国产av在哪里看| 精品熟女少妇八av免费久了| 在线观看免费视频日本深夜| 一区二区三区四区激情视频 | 久久久久免费精品人妻一区二区| 黄片小视频在线播放| 校园春色视频在线观看| 国产av在哪里看| 欧美日韩福利视频一区二区| 国产精品久久久久久久电影| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 免费高清视频大片| 亚洲第一电影网av| av欧美777| 如何舔出高潮| 亚洲精品一区av在线观看| 成人性生交大片免费视频hd| 亚洲 欧美 日韩 在线 免费| 性插视频无遮挡在线免费观看| 国产精品亚洲美女久久久| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 黄色女人牲交| 亚洲精品乱码久久久v下载方式| 亚洲精品在线观看二区| 午夜精品久久久久久毛片777| 亚洲成人免费电影在线观看| 欧美激情在线99| 在线十欧美十亚洲十日本专区| av在线天堂中文字幕| 午夜免费男女啪啪视频观看 | 免费在线观看日本一区| 一进一出好大好爽视频| 欧美高清性xxxxhd video| 91av网一区二区| 最新在线观看一区二区三区| 嫩草影视91久久| bbb黄色大片| 亚洲专区中文字幕在线| 1024手机看黄色片| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 成年版毛片免费区| 一区二区三区四区激情视频 | 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 欧美日韩国产亚洲二区| 我要看日韩黄色一级片| 亚洲中文日韩欧美视频| 少妇的逼好多水| 免费人成在线观看视频色| 国产成年人精品一区二区| 一本精品99久久精品77| 久久这里只有精品中国| 国产成人啪精品午夜网站| 少妇丰满av| 精品久久久久久成人av| 婷婷六月久久综合丁香| 欧美高清性xxxxhd video| 午夜福利欧美成人| 亚洲精品456在线播放app | 亚洲专区中文字幕在线| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 亚洲av免费高清在线观看| 精品一区二区三区视频在线观看免费| 欧美成狂野欧美在线观看| 日本黄色视频三级网站网址| 日韩欧美精品免费久久 | 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 两个人视频免费观看高清| 在线十欧美十亚洲十日本专区| 51午夜福利影视在线观看| 欧美高清成人免费视频www| 舔av片在线| 一本综合久久免费| 观看美女的网站| 亚洲欧美日韩东京热| 久久久久久久精品吃奶| 精品福利观看| 一区二区三区免费毛片| 在线观看免费视频日本深夜| a在线观看视频网站| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| av在线蜜桃| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 色在线成人网| 老司机福利观看| 久久这里只有精品中国| 日韩欧美国产在线观看| 88av欧美| 丁香六月欧美| 国产精品日韩av在线免费观看| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图 | or卡值多少钱| 国产免费男女视频| 丝袜美腿在线中文| 麻豆成人av在线观看| 午夜免费激情av| 免费在线观看影片大全网站| 青草久久国产| 99久久久亚洲精品蜜臀av| 亚洲人成电影免费在线| 97碰自拍视频| 国产亚洲欧美98| 精品久久久久久久久亚洲 | 国产精品久久久久久久久免 | 中文字幕熟女人妻在线|