• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    2017-12-13 10:52:00岳愛琴張宇婷張鵬騫高媛媛張永坡王高春艷趙晉忠杜維俊
    關(guān)鍵詞:核酸酶農(nóng)業(yè)大學(xué)配體

    岳愛琴 張宇婷 張鵬騫 高媛媛 張永坡王 敏 高春艷*, 趙晉忠 杜維?。?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    岳愛琴1張宇婷2張鵬騫3高媛媛4張永坡2王 敏1高春艷*,2趙晉忠2杜維?。?1

    (1山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,太谷 030801)
    (2山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷 030801)
    (3北京麋鹿生態(tài)實(shí)驗(yàn)中心,北京 100076)
    (4內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特 010051)

    以dpa衍生配體4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)合成2個(gè)單核銅配合物[CuL(NO3)2](1)和[CuL(OAc)(H2O)]ClO4(2),并對(duì)其進(jìn)行了表征。單晶結(jié)構(gòu)顯示,配合物1中的Cu中心可以描述為畸變的五角雙錐構(gòu)型,而2的Cu中心為畸變的八面體構(gòu)型。運(yùn)用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA的鍵合作用,結(jié)果表明2個(gè)配合物與DNA的相互作用均為部分插入模式。通過改變濃度、時(shí)間進(jìn)一步檢測(cè)配合物切割DNA的能力,以及驗(yàn)證其切割機(jī)理,結(jié)果表明在外界誘導(dǎo)劑存在下,2個(gè)配合物均表現(xiàn)出強(qiáng)的切割DNA的能力,其作用機(jī)理為氧化切割機(jī)理,其中活性氧可能為·OH和1O2。利用MTT法測(cè)定了配合物對(duì)體外HeLa、HepG-2和SGC-7901腫瘤細(xì)胞增殖的抑制能力。

    銅配合物;dpa類配體;DNA鍵合;DNA切割;細(xì)胞毒性

    0 Introduction

    Medicinal inorganic chemistry hasbeen a research field of broad interest since the discovery of cisplatin as well as its anticancer activity in the 1960s[1-3].For the reason of severe side effects,general toxicity and drug resistance problems of cisplatin and its derivatives,metal-based therapeutics is a still expanding field up to now that has not stopped at the point of the discovery of new anticancer drug[4-5].Besides platinum,candidates of complexes for almost all transition metals are investigated in the past few years[6-8]for the purpose of developing new anticancer drugs with more efficient and less systemic toxicity.Among those transition metal compounds,copper complex is an interesting candidate showing much potential over cisplatin and its derivatives of reduced toxicity,novel action mechanism,various activity spectrum,and non-cross-resistance prospect[9].

    Besides the choice of metal ions,purposeful design of ligand framework can significantly alter the biological properties by limiting the adverse effects of metal ion overload, modifying reactivity and lipophilicity,stabilizing specific oxidation states,and facilitating metal ion redistribution[10].Polypyridyl metal complexes have been exploited in a broad range of biological applications for their polydentate chelating structure and unique chemical and redox properties[11].In our previous works,we have reported the biological activity of Ni髤[12]and Zn髤[13-14]complexes containing polypyridyl ligands, the results suggested the complexes performed considerable cytotoxic activities.As a continuation of our interest,in this work,two new copper complexes with a mononuclear polypyridyl ligand were synthesized and structurally characterized.The DNA cleavage efficiencies and the cytotoxicity of the two complexes have been tested and analyzed.

    1 Experimental

    1.1 Materials and method

    The reagents and solvents were purchased from commercial sources.Tridentate dpa-based ligand 4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)and L·xHClO4was synthesized according to previous work[12,14].Calf thymus(CT-DNA),Plasmid pBR322 DNA and ethidium bromide (EB)were purchased from Sigma-Aldrich.Stock solutions of Cu髤complexes(1.0 mmol·L-1in 10%(V/V)DMF aqueous solution)were stored at 4℃and prepared to series concentrations for all experiments.Tris-HCl was prepared using tripledistilled deionized sonicated water.

    Elemental analyses and IR spectra were obtained on the Perkin-Elmer analyzer and Perkin-Elmer FT-IR spectrometer,respectively.Electronic spectra and fluorescence spectral data were collected on the JASCO V-570 spectrophotometer and MPF-4 fluorescence spectrophotometer at room temperature.The gel imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and Analysis Software (UVI,England).TheMTT assaywas determined by measuring the absorbance of each well at 570 nm using a Bio-Rad 680 microplate reader(Bio-Rad,USA).

    1.2 Preparation of the complexes

    1.2.1 Synthesis of[CuL(NO3)2](1)

    A methanol solution (10 mL)with 0.2 mmol L·xHClO4(x was counted as 1)was added to the ethanol solution(10 mL)of Cu(NO3)2·3H2O(0.2 mmol,48 mg).The resulting mixture was stirred for 10 h at room temperature.After filtration,green prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after a week,which were collected by filtration,washed with diethyl ether and dried in air(Yield:45%).Anal.Calcd.for C19H19CuN5O6(%):C,47.85;H,4.02;N,14.68.Found(%):C,48.32;H,3.29;N,14.76.FT-IR (KBr,cm-1):3 445,2 924,2 362,1 613,1 516,1 475,1 386,1 294,1 120,1 031,818,782,624.

    1.2.2 Synthesis of[CuL(OAc)(H2O)]ClO4(2)

    Complex 2 was prepared using a similar procedure with that of 1 except of adding an aqueous solution(5 mL)of Cu(OAc)2·H2O(0.2 mmol,40 mg)to the reaction mixture.Blue prism crystals suitable forX-ray diffraction were precipitated by slow evaporation of the filtrate after a week,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(yield:42%).Anal.Calcd.for C21H24ClCuN3O7(%):C,47.64;H,4.57;N,7.94.Found(%):C,47.71;H,4.63;N,7.85.FT-IR (KBr,cm-1):3 490,1 582,1 512,1 400,1 342,1 286,1 099,972,929,832,773,929,832,773,687,624,560,421.

    1.3 X-ray crystallography

    Single crystals of the complexes with suitable size (0.40 mm×0.25 mm×0.12 mm for 1 and 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kα radiation(λ=0.071 073 nm)with the ω-2θ scan technique.Diffraction data were collected at 293(2)K.Both the crystal structures were solved using direct methods(SHELXS-97)[15]and refined with full-matrix leastsquares technique on F2using the SHELXL-97[16].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors.Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1521098 for 1;1521097 for 2.

    Table 1 Crystallographic data for complexes 1 and 2

    1.4 DNA binding,DNA cleavage and cytotoxicity experiments

    The chemical nuclease activity and cytotoxicity experiments were conducted using the similar methods described previously[12-14,17]. Detailed experimental methods can be found in the supporting information.

    2 Results and discussion

    2.1 Description of the crystal structures

    Both of the mononuclear Cu髤complexes have been structurally characterized by X-ray crystallography(Fig.1).Complex 1 crystallizes in a triclinic cell with P1 space group.The metal center is heptacoordinated with N3O4donor sets,and weak coordinated interactions(Cu1-O2 0.257 5(5)nm and Cu1-O4 0.247 4(5)nm)exist in the[CuL(NO3)2]unit.The atoms O1,O2,N1,O4 and O6 occupy the corners of the pentagonal basal plane,and the angles around the copper ion within the basal plane vary from 46.28(7)°to 99.04(13)°and the sum of angles spanning these five bonds is 360.07°(Table S1),underscoring the flat nature of this equatorial plane.In addition,the atoms N2 and N3 occupy the axial positions(Cu1-N2 0.195 1(7)nm;Cu1-N3 0.195 9(6)nm and N2-Cu1-N3 164.7(3)°).Therefore,the geometry around copper center can be described as a distorted pentagonal bipyramidal.

    Complex 2 crystallizes in a monoclinic cell with P21/c space group.The metal center is hexa-coordinated with N3O3donor sets,and weak coordinated interaction(Cu1-O2 0.278 9(3)nm)also exist in the[CuL(OAc)(H2O)]ClO4unit,and the geometry around metal center can be described as a distorted octahedron.The atoms O2 and O3 occupy the axial positions(Cu1-O2,0.278 9(3)nm and Cu1-O3,0.245 7(3)nm),the atoms O1,N1,N2 and N3 occupy the corners of the basal plane,the angles around the copper ion within the basal plane vary from 82.26(12)to 97.49(12)°and the sum of angles spanning these five bonds is 359.76°,underscoring the flat nature of this equatorial plane.

    Fig.1 ORTEP view of the molecular structure and atom-labeling scheme of complexes 1(a)and 2(b)with 30%probability ellipsoid

    2.2 DNA-binding and cleavage activities

    2.2.1 DNA-binding study

    Electronic absorption spectroscopy was an effective method in examining the binding mode and strength of the complex with CT-DNA[18].Small molecules binding with DNA through intercalation usually result in the changes in the absorbance and shift in wavelength.The typical titration curve for 1 and 2 are shown in Fig.S1(a~b),and a plot of(εa-εf)/(εb-εf)versus cDNAfor the titration of DNA to complex is presented in corresponding inset.As given in Table 2,the observed absorption peaks at 207 and 214 nm for complexes 1 and 2 are attributed to intraligand π-π*transition.As increasing the concentration of CTDNA,the ligand-based bands exhibit hypochromism(For 1,hypochromism was about 78.8%and for 2 it was 66.7%)with red shifts(10 and 7 nm for 1 and 2,respectively) in band position,which indicatesintercalation between the complexes and DNA[19].To confirm the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbwere calculated according to the equation[20]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)], where cDNAis the DNA concentration in nucleotides;εais the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration;εfis the extinction coefficient of the free complex in solution;εbis the extinction coefficient of the complex when fully bound to DNA.The binding constant Kbvalues (Table 2)follow the order:2(9.60×104L·mol-1)gt;1(4.21×104L·mol-1),which suggest that complex 2 has slightly stronger binding affinity than 1.The Kbvalues are smaller than reported for typical classical intercalators(EB-DNA,3.3×105mol·L-1in 50 mmol·L-1Tris-HCl/1.0 mol·L-1NaCl buffer,pH 7.5)[21],which suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.

    Table 2 Absorption spectral and fluorescence spectral properties of complexes 1 and 2 bound to CT-DNA

    In order to further clarify the CT-DNA binding activity,fluorescence spectralmeasurementswere carried out.No luminescence is observed for both complexes and CT-DNA at room temperature,therefore the binding activity is evaluated by the fluorescence emission intensity of EB bound to DNA as a probe.EB-DNA emits intense fluorescent due to their strong intercalation between the adjacent DNA base pairs[22],which could be quenched by the addition of another compound.The relative binding propensity of the complexes toEB-DNA studied in buffer solution (5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl,pH=7.2)is shown in Fig.S2(a~b),and the plots of I0/I versus ccomplexfor the quenched intensity of 1 and 2 to EB-DNA are shown in the insets,respectively.Fluorescence intensities of EB-DNA at 602 nm(510 nm excitation)were measured,and the extent of reduction of the emission intensity by varying the concentration of the complexes gives a measure of the binding propensity.In the Stern-Volmer equation I0/I=1+KcQ[23],I0and I represent the fluorescence intensities in the absence and presence of quencher,respectively;K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher.The quenching plot indicates the quenching of EB bound to CT-DNA by complex is in agreement with the linear Stern-Volmer equation.In the equation KEBcEB=Kappccomplex,KEBis a constant of 1.0×107mol·L-1(cEB=2.4 μmol·L-1),Kappis the calculated apparent binding constant values,and ccomplexis the concentration at a half reduction of the fluorescence intensity of EB.The Kappvalues(Table 2)are nearly equal and follow the order:1(7.13×105L·mol-1)gt;2(6.83×105L·mol-1).The apparent binding constants values are less than that of the classical intercalators and metallointercalators(1.0×107L·mol-1)[24],indicating medium binding strength of the complexes with CT-DNA.On the whole,the result of fluorescence spectral measurements is consistent with obtained Kbvalues by UV spectroscopy.2.2.2 DNA Cleavage Studies

    Agarose gel electrophoresis was used to explore the supercoiled (SC)pBR322 plasmid DNA cleavage activity of the two complexes in a medium of 50 mmol·L-1Tris-HCl/NaCl buffer for 4 h.In the absence of external agents,the concentration-dependent DNA cleavage activities were observed under the nearly physiological conditions(pH=7.2,37℃)(Fig.S3),and both of 1 and 2 could not induce obvious DNA cleavage with the increase of concentration (10~130 μmol·L-1).The ratios of SC DNA (Form Ⅰ)for complex 1 gradually reduce with the increase of concentration,while NC DNA (Form Ⅱ )doesn′t increase,which suggests that 1 partially degraded SC DNA into undetectable minor fragments[25].When the concentration of 2 increase to 130 μmol·L-1,no obvious change for the ratios of FormⅠand FormⅡwere observed.The above suggest that 1 showed slightly better concentration-dependent activities than 2.The concentration-dependent DNA cleavage experidments by complex were also performed in the presence of H2O2(Fig.2)and GSH(glutathione)(Fig.3),respectively.Notably,the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement.In Fig.2,at the concentration of 10 μmol·L-1Cu2+,both complexes are efficient cleavers of SC DNA(FormⅠ)and produce more than 90%of NC DNA(FormⅡ),which implies that H2O2as a revulsant or an activator plays a vital role.When the concentration of complex increase to 40 μmol·L-1,obvious LC DNA(FormⅢ)is produced and the ratios of which followed the order of 1(57.3%)gt;2(31.0%).In order to further clarify the vital role of external revulsant,the GSH (glutathione)instead of H2O2were added.Similarly,as shown in Fig.3 (lane 2~5),the DNA cleavage efficiencies of both complexes also exhibit remarkable increases.At the concentration of 50 μmol·L-1Cu2+,the DNA cleavage efficiencies(the ratios of FormⅢ)follow the order of 1(61.8%)gt;2(45.2%).Both H2O2and GSH showed similar behavior in DNA cleavage reactions,although H2O2was slightly more active than GSH.

    Fig.2 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.3 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.4 Time-dependence of pBR322 DNA cleavage by complexes 1(a)and 2(b)according to the inset

    To further assess the cleavage rate of chemical nuclease,the kinetic parameters for complexes 1 and 2 promoted DNA cleavage were determined.The timedependence ofDNA cleavage experimentswere carried out(Fig.4)under the same condition(pH=7.2,37 ℃,cGSH=250 μmol·L-1,cCu2+=10 μmol·L-1).The ratios of FormⅠgradually disappeared and FormⅡincreased with reaction time increase (3~15 min).More than 90%NC DNA(FormⅡ)was observed within 9 min for complex 1 (Fig.4a Inset)and within 15 min for complex 2 (Fig.4b Inset).The decrease of FormⅠor increase of FormⅡwas fitted to a single exponential decay curve (pseudo-first-order kinetics)by the equation[26-27]:y=(100-y0)[1-exp(-kobsx)],where y0is the initial ratio of a form of DNA;y is the ratio of a specific form of DNA at time x;kobsis the apparent rate constant.The reaction profile for the complex displayed approximately pseudo-first-order kinetic behavior(Fig.4(a~b))with kobsfollow the order of 1(0.35 min-1)gt;2(0.22 min-1),showing better than the result of the kobsfor copper-ATCUN complexes(0.07 and 0.14 min-1)obtained by Cowan′s group[28].

    In order to obtain the information about the active oxygen species(ROS)which was responsible for the DNA cleavage,the potential mechanism of DNA cleavage mediated by the complex was investigated in the presence of GSH.DNA cleavage experiments(Fig.5)were carried out using reagents like KI as hydroxyl radical scavenger(·OH),NaN3as singlet oxygen(1O2)quencher,EDTA as the chelator of complex,catalase ashydrogen peroxide scavenger,and superoxide dismutase(SOD)as O2-radical scavenger.In Fig.5(a~b),addition of KI(lane 3)to SC DNA partly inhibited the DNA cleavageactivity,which suggested the possible involvement of hydroxyl radial(·OH)as the reactive species.Also,the complexes showed partial inhibition of DNA-cleavage in the presence of the NaN3(lane 4),and D2O (lane 8)enhanced the DNA cleavage[29],indicating possible involvement of singlet oxygen as the reactive species.No obvious inhibition was observed for other radical scavengers.Therefore,the data suggest the involvement of both hydroxyl radicals (·OH)and singlet oxygen (1O2)as ROS.In addition,The EDTA (lane 5),a Cu髤-specific chelating agent that strongly bind to Cu髤f(xié)orming a stable complex,can efficiently inhibit DNA cleavage,indicating metalion playsthekeyrolein the cleavage.The addition of methyl green(lane 9),which is known to interact to DNA at major groove[30],effectively inhibited DNA cleavage by complex.The result suggests that the complex mainly has interaction with DNA through major groove.

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1 μg·μL-1)in presence of 20 μmol·L-1complex 1(a)~2(b)(0.04%DMF)and different inhibitors after 4 h incubation at 37℃

    2.3 MTT assay

    MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)assay is a colorimetric assay based on the conversion of the yellow tetrazolium salt to purple formazan crystals by metabolically active cells,which has been done to test the ability of complexes to inhibit cell growth and induce cell death in HeLa(human cervical carcinoma),HepG-2 (human liver hepatocellularcarcinoma)and SGC-7901 (human gastric carcinoma)cancer cell lines.In Table 2,both1 and 2 exhibit significant cytotoxic activities toward tested tumor cells and inhibit the growth of cells in a dose-dependent manner,and 2 shows slightly better antitumor effect than 1.Complex 2 exhibits strong anti-proliferative effect on HepG-2 cells with the IC50value of(34.2±2.3)μmol·L-1,which is close to the cisplatin(IC50=(25±3.1)μmol·L-1)and probably has the potential to act as an effective metal-based anticancer drug.

    Table 2 IC50of complexes 1 and 2 obtained with different cell lines for 48 h

    3 Conclusions

    Two new mononuclear Cu髤complexes have been synthesized and characterized.Crystal structure showed that the metal center of 1 is hepta-coordinated with N3O4donorsets,existing weak coordinated interactions,and can be described as a distorted pentagonal bipyramidal.Weak coordinated interaction also exists in the crystal unit of 2 where the metal center is hexa-coordinated and the geometry can be described as a distorted octahedron. Partial intercalation and medium binding strength between the complexes and CT-DNA has been demonstrated.The DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of H2O2or GSH,and H2O2was slightly more active than GSH.The oxidative cleavage mechanism was confirmed via a pathway involving formation of both·OH and1O2as ROS.The in vitro cytotoxicity of the complexes has been assessed by MTT on tumor cells lines(HeLa,HepG-2 and SGC-7901),both 1 and 2 exhibit significant cytotoxic activities and inhibit the proliferation of cells.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grant No.31171580),Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2015148),Natural Science Foundation of Shanxi (Grants No.201601D011076,201701D221157),Shanxi Key Research and Development Program (Grants No.201703D221008-4,201703D221004-5),Shanxi Agricultural University youth topnotch innovative personnel support program(Grant No.201203),the PhD Research Startup Foundation of Shanxi Agricultural University (Grant No.2013YJ40),The Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).The Natural Science Foundation of Inner Mongolia (Grant No.2016BS0206),and The Inner Mongolia Autonomous Region Higher Scientific Research Project(Grant No.NJZY088).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [2]Muhammad N,Guo Z.Curr.Opin.Chem.Biol.,2014,19:144-153

    [3]Garbutcheon-Singh K B,Grant M P,Harper B W,et al.Curr.Top.Med.Chem.,2011,11(5):521-542

    [4]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev.,2013,257(19/20):2848-2862

    [5]Deo K M,Pages B J,Ang D L,et al.Int.J.Mol.Sci.,2016,17(11):1818(17 pages)

    [6]Zaki M,Arjmand F,Tabassum S.Inorg.Chim.Acta,2016,444:1-22

    [7]Marloye M,Berger G,Gelbcke M,et al.Future Med.Chem.,2016,8(18):2263-2286

    [8]Ott I,Gust R.Arch.Pharm.,2007,340(3):117-126

    [9]Santini C,Pellei M,Gandin V,et al.Chem.Rev.,2014,114(1):815-862

    [10]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35(6):534-544

    [11]Salassa L.Eur.J.Inorg.Chem.,2011(32):4931-4947

    [12]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39):30768-30779

    [13]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41(39):12220-12232

    [14]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40(9):7513-7521

    [15]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G觟ttingen,Germany,1997.

    [16]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G觟ttingen,Germany,1997.

    [17]ZHANG Yong-Po(張永坡),YANG Jia-Jia(楊佳佳),L譈 Jia-Yuan(呂佳苑),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2016,32(12):2172-2182

    [18]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [19]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg.Chem.,2004,43(22):7170-7179

    [20]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26(20):6392-6396

    [21]Strothkamp K G,Strothkamp R E.J.Chem.Educ.,1994,71(1):77-79

    [22]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16):4246-4253

    [23]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [24]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc.,1985,107(8):2528-2536

    [25]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg.Chem.,2011,50(14):6458-6471

    [26]Googisman J,Kirk C,Dabrowiak J C.Biophys.Chem.,1997,69:249-268

    [27]Ordoukhanian E,Joyee G F.J.Am.Chem.Soc.,2002,124(42):12499-12506

    [28]Jin Y,Cowan J A.J.Am.Chem.Soc.,2005,127(23):8408-8415

    [29]Merkel P B,Kearns D R.J.Am.Chem.Soc.,1972,94(3):1029-1030

    [30]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol.,2004,29(4):282-289

    Two Copper髤Complexes with dpa-Based Ligand:Syntheses,Structures,Nuclease Activity and Cytotoxicity

    YUE Ai-Qin1ZHANG Yu-Ting2ZHANG Peng-Qian3GAO Yuan-Yuan4ZHANG Yong-Po2
    WANG Min1GAO Chun-Yan*,2ZHAO Jin-Zhong2DU Wei-Jun*,1
    (1College of Agronomy,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (2College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (3Beijing Milu Ecological Research Center,Beijing 100076,China)
    (4Chemical Engineering College,Inner Mongolia University of Technology,Hohhot 010051,China)

    Two new mononuclear copper髤complexes,[CuL(NO3)2](1)and[CuL(OAc)(H2O)]ClO4(2),with dpabased ligand(L=4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline)have been synthesized and characterized by various physico-chemical techniques.The crystal structure of complex 1 displays a distorted pentagonal bipyramidal geometry,and the geometry around copper center of 2 can be described as a distorted octahedron.Interaction of the complexes with CT-DNA has been explored by using absorption and emission spectral methods,and the result suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.Theconcentration-dependent and time-dependent DNA cleavage activity and the mechanism of DNA cleavage have been investigated,which suggest the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of external revulsants,and oxidative mechanism has been demonstrated via the pathway involving both hydroxyl radicals(·OH)and singlet oxygen(1O2)as ROS.The in vitro cytotoxic activity of the complexes has been examined by MTT on three cell lines such as HeLa,HepG-2 and SGC-7901.CCDC:1521098,1;1521097,2.

    copper髤complexes;dpa-based ligand;DNA binding;DNA cleavage;cytotoxicity

    O614.121

    A

    1001-4861(2017)12-2287-09

    10.11862/CJIC.2017.273

    2017-05-15。收修改稿日期:2017-09-28。

    國家自然科學(xué)基金(No.31171580)、山西省高等學(xué)??萍紕?chuàng)新項(xiàng)目(No.2015148)、山西省自然科學(xué)基金(No.201601D011076,201701D221157)、山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No.201703D221008-4,201703D221004-5)、山西農(nóng)業(yè)大學(xué)中青年拔尖創(chuàng)新人才支持計(jì)劃(No.201203)、山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40)、山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)、內(nèi)蒙古自然科學(xué)基金(No.2016BS0206)和內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項(xiàng)目(No.NJZY088)。

    *通信聯(lián)系人。 E-mail:gaocynk@163.com,duweijun68@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    核酸酶農(nóng)業(yè)大學(xué)配體
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類配體的合成及其光學(xué)性能
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    99国产精品免费福利视频| 精品一区在线观看国产| 日本一二三区视频观看| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区免费观看| 五月伊人婷婷丁香| 一二三四中文在线观看免费高清| 国产深夜福利视频在线观看| 久久久久久久久久人人人人人人| 少妇被粗大猛烈的视频| 国产视频首页在线观看| 久久人人爽人人片av| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 99九九线精品视频在线观看视频| 超碰97精品在线观看| 日韩欧美一区视频在线观看 | 亚洲精品乱码久久久久久按摩| 99热网站在线观看| 国产亚洲精品久久久com| 又爽又黄a免费视频| 成人免费观看视频高清| 精品久久久久久电影网| 亚洲精品国产av成人精品| 久久精品国产鲁丝片午夜精品| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 亚洲av福利一区| 欧美国产精品一级二级三级 | 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 人妻夜夜爽99麻豆av| 七月丁香在线播放| 亚洲国产最新在线播放| 97热精品久久久久久| 国产成人免费无遮挡视频| 亚洲av中文字字幕乱码综合| 狠狠精品人妻久久久久久综合| 日韩一区二区三区影片| 舔av片在线| 久久久精品94久久精品| 97在线视频观看| 超碰av人人做人人爽久久| 综合色丁香网| 久久韩国三级中文字幕| 国产成人a∨麻豆精品| 亚洲成人手机| 久久久色成人| 国产一级毛片在线| 蜜桃久久精品国产亚洲av| 日日啪夜夜爽| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 精品久久久久久电影网| av国产免费在线观看| 日本色播在线视频| 亚洲欧洲国产日韩| 久久久久久伊人网av| 精品午夜福利在线看| 亚州av有码| 舔av片在线| 卡戴珊不雅视频在线播放| 毛片女人毛片| 国产人妻一区二区三区在| 国产乱来视频区| 老女人水多毛片| 亚洲av中文字字幕乱码综合| 99视频精品全部免费 在线| 男女下面进入的视频免费午夜| 久久 成人 亚洲| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 国产精品久久久久成人av| 久久久久久久亚洲中文字幕| av在线蜜桃| 国产精品免费大片| 亚洲av综合色区一区| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 国产 精品1| 新久久久久国产一级毛片| 久久毛片免费看一区二区三区| 91久久精品电影网| 色婷婷av一区二区三区视频| 男男h啪啪无遮挡| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 少妇的逼好多水| 久久精品夜色国产| 岛国毛片在线播放| 久久99热这里只有精品18| 成人无遮挡网站| tube8黄色片| 国产精品一区二区性色av| 一边亲一边摸免费视频| 美女视频免费永久观看网站| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 26uuu在线亚洲综合色| 免费大片18禁| 老师上课跳d突然被开到最大视频| 熟女电影av网| 中国国产av一级| 亚洲av综合色区一区| 亚洲中文av在线| 久久久久久久久大av| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 国产av国产精品国产| 久久精品国产亚洲av天美| 免费观看av网站的网址| 18禁在线播放成人免费| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 亚洲国产精品999| 免费观看a级毛片全部| 国产成人精品婷婷| 婷婷色av中文字幕| 黄色日韩在线| 色哟哟·www| 在线免费观看不下载黄p国产| 99re6热这里在线精品视频| 日韩伦理黄色片| 午夜老司机福利剧场| 国产 一区 欧美 日韩| 亚洲电影在线观看av| 国产精品欧美亚洲77777| 久久久久性生活片| 黑丝袜美女国产一区| 日韩大片免费观看网站| 国精品久久久久久国模美| 免费观看的影片在线观看| 亚洲精品456在线播放app| 香蕉精品网在线| 精品一区二区三卡| 在线精品无人区一区二区三 | 少妇人妻久久综合中文| 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 亚洲精品中文字幕在线视频 | 午夜激情福利司机影院| 婷婷色麻豆天堂久久| 草草在线视频免费看| 激情 狠狠 欧美| 免费观看的影片在线观看| 内地一区二区视频在线| 网址你懂的国产日韩在线| av播播在线观看一区| 在线观看国产h片| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 久久精品人妻少妇| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 91精品伊人久久大香线蕉| 我要看黄色一级片免费的| 精品一区二区三区视频在线| 免费黄频网站在线观看国产| 日本黄色日本黄色录像| 交换朋友夫妻互换小说| 日韩三级伦理在线观看| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 波野结衣二区三区在线| av免费观看日本| 国产精品精品国产色婷婷| a 毛片基地| 老女人水多毛片| av天堂中文字幕网| 黄片wwwwww| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| 新久久久久国产一级毛片| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 久久精品久久久久久久性| 成人亚洲精品一区在线观看 | 欧美xxxx性猛交bbbb| 国产在线免费精品| 我要看日韩黄色一级片| 日韩视频在线欧美| 精品人妻视频免费看| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 18禁裸乳无遮挡动漫免费视频| 日韩一区二区三区影片| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 午夜视频国产福利| 99久久精品热视频| 干丝袜人妻中文字幕| 五月开心婷婷网| 大片电影免费在线观看免费| 久久精品国产a三级三级三级| 亚洲av欧美aⅴ国产| 久久青草综合色| 在线观看人妻少妇| 视频区图区小说| 精品人妻熟女av久视频| 欧美三级亚洲精品| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 美女国产视频在线观看| 在线亚洲精品国产二区图片欧美 | 免费av不卡在线播放| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 五月伊人婷婷丁香| 日本黄色片子视频| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 日韩电影二区| 免费看光身美女| 一级av片app| 99久久精品一区二区三区| 女性生殖器流出的白浆| 精品人妻视频免费看| a级毛片免费高清观看在线播放| 51国产日韩欧美| 最近最新中文字幕大全电影3| 高清午夜精品一区二区三区| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| 国产高潮美女av| 夫妻午夜视频| 最近的中文字幕免费完整| 欧美日本视频| 亚洲精品日韩av片在线观看| 91精品伊人久久大香线蕉| av黄色大香蕉| 制服丝袜香蕉在线| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 欧美激情极品国产一区二区三区 | 欧美性感艳星| 欧美97在线视频| 99热国产这里只有精品6| 国产成人aa在线观看| av天堂中文字幕网| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 精品久久国产蜜桃| 国产免费又黄又爽又色| 日韩大片免费观看网站| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 亚洲欧美一区二区三区国产| 边亲边吃奶的免费视频| 女性被躁到高潮视频| h日本视频在线播放| 激情 狠狠 欧美| 日韩视频在线欧美| 亚洲自偷自拍三级| 国产欧美日韩一区二区三区在线 | 国产精品一区二区性色av| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 九九爱精品视频在线观看| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 免费观看在线日韩| 午夜福利影视在线免费观看| 免费av不卡在线播放| 日本av手机在线免费观看| 国产成人精品一,二区| 亚洲国产av新网站| 国产91av在线免费观看| 日韩中字成人| 亚洲精品456在线播放app| 尤物成人国产欧美一区二区三区| 国产永久视频网站| 亚洲国产色片| 亚洲av日韩在线播放| 成人无遮挡网站| 久久久久国产网址| 亚洲色图综合在线观看| 成人高潮视频无遮挡免费网站| 国产高清国产精品国产三级 | 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产熟女欧美一区二区| 一区二区三区免费毛片| 亚洲成色77777| 少妇裸体淫交视频免费看高清| 另类亚洲欧美激情| 国产视频首页在线观看| 97超碰精品成人国产| 大片电影免费在线观看免费| 国产淫语在线视频| xxx大片免费视频| 欧美3d第一页| 久久久欧美国产精品| 少妇 在线观看| 黄色配什么色好看| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 亚洲成色77777| 亚洲av电影在线观看一区二区三区| 成年av动漫网址| 亚洲电影在线观看av| 777米奇影视久久| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 如何舔出高潮| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 日韩中字成人| 熟妇人妻不卡中文字幕| 国产精品av视频在线免费观看| 中文字幕制服av| 欧美日韩在线观看h| 天堂俺去俺来也www色官网| 国产爱豆传媒在线观看| 最近的中文字幕免费完整| 交换朋友夫妻互换小说| 51国产日韩欧美| 22中文网久久字幕| 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 免费黄色在线免费观看| 亚洲真实伦在线观看| 免费在线观看成人毛片| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 亚洲av国产av综合av卡| 性色av一级| 国产午夜精品久久久久久一区二区三区| 三级国产精品片| 欧美亚洲 丝袜 人妻 在线| 少妇熟女欧美另类| 亚洲精品,欧美精品| 国产精品国产三级国产专区5o| 午夜日本视频在线| 妹子高潮喷水视频| 看非洲黑人一级黄片| 一级av片app| 国产真实伦视频高清在线观看| a级毛色黄片| 亚洲精品自拍成人| 18禁裸乳无遮挡免费网站照片| 国产精品99久久99久久久不卡 | 最近的中文字幕免费完整| 国产在线男女| av播播在线观看一区| 久久国产亚洲av麻豆专区| 中文字幕久久专区| 黑人猛操日本美女一级片| 成人午夜精彩视频在线观看| 成人影院久久| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 天天躁日日操中文字幕| 国产精品久久久久久久电影| 男人和女人高潮做爰伦理| 国产免费福利视频在线观看| 精品人妻熟女av久视频| 一区二区三区精品91| 韩国高清视频一区二区三区| 日韩中字成人| 极品少妇高潮喷水抽搐| 国产亚洲91精品色在线| 免费看不卡的av| 丰满迷人的少妇在线观看| 日韩成人伦理影院| 国精品久久久久久国模美| 伦理电影大哥的女人| 欧美成人a在线观看| 欧美日韩综合久久久久久| 一本久久精品| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 国产精品免费大片| 另类亚洲欧美激情| 日本av手机在线免费观看| 九草在线视频观看| videossex国产| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 日本免费在线观看一区| 亚洲四区av| 高清黄色对白视频在线免费看 | 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 国产在线视频一区二区| 久久午夜福利片| 亚洲第一区二区三区不卡| 国产亚洲精品久久久com| 国产高潮美女av| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| 特大巨黑吊av在线直播| 我的女老师完整版在线观看| 青春草视频在线免费观看| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 一级二级三级毛片免费看| 国产精品99久久久久久久久| 六月丁香七月| 两个人的视频大全免费| 天堂俺去俺来也www色官网| 久久国产乱子免费精品| 日日啪夜夜爽| 精品久久国产蜜桃| 国产伦在线观看视频一区| 超碰av人人做人人爽久久| 亚洲国产日韩一区二区| 插阴视频在线观看视频| 国产精品一区二区性色av| 免费黄色在线免费观看| 街头女战士在线观看网站| 久久久久久久国产电影| 日日撸夜夜添| 久久这里有精品视频免费| 国产亚洲最大av| 不卡视频在线观看欧美| 91精品伊人久久大香线蕉| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 国产精品蜜桃在线观看| 97超视频在线观看视频| 2022亚洲国产成人精品| 午夜激情福利司机影院| 深夜a级毛片| 老熟女久久久| 日韩三级伦理在线观看| 91精品一卡2卡3卡4卡| 最近中文字幕高清免费大全6| 久久国产精品大桥未久av | 黄色欧美视频在线观看| 国产高清国产精品国产三级 | 亚洲av免费高清在线观看| 久久久亚洲精品成人影院| 国产精品久久久久久精品古装| 美女主播在线视频| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 国内精品宾馆在线| 亚洲真实伦在线观看| 欧美日韩亚洲高清精品| 亚州av有码| 欧美高清成人免费视频www| 日本av手机在线免费观看| 大陆偷拍与自拍| 午夜老司机福利剧场| 伦理电影大哥的女人| 多毛熟女@视频| 久久韩国三级中文字幕| 欧美人与善性xxx| 男女边吃奶边做爰视频| av在线app专区| 欧美日韩精品成人综合77777| 黄色视频在线播放观看不卡| 久久国产精品大桥未久av | 国产亚洲午夜精品一区二区久久| 国产 一区 欧美 日韩| av免费在线看不卡| 亚洲精品乱码久久久v下载方式| 观看av在线不卡| 欧美 日韩 精品 国产| 中文欧美无线码| 人妻系列 视频| 亚洲真实伦在线观看| 亚洲精品第二区| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 亚洲欧美一区二区三区黑人 | 久久影院123| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 国产在线视频一区二区| 日本一二三区视频观看| av在线观看视频网站免费| 99热这里只有精品一区| 国产精品免费大片| 成人高潮视频无遮挡免费网站| 热99国产精品久久久久久7| 男人舔奶头视频| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 日本vs欧美在线观看视频 | a 毛片基地| 亚洲欧美一区二区三区黑人 | 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 久久久久久久大尺度免费视频| 黑人高潮一二区| 国产又色又爽无遮挡免| 97热精品久久久久久| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 国产成人一区二区在线| 欧美成人一区二区免费高清观看| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 精品一区在线观看国产| 波野结衣二区三区在线| 99热全是精品| www.色视频.com| 国产精品人妻久久久久久| 嫩草影院入口| 日韩av在线免费看完整版不卡| 成年av动漫网址| 97在线视频观看| 性高湖久久久久久久久免费观看| 狂野欧美激情性bbbbbb| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 亚洲精品自拍成人| 亚洲精品一区蜜桃| 久久ye,这里只有精品| 欧美最新免费一区二区三区| 久久人人爽人人片av| 久久99热这里只有精品18| 亚洲精华国产精华液的使用体验| 亚洲国产最新在线播放| 国产午夜精品久久久久久一区二区三区| videos熟女内射| 青青草视频在线视频观看| 男女免费视频国产| 久久久久久久大尺度免费视频| 精品久久久久久久久av| 女性生殖器流出的白浆| 韩国av在线不卡| 亚洲怡红院男人天堂| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡免费网站照片| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 国产一区亚洲一区在线观看| 久久婷婷青草| 一二三四中文在线观看免费高清| 91午夜精品亚洲一区二区三区| 色视频www国产| 亚洲av成人精品一二三区| 国产 一区 欧美 日韩| 久久99热这里只频精品6学生| 精品熟女少妇av免费看| 纯流量卡能插随身wifi吗| 一级a做视频免费观看| 国产男女超爽视频在线观看| a级毛色黄片| 777米奇影视久久| 免费大片黄手机在线观看| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 在线播放无遮挡| 日韩欧美精品免费久久| 日本色播在线视频| 亚洲三级黄色毛片| 久久午夜福利片| 2022亚洲国产成人精品| 在线观看一区二区三区激情| 日韩成人av中文字幕在线观看| 中文天堂在线官网| 久久精品国产a三级三级三级| 偷拍熟女少妇极品色| 亚洲国产高清在线一区二区三| 18禁动态无遮挡网站| 国产精品欧美亚洲77777| 美女脱内裤让男人舔精品视频| 蜜桃亚洲精品一区二区三区| 2018国产大陆天天弄谢| 免费av不卡在线播放| 国产亚洲一区二区精品| 久久人人爽人人爽人人片va| av福利片在线观看| 色视频www国产| 精品久久久久久久久av| 99视频精品全部免费 在线| 色视频www国产| 一级a做视频免费观看| 网址你懂的国产日韩在线| 久久精品久久久久久久性| 午夜激情久久久久久久| 黑丝袜美女国产一区| 99热这里只有是精品在线观看| 久久久国产一区二区| av天堂中文字幕网| 香蕉精品网在线|