• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      組織工程技術(shù)治療骨軟骨缺損的研究進(jìn)展

      2018-01-05 03:03:52胡宏悻步子恒劉忠堂
      關(guān)鍵詞:下骨軟骨干細(xì)胞

      胡宏悻,步子恒,劉忠堂

      (1溫州醫(yī)科大學(xué)附屬第二醫(yī)院骨科,浙江溫州325027;2第二軍醫(yī)大學(xué)附屬長(zhǎng)海醫(yī)院關(guān)節(jié)骨病外科,上海200433)

      組織工程技術(shù)治療骨軟骨缺損的研究進(jìn)展

      胡宏悻1,步子恒2,劉忠堂2

      (1溫州醫(yī)科大學(xué)附屬第二醫(yī)院骨科,浙江溫州325027;2第二軍醫(yī)大學(xué)附屬長(zhǎng)海醫(yī)院關(guān)節(jié)骨病外科,上海200433)

      0 引言

      關(guān)節(jié)軟骨被覆關(guān)節(jié)表面,起到潤(rùn)滑、減震、緩解壓力等作用.軟骨組織缺乏血運(yùn),本身不含祖細(xì)胞,自愈能力十分有限,一旦關(guān)節(jié)軟骨出現(xiàn)缺損,如不治療,缺損可繼續(xù)增大,造成軟骨合成代謝和分解代謝的紊亂,引起骨性關(guān)節(jié)炎(osteoarthritis, OA)[1].炎癥的存在以及血運(yùn)的缺乏使得關(guān)節(jié)軟骨缺損治療變得愈加困難.研究[2]表明,癥狀性膝關(guān)節(jié)骨關(guān)節(jié)炎影響24%的總?cè)丝?,?0歲以上的人群中非常普遍,全世界超過(guò)2億5千萬(wàn)人.到2020年OA有望成為第四大致殘?jiān)颍壳?,?duì)于這種關(guān)節(jié)軟骨損傷和缺損的治療是臨床醫(yī)生面臨的一個(gè)重要難題,也是骨科基礎(chǔ)研究的熱點(diǎn).常用的手術(shù)和非手術(shù)治療方法的目的在于減輕疼痛和保存軟骨功能,非手術(shù)方法如控制體質(zhì)量、適當(dāng)限制活動(dòng)量以減少關(guān)節(jié)磨損.口服藥物和關(guān)節(jié)內(nèi)注射藥物治療雖然可以暫時(shí)緩解疼痛,但仍是治標(biāo)不治本,且兩種方法都有其明顯的局限性.目前手術(shù)治療廣義上分為微骨折術(shù)、關(guān)節(jié)骨軟骨移植術(shù)、軟骨膜移植術(shù)及關(guān)節(jié)軟骨再生術(shù)等.其中微骨折術(shù)的目的是刺激骨髓間充質(zhì)干細(xì)胞(bone manrrow mesen-chymal stem cells,BMSCs)遷移至軟骨下骨產(chǎn)生主要由Ⅰ型膠原組成的纖維軟骨以填充于骨軟骨缺損的表面.但是,纖維軟骨缺少透明軟骨所具有的組織學(xué)和生物力學(xué)特性,因此當(dāng)受到壓力和剪切力時(shí)其穩(wěn)定性較差,且易發(fā)生退變[3].軟骨移植術(shù)或軟骨膜移植術(shù)存在供區(qū)損傷、來(lái)源有限、移植骨軟骨塌陷、操作復(fù)雜及技術(shù)要求高等缺點(diǎn).值得注意的是,關(guān)節(jié)軟骨損傷常伴有軟骨下骨損傷,軟骨下骨不僅對(duì)關(guān)節(jié)軟骨起支持作用,而且還參與軟骨和骨髓腔之間的營(yíng)養(yǎng)物質(zhì)交換.目前骨缺損的治療方式包括自體或異體骨移植,以及生物材料的填充.然而自體骨移植存在來(lái)源有限、供區(qū)損傷和增加患者創(chuàng)傷和痛苦的缺點(diǎn).異體骨移植也有與宿主存在排斥反應(yīng),移植骨來(lái)源受限,存活障礙等問(wèn)題.不過(guò)可喜的是,隨著組織工程學(xué)的興起和發(fā)展,關(guān)節(jié)骨軟骨缺損的修復(fù)將成為可能.

      1 組織工程技術(shù)

      骨與軟骨組織工程的基本原理是從機(jī)體獲取少量活組織作為種子細(xì)胞,將其體外擴(kuò)增后按一定比例復(fù)合在具有良好組織相容性的支架材料上,構(gòu)建組織工程化的骨與軟骨并植入病損部位,以達(dá)到損傷修復(fù)和功能重建的目的,其包括三大要素:信號(hào)分子(成骨和成軟骨生長(zhǎng)因子)、成骨和成軟骨相關(guān)種子細(xì)胞、支架材料.

      1.1 種子細(xì)胞 目前研究較多的種子細(xì)胞包括骨髓間充質(zhì)干細(xì)胞、肌肉干細(xì)胞、干細(xì)胞衍生的外泌體(stem cell-derived exosomes, SC-Exos)、脂肪干細(xì)胞、胚胎干細(xì)胞等.

      骨髓間充質(zhì)干細(xì)胞來(lái)源廣泛、擴(kuò)增能力強(qiáng),且具有良好的軟骨再生能力和多向分化潛能,具有較高的研究和應(yīng)用前景.Jia等[4]制備出細(xì)胞外基質(zhì)來(lái)源的軟骨支架,并將 BMSCs種植于支架內(nèi),以此干細(xì)胞-支架復(fù)合體來(lái)修復(fù)兔子全層關(guān)節(jié)軟骨缺損,結(jié)果表明,骨髓間充質(zhì)干細(xì)胞以細(xì)胞外基質(zhì)來(lái)源的軟骨支架為載體,在其中黏附、增殖并分化成軟骨細(xì)胞,成功修復(fù)軟骨缺損.然而,健康的骨髓間充質(zhì)細(xì)胞并不容易獲得,從老年人或患者供體中提取出來(lái)的BMSCs進(jìn)行體外培養(yǎng)時(shí),有時(shí)會(huì)出現(xiàn)細(xì)胞形態(tài)的異常,黏附、分化、增殖能力下降[5].因此,尋找具有可獲得性、可擴(kuò)增性和多相分化潛能的新種子細(xì)胞已是細(xì)胞生物學(xué)的研究熱點(diǎn).

      衛(wèi)星細(xì)胞或早期肌肉祖細(xì)胞具備在骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)或轉(zhuǎn)化生長(zhǎng)因子-β3(transforming growth factor-β3, TGF-β3)刺激下分化為軟骨的能力[6-8].其中肌肉干細(xì)胞(musclederived stem cells,MDSCs)表現(xiàn)出多相分化潛力和較強(qiáng)的增殖能力.研究[9]表明,體外培養(yǎng)中,利用BMP-4或TGF-β1刺激肌肉干細(xì)胞可促使其增殖并分化為軟骨樣組織.深入探究BMP-4/TGF-β1刺激 MDSCs分化為軟骨組織的影響因素及具體機(jī)制可以為組織工程技術(shù)治療關(guān)節(jié)軟骨缺損提供新的思路和技術(shù)手段.然而干細(xì)胞在軟骨再生過(guò)程中有時(shí)可以觀察到新生成組織的肥大和骨化,這是研究者所不希望看到的現(xiàn)象[10-11].同時(shí),干細(xì)胞在多次傳代后進(jìn)行體外培養(yǎng)時(shí),常出現(xiàn)異常的細(xì)胞形態(tài),且其分化增殖和生存能力下降.

      最新研究[12-15]發(fā)現(xiàn),干細(xì)胞并不是直接增殖、分化成軟骨組織,而更可能是通過(guò)旁分泌形式分泌細(xì)胞外囊泡的方式發(fā)揮功能.SC-Exos是一種含有各種核酸和蛋白質(zhì)的納米級(jí)細(xì)胞外囊泡,可以誘導(dǎo)周?chē)?xì)胞發(fā)生遺傳變化,并起調(diào)節(jié)作用,如促進(jìn)其增殖或抑制細(xì)胞凋亡.以上研究說(shuō)明,若SC-Exos在軟骨缺損部位保持其有效濃度,SC-Exos便會(huì)誘導(dǎo)周?chē)浌羌?xì)胞遷移至生物支架和SC-Exos巢中,促進(jìn)軟骨細(xì)胞增殖,從而持續(xù)有效地修復(fù)和再生軟骨組織.Liu等[5]研制了一種新的光誘導(dǎo)亞胺交聯(lián)(phototriggered imine corsslink,PIC)水凝膠并將SC-Exos封裝于其中,制備出無(wú)細(xì)胞水凝膠組織貼片(EHG),EHG組織貼片可以與天然軟骨無(wú)縫貼合,有效地保持SC-Exos在缺損部位的局部濃度,使SC-Exos不會(huì)被機(jī)體快速清除,從而發(fā)揮其功能,促進(jìn)軟骨修復(fù)和再生.相比于干細(xì)胞移植修復(fù)軟骨缺損,EHG作為一種新型的無(wú)細(xì)胞支架材料避免了直接細(xì)胞移植的安全性問(wèn)題,同時(shí)SC-Exos比干細(xì)胞更易被制造、表征、儲(chǔ)存和處理.因此,SC-Exos顯示出取代干細(xì)胞治療關(guān)節(jié)軟骨缺損的巨大潛力,具有極高的學(xué)術(shù)研究?jī)r(jià)值和應(yīng)用前景.

      1.2 生長(zhǎng)因子 雖然干細(xì)胞對(duì)于骨軟骨缺損的修復(fù)是部分有效的,但在缺損區(qū)域干細(xì)胞的增殖、分化能力有限,故其分化成為骨或軟骨細(xì)胞具有一定挑戰(zhàn)性[16].因此,探索出對(duì)細(xì)胞增殖有調(diào)節(jié)作用的細(xì)胞因子已經(jīng)成為骨軟骨組織工程的重要環(huán)節(jié).BMP、TGF、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、胰島素樣生長(zhǎng)因子等在骨軟骨缺損的修復(fù)過(guò)程中發(fā)揮了重要作用.其中,BMP-2成骨潛力巨大,是促進(jìn)骨骼再生的關(guān)鍵因素[17-18].Zhao 等[19]將聚多巴胺(poly dopamine,PDA)涂覆在PLGA/HA支架上以固定BMP-2并改善支架材料的細(xì)胞附著力,使BMP-2可以在骨缺損區(qū)域長(zhǎng)期保持調(diào)節(jié)作用.研究顯示在固定BMP-2后,通過(guò)顯著增加ALP活性、鈣沉積和成骨相關(guān)基因表達(dá),支架表現(xiàn)出優(yōu)異的生物活性,增強(qiáng)MC3T3-E1細(xì)胞的成骨分化.然而,BMP-2在生理?xiàng)l件下容易從支架上脫落,并不總是保留骨再生活性[20],這也限制了其在骨軟骨組織工程的進(jìn)一步應(yīng)用.VEGF在骨髓生長(zhǎng)板中對(duì)軟骨形成和分化起關(guān)鍵作用,這對(duì)于軟骨細(xì)胞的增殖至關(guān)重要[21].An等[22]制備明膠/PLGA納米復(fù)合支架并將 VEGF和BMP加載在支架中,使生長(zhǎng)因子在修復(fù)骨軟骨缺損可以持續(xù)釋放.結(jié)果顯示,VEGF和BMP可以促進(jìn)BMSCs 在支架上的黏附、增殖和分化.有證據(jù)[23-24]表明TGF-β通過(guò)Smad2/3,MAPK通路上調(diào)局部環(huán)境中有助于促進(jìn)軟骨形成的各種因素,促進(jìn)軟骨細(xì)胞的增殖,是軟骨再生的合成代謝因子.然而TGF-β1僅可促進(jìn)成骨的早期階段,并且在沒(méi)有BMP的情況下,TGF-β1不能促進(jìn) BMSCs分化成成骨細(xì)胞[25].故單純應(yīng)用一種生長(zhǎng)因子往往達(dá)不到同時(shí)促進(jìn)骨相層或軟骨相層增殖的目的.

      1.3 支架材料與制備工藝 種子細(xì)胞功能的發(fā)揮需要細(xì)胞外基質(zhì)的存在,因此細(xì)胞外替代物(即種子細(xì)胞的生物支架材料)的選擇至關(guān)重要.而生物支架的制備工藝更是影響支架的外型、大小、結(jié)構(gòu)分布等機(jī)械特性.這對(duì)于支架能否營(yíng)造出適合種子細(xì)胞的增殖生長(zhǎng)環(huán)境來(lái)說(shuō)至關(guān)重要.

      1.3.1 生物支架 組織工程的生物支架不僅影響種子細(xì)胞的生物學(xué)特性和培養(yǎng)效率,而且決定移植后能否很好地和受體結(jié)合起來(lái),從而發(fā)揮其修復(fù)損傷的作用.關(guān)節(jié)軟骨損傷常伴隨軟骨下骨損傷,軟骨下骨不僅對(duì)關(guān)節(jié)軟骨起支持作用,而且還參與軟骨與骨髓腔之間的營(yíng)養(yǎng)物質(zhì)交換,因而臨床修復(fù)關(guān)節(jié)軟骨包括了關(guān)節(jié)面軟骨的再生和軟骨下骨的修復(fù).故對(duì)于組織工程技術(shù)來(lái)說(shuō),種子細(xì)胞的支架材料在結(jié)構(gòu)和組成上的設(shè)計(jì)應(yīng)符合臨床治療的需求.

      目前,關(guān)節(jié)軟骨缺損修復(fù)使用三維支架的研究仍處于初級(jí)階段,已有研究文獻(xiàn)報(bào)道的支架類(lèi)型從結(jié)構(gòu)上大致分為以下四類(lèi),如圖1所示.

      圖1 修復(fù)關(guān)節(jié)軟骨與軟骨下骨缺損用支架示意圖

      1.3.1.1 單相支架 單相支架(圖 1D)是采用單一材料根據(jù)缺損區(qū)形態(tài)預(yù)先成型再填充而形成的,是組織工程最早應(yīng)用于骨軟骨缺損修復(fù)的支架[26].研究[27-28]表明,制備單相支架的常用材料包括羥基磷灰石(hydroxyapatite,HAp)及一些聚合物,如PLGA和聚己酸內(nèi)酯等,這些材料具有良好的降解率,生物相容性,不同的孔隙率和強(qiáng)度,可以模擬周?chē)M織特性,從而促進(jìn)與宿主組織的充分整合.Zhou等[29]設(shè)計(jì)單相膠原(collagen,COL)支架和雙相膠原羥基磷灰石(collagen hydroxyapatite, COL-HA)支架,對(duì)比并評(píng)價(jià)其對(duì)人間充質(zhì)干細(xì)胞(human mesenchymal stem cells,hMSCs)分化為軟骨細(xì)胞和骨細(xì)胞的能力.MTT實(shí)驗(yàn)結(jié)果顯示兩種支架均可促進(jìn)hMSCs分化為軟骨細(xì)胞和骨細(xì)胞.兩種支架復(fù)合hMSCs后在成軟骨細(xì)胞培養(yǎng)基中培養(yǎng)3周后,阿爾新藍(lán)染色以及免疫組織化學(xué)染色呈陽(yáng)性表達(dá);而在成骨細(xì)胞培養(yǎng)基中培養(yǎng)3周后,茜素紅和Ⅰ型膠原免疫組織化學(xué)染色均呈陽(yáng)性.結(jié)果顯示,單相膠原支架在成軟骨方面表現(xiàn)良好,而雙相COL-HA支架在成骨方面更具優(yōu)勢(shì).以上研究表明,單相支架可為軟骨細(xì)胞或骨細(xì)胞的黏附和增殖提供良好的條件,但軟骨細(xì)胞和骨細(xì)胞增殖所需要的生長(zhǎng)環(huán)境(細(xì)胞外基質(zhì))不同,單相支架往往不能同時(shí)提供骨細(xì)胞與軟骨細(xì)胞生長(zhǎng)所需的環(huán)境,同時(shí)單相支架的抗壓強(qiáng)度相對(duì)不足,也在一定程度上降低了其在治療關(guān)節(jié)骨軟骨缺損的效果.

      1.3.1.2 雙相支架 雙相一體化支架的上層和下層分別可植入骨細(xì)胞和軟骨細(xì)胞,或兩層植入同一干細(xì)胞以構(gòu)建骨軟骨復(fù)合體.圖1C中的雙相一體化支架是根據(jù)術(shù)中預(yù)先鉆洞的形狀尺寸進(jìn)行設(shè)計(jì)的,外形匹配良好且非均相支架的骨相部分嵌入缺損處不易發(fā)生滑移[30].一般來(lái)說(shuō),非均相支架的骨相部分材料具有良好的生物活性,可通過(guò)類(lèi)骨磷灰石的沉積與周邊骨組織產(chǎn)生穩(wěn)固的鍵合,為整個(gè)修復(fù)過(guò)程提供穩(wěn)定支撐[31].Fu 等[32]證實(shí)生物玻璃可作為雙相支架骨相部分的材料,其表現(xiàn)的抗壓強(qiáng)度(136±22)MPa可比擬人體的皮質(zhì)骨.其他材料如羥基磷灰石[33]、β-三磷酸鈣(β-tricalcium phosphate, β-TCP)[34]及可降解聚合物的復(fù)合體[35-36].對(duì)于非均相支架的軟骨相部分,支架材料的選擇多為各類(lèi)聚合物,包括人工合成的聚合物如聚乳酸、聚氨酯等,以及兩種或多種高分子復(fù)合物.天然高分子如膠原蛋白、絲素蛋白和藻酸鹽[37]、透明質(zhì)酸[38]、幾丁質(zhì)[39]等多糖類(lèi)高分子水凝膠.絲素蛋白作為一種天然材料,擁有高韌性、來(lái)源豐富、價(jià)格低廉等優(yōu)勢(shì),與膠原蛋白相比具有較低的抗原性和良好的生物相容性,同時(shí)它繼承了膠原蛋白的優(yōu)越性能,可以促進(jìn)細(xì)胞黏附和軟骨形成,是支架軟骨相材料的不二之選[40-41].Yan 等[40]完全整合絲素蛋白和納米碳酸鈣層構(gòu)建出新型的多孔雙層支架,并將兔骨髓間充質(zhì)干細(xì)胞整合到支架內(nèi),植入膝關(guān)節(jié)骨軟骨缺損的新西蘭大兔中,9周后觀察發(fā)現(xiàn)復(fù)合支架于宿主骨組織緊密貼合,絲素蛋白層可促進(jìn)軟骨再生,納米碳素鈣層可見(jiàn)大量軟骨下骨向內(nèi)生長(zhǎng)并有血管生成.說(shuō)明絲素蛋白/納米碳酸鈣雙層支架對(duì)于骨軟骨缺損有修復(fù)作用.但絲素蛋白仍有缺陷,如快速降解、強(qiáng)度不足.甚至有研究[42-44]發(fā)現(xiàn)絲素蛋白材料內(nèi)長(zhǎng)入的細(xì)胞較少,甚至有的細(xì)胞無(wú)法長(zhǎng)入.雙相支架提供了軟骨細(xì)胞和骨細(xì)胞增殖所需要的生長(zhǎng)環(huán)境,避免了單相支架的不足,滿足軟骨和軟骨下骨不同組織的生長(zhǎng)要求.然而雙相支架的骨和軟骨界面(致密鈣化層)結(jié)合欠佳,缺少修復(fù)致密鈣化層的材料,而鈣化層是連接軟骨和軟骨下骨的重要界面結(jié)構(gòu).鈣化層的缺失可能會(huì)引起關(guān)節(jié)生物力學(xué)分布不均衡以及組織液循環(huán)障礙,不利于骨軟骨缺損的修復(fù).

      1.3.1.3 三相一體化支架 關(guān)節(jié)軟骨損傷常伴有軟骨下骨和鈣化層的損傷.鈣化層是關(guān)節(jié)軟骨深層的高度礦化區(qū)域,是非鈣化軟骨和軟骨下骨之間重要的界面結(jié)構(gòu),有著抵抗剪切力、分散橫向應(yīng)力、緊密連接骨軟骨以及限制組織液在骨軟骨界面自由交換等作用[45].在軟骨缺損的修復(fù)過(guò)程中,透明軟骨與軟骨下骨的有效整合在一定程度上有助于軟骨缺損的治療,而鈣化層為透明軟骨和軟骨下骨的機(jī)械整合提供保障.因此臨床修復(fù)關(guān)節(jié)軟骨要注重關(guān)節(jié)面軟骨和軟骨下骨的再生,同時(shí)也要強(qiáng)調(diào)鈣化層的修復(fù).魏戎等[46]利用快速成型技術(shù)在三維立體包芯結(jié)構(gòu)骨架表面噴涂乳酸-羥基乙酸共聚物/β-磷酸三鈣有機(jī)溶液,形成0.5 mm的致密層;再將骨軟骨支架與致密層緊密連接制備出致密層骨軟骨復(fù)合支架,用以修復(fù)新西蘭大白兔骨軟骨缺損,24周后實(shí)驗(yàn)結(jié)果顯示缺損區(qū)域被透明軟骨樣組織覆蓋,表明平整.對(duì)于非均相支架等骨相部分材料來(lái)說(shuō),介孔生物玻璃(mesoporous bioactive glasses,MBG)較傳統(tǒng)方法制備的生物玻璃具有更好的沉積羥基磷灰石的能力[47],將MBG粉末整合于三維支架中,可以提高支架的機(jī)械性和強(qiáng)度[48-50].對(duì)于非均相支架的軟骨相部分,水凝膠由于其高含水量、良好的生物相容性、可操作性和強(qiáng)組織黏合力等特點(diǎn)而被廣泛應(yīng)用于制作軟骨再生的支架材料[51-52].而研究[37]顯示海藻酸鹽作為一種天然多糖分子,在構(gòu)成軟骨和骨組織修復(fù)支架時(shí),可促進(jìn)BMSCs和軟骨細(xì)胞的增殖,填充缺損并且刺激新組織再生.將水溶性的海藻酸鹽與陽(yáng)離子交聯(lián)制備出海藻酸鹽水凝膠表現(xiàn)出一定的強(qiáng)度和促進(jìn)軟骨細(xì)胞增殖的能力.三相支架體現(xiàn)了正常組織結(jié)構(gòu)分布的軟骨、致密鈣化層、軟骨下骨的解剖分層,更符合組織工程骨軟骨復(fù)合支架的要求.

      1.3.2 制備工藝 隨著新材料的不斷開(kāi)發(fā),關(guān)節(jié)軟骨支架研究所面臨的核心挑戰(zhàn)開(kāi)始向支架結(jié)構(gòu)和制備工藝上轉(zhuǎn)移.支架的孔徑和3D空間結(jié)構(gòu)是透明軟骨再生過(guò)程中細(xì)胞增殖、分化和細(xì)胞外基質(zhì)(extracellular matrix,ECM)生成的關(guān)鍵因素.其中,孔隙率在250~500 μm的支架不僅可以讓細(xì)胞獲得更好的增殖條件以及ECM分泌能力,還可以提供血管再生所需要的空間,有利于營(yíng)養(yǎng)物質(zhì)的運(yùn)輸和氣體交換,這對(duì)于細(xì)胞的黏附、遷移和增殖有著積極的作用[53].傳統(tǒng)的支架制備方法如發(fā)泡法、粒子濾取法、冷凍干燥法、模板法等可以制備出多孔生物可降解支架.其中發(fā)泡法的基本原理是在前體溶液中誘導(dǎo)產(chǎn)生惰性氣體(二氧化碳或者氮?dú)猓?,形成的氣體混合于液體中并轉(zhuǎn)化為泡沫體;隨后降低溫度來(lái)穩(wěn)定泡沫,從而制備出多孔支架.Poursamar等[54]以膠原為支架底物,利用發(fā)泡法制備多孔支架,以戊二醛(glutaraldehyde,GTA)作為交聯(lián)劑來(lái)穩(wěn)定并調(diào)整支架的機(jī)械性,結(jié)果表明,發(fā)泡法可以制備出良好生物相容性和適宜孔隙度的支架,以滿足干細(xì)胞的粘附、生長(zhǎng)要求.但值得提出的是,雖然發(fā)泡法在生物相容性和支架孔隙度方面顯示出一定的優(yōu)越性,但是其制備的支架生物力學(xué)強(qiáng)度不盡人意,這也限制了發(fā)泡法在制備多孔隙支架方面的進(jìn)一步應(yīng)用.而粒子濾取法、冷凍干燥法、模板法在支架孔隙尺寸和連通性的精確控制上受到限制,并且制備支架所使用的有機(jī)溶劑可能對(duì)細(xì)胞的生長(zhǎng)產(chǎn)生危害,而人體關(guān)節(jié)軟骨組織結(jié)構(gòu)復(fù)雜,因此這些傳統(tǒng)方法在制備由多種材料不同結(jié)構(gòu)的各相層組成的非均相支架方面仍存在缺陷.近年來(lái),隨著3D打印技術(shù)的快速發(fā)展,采用3D打印技術(shù)制備多孔隙支架已成為研究熱門(mén).3D打印技術(shù)是根據(jù)計(jì)算機(jī)設(shè)計(jì)的CAD三維模型或是臨床CT/MRI三維重建數(shù)據(jù),3D打印可精確定制外形和尺寸符合需要的植入體.另外,從非均相支架的制備角度來(lái)說(shuō),3D打印使用的墨水即為支架材料,在層層堆積成型的過(guò)程中,各層相的孔道結(jié)構(gòu)也可通過(guò)沉積纖維束的粗細(xì)、間距和排列方式調(diào)節(jié),從而達(dá)到運(yùn)用不同材料打印出不同結(jié)構(gòu)非均相支架的目的.運(yùn)用3D打印技術(shù)制備的支架材料,不僅外形可控,其內(nèi)部孔隙結(jié)構(gòu)、大小、分布亦簡(jiǎn)單易調(diào),而且支架材料的組合自由多樣,可以實(shí)現(xiàn)骨與軟骨組織在結(jié)構(gòu)和組份上的高度模擬.因此,利用3D打印技術(shù)對(duì)具有可靠空間結(jié)構(gòu)、良好的機(jī)械性能和生物相容性的組織工程骨架制造的研究具有重要的實(shí)踐意義.

      2 存在的問(wèn)題和展望

      目前,組織工程技術(shù)無(wú)論在種子細(xì)胞的選取還是支架材料的探索開(kāi)發(fā)以及制備工藝上都取得了顯著的進(jìn)步,但仍存在一些亟待解決的問(wèn)題:①如何選取來(lái)源豐富、增殖能力旺盛且生存能力強(qiáng)大的干細(xì)胞?對(duì)于SC-Exos治療關(guān)節(jié)軟骨缺損的體內(nèi)體外生物學(xué)效能評(píng)價(jià)還需進(jìn)一步研究.②如何加載細(xì)胞因子于支架上使其發(fā)揮控釋或者緩釋作用,從而完善干細(xì)胞在體內(nèi)的增殖環(huán)境?③如何選取支架的各層材料(包括軟骨相層、致密鈣化層和骨相層)并精確可控制備出組成和結(jié)構(gòu)均不相同的三層非均相支架?④如何牢固聯(lián)結(jié)三相支架的各相層使其趨于一體化,并防止層間磨損和滑脫?深入探索并解決這些問(wèn)題可以為組織工程骨軟骨復(fù)合支架的制備提供新的方法和思路,有望為關(guān)節(jié)軟骨和軟骨下骨的同時(shí)修復(fù)及關(guān)節(jié)生理功能重建帶來(lái)新的生機(jī),具有較高的學(xué)術(shù)研究?jī)r(jià)值和廣闊的臨床應(yīng)用前景.

      [1]Hong E, Reddi AH.MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis:implicationsfor tissue engineering[J].Tissue Eng Part B Rev,2012,18(6):445-453.

      [2]Bruyère O, Cooper C, Pelletier JP, et al.An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally:a report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO)[J].Semin Arthritis Rheum,2014,44(3):253-263.

      [3]Bruyère O, Cooper C, Pelletier JP, et al.A consensus statement on the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis(ESCEO) algorithm for the management of knee osteoarthritis-from evidence-based medicine to the real-life setting[J].Semin Arthritis Rheum,2016,45(4 Suppl):S3-11.

      [4]Jia S, Zhang T, Xiong Z, et al.In vivo evaluation of a novel oriented scaffold-BMSC construct for enhancing full-thickness articular cartilage repair in a rabbit model[J].PLoS One,2015,10(12):e0145667.

      [5]Liu X, Yang Y, Li Y, et al.Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration[J].Nanoscale,2017, 9(13):4430-4438.

      [6]Tajbakhsh S,Rocancourt D,Buckingham M.Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice[J].Nature,1996,384(6606):266-270.

      [7]Asakura A,Komaki M,Rudnicki MA.Muscle satellite cells are multipotential stem cellsthatexhibitmyogenic, osteogenic, and adipogenic differentiation[J].Differentiation,2001, 68(4- 5):245-253.

      [8]Cairns DM, Liu R, Sen M, et al.Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenicdifferentiation of muscle progenitor cells[J].PLoS One,2012,7(7):e39642.

      [9]Li H, Lu A, Tang Y, et al.The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential[J].Mol Ther Methods Clin Dev,2016,3:16065.

      [10]Savkovic V, Li H, Seon JK, et al.Mesenchymal stem cells in cartilage regeneration[J].Curr Stem Cell Res Ther,2014, 9(6):469-488.

      [11]Dickhut A,Pelttari K,Janicki P,et al.Calcification or dedifferentiation:requirement to lock mesenchymal stem cells in a desired differentiation stage[J].J Cell Physiol,2009,219(1):219-226.

      [12]Liang X, Ding Y, Zhang Y, et al.Paracrine mechanisms of mesenchymal stem cell-based therapy:current status and perspectives[J].Cell Transplant,2014,23(9):1045-1059.

      [13]Shen L, Zeng W, Wu YX, et al.Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells[J].Cell Transplant,2013,22(6):1011-1021.

      [14]Song M, Heo J, Chun JY, et al.The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactivebladder[J].Stem Cells Dev,2014,23(6):654-663.

      [15]Ratajczak M Z, Kucia M, Jadczyk T, et al.Pivotal role of paracrine effects in stem cell therapies in regenerative medicine:can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies[J].Leukemia,2011,26(6):1166-1173.

      [16]Chen Y, Chen Y, Zhang S, et al.Parathyroid hormone-induced bone marrow mesenchymal stem cell chondrogenic differentiation and its repair of articular cartilage injury in rabbits[J].Med Sci Monit Basic Res,2016,22:132-145.

      [17]Karageorgiou V, Meinel L, Hofmann S, et al.Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells[J].J Biomed Mater Res A,2004,71(3):528-537.

      [18]Liu Y, Enggist L, Kuffer AF, et al.The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration[J].Biomaterials,2007,28(16):2677-2686.

      [19]Zhao X, Han Y, Li J, et al.BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth[J].Mater Sci Eng C Mater Biol Appl,2017,78:658-666.

      [20]Takahashi Y,Yamamoto M,Tabata Y.Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate[J].Biomaterials,2005,26(23):4856-4865.

      [21]Sakata R, Kokubu T, Nagura I, et al.Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold[J].J Orthop Res,2012,30(2):252-259.

      [22]An G, Zhang WB, Ma DK, et al.Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold[J].Eur Rev Med Pharmacol Sci,2017,21(10):2316-2328.

      [23]Tang QO, Shakib K, Heliotis M, et al.TGF-beta3:A potential biological therapy for enhancing chondrogenesis[J].Expert Opin Biol Ther,2009, 9(6):689-701.

      [24]Blaney Davidson EN, Vitters EL, van den Berg WB, et al.TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7[J].Arthritis Res Ther,2006,8(3):R65.

      [25]van Beuningen HM, van der Kraan PM, Arntz OJ, et al.Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint[J].Lab Invest,1994,71(2):279-290.

      [26]Yin H, Wang Y, Sun Z, et al.Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles[J].Acta Biomater,2016,33:96-109.

      [27]Kon E, Filardo G, Gobbi A, et al.Long-term results after hyaluronan-based MACT for the treatment of cartilage lesions of the patellofemoral joint[J].Am J Sports Med,2016,44(3):602-608.

      [28]Whyte GP, Mcgee A, Jazrawi L, et al.Comparison of collagen graft fixation methods in the porcine knee:implications for matrix-assisted chondrocyte implantation and second-generation autologous chondrocyte implantation[J].Arthroscopy,2016,32(5):820-827.

      [29]Zhou J, Xu C, Wu G, et al.In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds[J].Acta Biomater,2011,7(11):3999-4006.

      [30]Sarker B, Hum J, Nazhat SN, et al.Combining collagen and bioactive glasses for bone tissueengineering:a review[J].Adv Healthc Mater,2015,4(2):176-194.

      [31]Nooeaid P, Salih V, Beier JP, et al.Osteochondral tissue engineering:scaffolds, stem cells and applications[J].J Cell Mol Med,2012,16(10):2247-2270.

      [32]Fu Q, Saiz E, Tomsia AP.Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration[J].Acta Biomater,2011,7(10):3547-3554.

      [33]Zeng XB, Hu H, Xie LQ, et al.Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation[J].Int J Nanomedicine,2012,7:3365-3378.

      [34]Tanzawa Y, Tsuchiya H, Shirai T, et al.Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma[J].J Orthop Sci,2011,16(1):77-84.

      [35]Francis L, Meng D, Knowles JC, et al.Multi-functional P(3HB)microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering[J].Acta Biomater,2010, 6(7):2773-2286.

      [36]Yazdimamaghani M, Vashaee D, Assefa S, et al.Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering[J].J Biomed Nanotechnol,2014,10(6):911-931.

      [37]Wang CC, Yang KC, Lin KH, et al.Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold[J].Biomaterials,2012,33(1):120-127.

      [38]Zhang Y, Cui X, Zhao S, et al.Evaluation of injectable strontiumcontaining borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model[J].ACS Appl Mater Interfaces,2015,7(4):2393-2403.

      [39]Rampichová M, Filová E, Varga F, et al.Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation[J].ASAIO J,2010, 56(6):563-568.

      [40]Yan LP, Silva-Correia J, Oliveira MB, et al.Bilayered silk/silknanoCaP scaffolds for osteochondral tissue engineering:In vitro and in vivo assessment of biological performance[J].Acta Biomater,2015,12:227-241.

      [41]Shi W, Sun M,Hu X,et al.Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J].Adv Mater,2017,29(29):1701089.

      [42]孫 凱,年?duì)幒?,?成,等.絲素蛋白復(fù)合膠原蛋白支架的制備及性能研究[J].中國(guó)修復(fù)重建外科雜志,2014,28(7):903-908.

      [43]Feng XX, Zhang LL, Chen JY, et al.Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2[J].Int J Biol Macromol,2007,40(2):105-111.

      [44]Leong KF,Cheah CM,Chua CK.Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs[J].Biomaterials,2003,24(13):2363-2378.

      [45]Lee WD,Hurtig MB,Pilliar RM,et al.Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells[J].Osteoarthr Cartil,2015,23(8):1307-1315.

      [46]魏 戎,武軍龍,吳飛翔,等.致密層骨軟骨復(fù)合支架的制備及其修復(fù)關(guān)節(jié)骨軟骨缺損[J].中國(guó)組織工程研究,2017,21(2):197-201.

      [47]Yan X, Yu C, Zhou X, et al.Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities[J].Angew Chem Int Ed Engl,2004,43(44):5980-5984.

      [48]Huang S, Kang X, Cheng Z, et al.Electrospinning preparation and drug delivery properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers[J].J Colloid Interface Sci, 2012,387 (1):285-291.

      [49]Lei B, Chen X, Wang Y, et al.Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation[J].J Biomed Mater Res A,2010, 94(4):1091-1099.

      [50]Vallet-Regí M, Izquierdo-barba I, Colilla M.Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery[J].Philos Trans A Math Phys Eng Sci,2012,370(1963):1400-1421.

      [51]Vilela CA, Correia C, Oliveira JM, et al.Cartilage Repair Using Hydrogels:A Critical Review of in Vivo Experimental Designs[J].Acs Biomater Sci Eng,2015,1(9):726-739.

      [52]Spiller KL, Maher SA, Lowman AM.Hydrogels for the repair of articular cartilage defects[J].Tissue Eng Part B Rev,2011,17(4):281-299.

      [53]Karageorgiou V, Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491.

      [54]Poursamar SA, Hatami J, Lehner AN, et al.Gelatin porous scaffolds fabricated using a modified gas foaming technique:Characterisation and cytotoxicity assessment[J].Mater Sci Eng C Mater Biol Appl,2015,48:63-70.

      Research advances in tissue-engineering techniques in thetreatmentofosteochondral defects

      HU Hong-Xing1, BU Zi-Heng2, LIU Zhong-Tang21Department of Orthopedics, the Second Affiliated Hospital of Wenzhou MedicalUniversity, Wenzhou 325027, China;2Department of Joint Surgery,Changhai Hospital Affiliated to Second Military Medical University, Shanghai 200433, China

      The treatment of osteochondral defects is a major challenge in orthopedic surgery,while the development of tissue engineering techniques bring new hope for it.This study investigated the application of tissue-engineering scaffolds material in the treatment of osteochondral defects.The related articles addressing tissue-engineered techniques in the treatment of osteochondral defects were retrieved by searching in PubMed,CNKI and Wanfang database with such key words “osteochondral defects,scaffolds, 3D-printing”.Finally, 54 eligible literatures were included.The conclusions are as follows: ①The seed cells include bone mesenchymalstem cells, muscle stem cells, SC-Exos,adipose-derived stem cells, embryonic stem cells and so on.SC-Exos shows the potential for the replacement of stem cells in the treatment of articular cartilage defects.②Growth factors such as BMP, TGF, VEGF and IGF play an important role in the repair of osteochondral defects.③The single layer scaffold and bi-layer scaffold have some shortcomingsin the repairof osteochondral defects,while compared with the nature bone cartilage structure,tri-layer scaffold is more consistent with the requirements of tissue engineering osteochondral composite scaffold.④Compared to traditional methods such as foaming,particle filtration, freeze-drying, template method, 3D printing technology has a certain advantage in the preparation of multi-phase scaffolds.

      osteochondral defects; tissue-engineering techniques; 3D-printing; SC-Exos

      骨軟骨缺損的治療一直是骨科醫(yī)生面臨的棘手問(wèn)題,組織工程學(xué)的發(fā)展為其治療帶來(lái)了新的希望.本研究探討了組織工程材料治療骨軟骨缺損的研究進(jìn)展.在中國(guó)知網(wǎng)、PubMed和萬(wàn)方數(shù)據(jù)庫(kù)中以“骨軟骨缺損,組織工程支架,osteochondral defects,cartilage repair,scaffold,3D-printing”為檢索詞檢索關(guān)于組織工程材料治療骨軟骨缺損的相關(guān)文獻(xiàn).最終選擇54篇文獻(xiàn)進(jìn)行綜述,得出以下結(jié)論:①種子細(xì)胞包括骨髓間充質(zhì)干細(xì)胞、肌肉干細(xì)胞、干細(xì)胞衍生的外泌體(SC-Exos)、脂肪干細(xì)胞、胚胎干細(xì)胞等.SC-Exos顯示出取代干細(xì)胞治療關(guān)節(jié)軟骨缺損的巨大潛力.②骨形態(tài)發(fā)生蛋白(BMP)、轉(zhuǎn)化生長(zhǎng)因子(TGF)、血管內(nèi)皮生長(zhǎng)因子(VEGF)、胰島素樣生長(zhǎng)因子等生長(zhǎng)因子在骨軟骨缺損的修復(fù)過(guò)程中發(fā)揮了重要作用.③單相和雙相支架在骨軟骨缺損修復(fù)中存在缺陷,而三相支架比擬天然骨軟骨結(jié)構(gòu)更符合組織工程骨軟骨復(fù)合支架的要求.④3D打印技術(shù)在制備多相層支架相比于傳統(tǒng)方法如發(fā)泡法、粒子濾取法、冷凍干燥法、模板法等具有一定優(yōu)勢(shì).

      骨軟骨缺損;組織工程技術(shù);3D打印;外泌體(Exos)

      R318

      A

      2095-6894(2017)12-11-06

      2017-05-11;接受日期:2017-05-28

      國(guó)家自然科學(xué)基金面上項(xiàng)目(51673212)

      胡宏悻.碩士生.研究方向:關(guān)節(jié)外科及運(yùn)動(dòng)醫(yī)學(xué).E-mail:jayden_h(yuǎn)u0422@ 163.com

      劉忠堂.博士,教授,主任醫(yī)師.E-mail:surgeon_liu@ 163.com

      猜你喜歡
      下骨軟骨干細(xì)胞
      干細(xì)胞:“小細(xì)胞”造就“大健康”
      X線與CT引導(dǎo)下骨病變穿刺活檢的臨床應(yīng)用
      軟骨下骨重塑與骨關(guān)節(jié)炎綜述
      造血干細(xì)胞移植與捐獻(xiàn)
      鞍區(qū)軟骨黏液纖維瘤1例
      骨關(guān)節(jié)炎與軟骨下骨研究進(jìn)展
      軟骨下骨在骨關(guān)節(jié)炎中的病理改變及其機(jī)制
      干細(xì)胞產(chǎn)業(yè)的春天來(lái)了?
      原發(fā)肺軟骨瘤1例報(bào)告并文獻(xiàn)復(fù)習(xí)
      干細(xì)胞治療有待規(guī)范
      舒兰市| 类乌齐县| 阳西县| 惠水县| 乡城县| 崇明县| 蓝田县| 长沙市| 延津县| 桂阳县| 仙桃市| 麦盖提县| 沙洋县| 宝山区| 阿拉善盟| 瓮安县| 鄂托克旗| 仪陇县| 安吉县| 平山县| 宜城市| 渑池县| 葫芦岛市| 刚察县| 泸水县| 张家口市| 积石山| 万源市| 宜宾县| 宣武区| 中卫市| 共和县| 泊头市| 射洪县| 郑州市| 孝感市| 屯昌县| 房产| 兴仁县| 施甸县| 搜索|