• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    2017-12-13 10:52:00岳愛琴張宇婷張鵬騫高媛媛張永坡王高春艷趙晉忠杜維俊
    關(guān)鍵詞:核酸酶農(nóng)業(yè)大學(xué)配體

    岳愛琴 張宇婷 張鵬騫 高媛媛 張永坡王 敏 高春艷*, 趙晉忠 杜維?。?

    兩個(gè)dpa類配體的銅髤配合物的合成、結(jié)構(gòu)、核酸酶活性及細(xì)胞毒性

    岳愛琴1張宇婷2張鵬騫3高媛媛4張永坡2王 敏1高春艷*,2趙晉忠2杜維?。?1

    (1山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,太谷 030801)
    (2山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷 030801)
    (3北京麋鹿生態(tài)實(shí)驗(yàn)中心,北京 100076)
    (4內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特 010051)

    以dpa衍生配體4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)合成2個(gè)單核銅配合物[CuL(NO3)2](1)和[CuL(OAc)(H2O)]ClO4(2),并對(duì)其進(jìn)行了表征。單晶結(jié)構(gòu)顯示,配合物1中的Cu中心可以描述為畸變的五角雙錐構(gòu)型,而2的Cu中心為畸變的八面體構(gòu)型。運(yùn)用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA的鍵合作用,結(jié)果表明2個(gè)配合物與DNA的相互作用均為部分插入模式。通過改變濃度、時(shí)間進(jìn)一步檢測(cè)配合物切割DNA的能力,以及驗(yàn)證其切割機(jī)理,結(jié)果表明在外界誘導(dǎo)劑存在下,2個(gè)配合物均表現(xiàn)出強(qiáng)的切割DNA的能力,其作用機(jī)理為氧化切割機(jī)理,其中活性氧可能為·OH和1O2。利用MTT法測(cè)定了配合物對(duì)體外HeLa、HepG-2和SGC-7901腫瘤細(xì)胞增殖的抑制能力。

    銅配合物;dpa類配體;DNA鍵合;DNA切割;細(xì)胞毒性

    0 Introduction

    Medicinal inorganic chemistry hasbeen a research field of broad interest since the discovery of cisplatin as well as its anticancer activity in the 1960s[1-3].For the reason of severe side effects,general toxicity and drug resistance problems of cisplatin and its derivatives,metal-based therapeutics is a still expanding field up to now that has not stopped at the point of the discovery of new anticancer drug[4-5].Besides platinum,candidates of complexes for almost all transition metals are investigated in the past few years[6-8]for the purpose of developing new anticancer drugs with more efficient and less systemic toxicity.Among those transition metal compounds,copper complex is an interesting candidate showing much potential over cisplatin and its derivatives of reduced toxicity,novel action mechanism,various activity spectrum,and non-cross-resistance prospect[9].

    Besides the choice of metal ions,purposeful design of ligand framework can significantly alter the biological properties by limiting the adverse effects of metal ion overload, modifying reactivity and lipophilicity,stabilizing specific oxidation states,and facilitating metal ion redistribution[10].Polypyridyl metal complexes have been exploited in a broad range of biological applications for their polydentate chelating structure and unique chemical and redox properties[11].In our previous works,we have reported the biological activity of Ni髤[12]and Zn髤[13-14]complexes containing polypyridyl ligands, the results suggested the complexes performed considerable cytotoxic activities.As a continuation of our interest,in this work,two new copper complexes with a mononuclear polypyridyl ligand were synthesized and structurally characterized.The DNA cleavage efficiencies and the cytotoxicity of the two complexes have been tested and analyzed.

    1 Experimental

    1.1 Materials and method

    The reagents and solvents were purchased from commercial sources.Tridentate dpa-based ligand 4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline(L)and L·xHClO4was synthesized according to previous work[12,14].Calf thymus(CT-DNA),Plasmid pBR322 DNA and ethidium bromide (EB)were purchased from Sigma-Aldrich.Stock solutions of Cu髤complexes(1.0 mmol·L-1in 10%(V/V)DMF aqueous solution)were stored at 4℃and prepared to series concentrations for all experiments.Tris-HCl was prepared using tripledistilled deionized sonicated water.

    Elemental analyses and IR spectra were obtained on the Perkin-Elmer analyzer and Perkin-Elmer FT-IR spectrometer,respectively.Electronic spectra and fluorescence spectral data were collected on the JASCO V-570 spectrophotometer and MPF-4 fluorescence spectrophotometer at room temperature.The gel imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and Analysis Software (UVI,England).TheMTT assaywas determined by measuring the absorbance of each well at 570 nm using a Bio-Rad 680 microplate reader(Bio-Rad,USA).

    1.2 Preparation of the complexes

    1.2.1 Synthesis of[CuL(NO3)2](1)

    A methanol solution (10 mL)with 0.2 mmol L·xHClO4(x was counted as 1)was added to the ethanol solution(10 mL)of Cu(NO3)2·3H2O(0.2 mmol,48 mg).The resulting mixture was stirred for 10 h at room temperature.After filtration,green prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after a week,which were collected by filtration,washed with diethyl ether and dried in air(Yield:45%).Anal.Calcd.for C19H19CuN5O6(%):C,47.85;H,4.02;N,14.68.Found(%):C,48.32;H,3.29;N,14.76.FT-IR (KBr,cm-1):3 445,2 924,2 362,1 613,1 516,1 475,1 386,1 294,1 120,1 031,818,782,624.

    1.2.2 Synthesis of[CuL(OAc)(H2O)]ClO4(2)

    Complex 2 was prepared using a similar procedure with that of 1 except of adding an aqueous solution(5 mL)of Cu(OAc)2·H2O(0.2 mmol,40 mg)to the reaction mixture.Blue prism crystals suitable forX-ray diffraction were precipitated by slow evaporation of the filtrate after a week,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(yield:42%).Anal.Calcd.for C21H24ClCuN3O7(%):C,47.64;H,4.57;N,7.94.Found(%):C,47.71;H,4.63;N,7.85.FT-IR (KBr,cm-1):3 490,1 582,1 512,1 400,1 342,1 286,1 099,972,929,832,773,929,832,773,687,624,560,421.

    1.3 X-ray crystallography

    Single crystals of the complexes with suitable size (0.40 mm×0.25 mm×0.12 mm for 1 and 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kα radiation(λ=0.071 073 nm)with the ω-2θ scan technique.Diffraction data were collected at 293(2)K.Both the crystal structures were solved using direct methods(SHELXS-97)[15]and refined with full-matrix leastsquares technique on F2using the SHELXL-97[16].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors.Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1521098 for 1;1521097 for 2.

    Table 1 Crystallographic data for complexes 1 and 2

    1.4 DNA binding,DNA cleavage and cytotoxicity experiments

    The chemical nuclease activity and cytotoxicity experiments were conducted using the similar methods described previously[12-14,17]. Detailed experimental methods can be found in the supporting information.

    2 Results and discussion

    2.1 Description of the crystal structures

    Both of the mononuclear Cu髤complexes have been structurally characterized by X-ray crystallography(Fig.1).Complex 1 crystallizes in a triclinic cell with P1 space group.The metal center is heptacoordinated with N3O4donor sets,and weak coordinated interactions(Cu1-O2 0.257 5(5)nm and Cu1-O4 0.247 4(5)nm)exist in the[CuL(NO3)2]unit.The atoms O1,O2,N1,O4 and O6 occupy the corners of the pentagonal basal plane,and the angles around the copper ion within the basal plane vary from 46.28(7)°to 99.04(13)°and the sum of angles spanning these five bonds is 360.07°(Table S1),underscoring the flat nature of this equatorial plane.In addition,the atoms N2 and N3 occupy the axial positions(Cu1-N2 0.195 1(7)nm;Cu1-N3 0.195 9(6)nm and N2-Cu1-N3 164.7(3)°).Therefore,the geometry around copper center can be described as a distorted pentagonal bipyramidal.

    Complex 2 crystallizes in a monoclinic cell with P21/c space group.The metal center is hexa-coordinated with N3O3donor sets,and weak coordinated interaction(Cu1-O2 0.278 9(3)nm)also exist in the[CuL(OAc)(H2O)]ClO4unit,and the geometry around metal center can be described as a distorted octahedron.The atoms O2 and O3 occupy the axial positions(Cu1-O2,0.278 9(3)nm and Cu1-O3,0.245 7(3)nm),the atoms O1,N1,N2 and N3 occupy the corners of the basal plane,the angles around the copper ion within the basal plane vary from 82.26(12)to 97.49(12)°and the sum of angles spanning these five bonds is 359.76°,underscoring the flat nature of this equatorial plane.

    Fig.1 ORTEP view of the molecular structure and atom-labeling scheme of complexes 1(a)and 2(b)with 30%probability ellipsoid

    2.2 DNA-binding and cleavage activities

    2.2.1 DNA-binding study

    Electronic absorption spectroscopy was an effective method in examining the binding mode and strength of the complex with CT-DNA[18].Small molecules binding with DNA through intercalation usually result in the changes in the absorbance and shift in wavelength.The typical titration curve for 1 and 2 are shown in Fig.S1(a~b),and a plot of(εa-εf)/(εb-εf)versus cDNAfor the titration of DNA to complex is presented in corresponding inset.As given in Table 2,the observed absorption peaks at 207 and 214 nm for complexes 1 and 2 are attributed to intraligand π-π*transition.As increasing the concentration of CTDNA,the ligand-based bands exhibit hypochromism(For 1,hypochromism was about 78.8%and for 2 it was 66.7%)with red shifts(10 and 7 nm for 1 and 2,respectively) in band position,which indicatesintercalation between the complexes and DNA[19].To confirm the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbwere calculated according to the equation[20]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)], where cDNAis the DNA concentration in nucleotides;εais the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration;εfis the extinction coefficient of the free complex in solution;εbis the extinction coefficient of the complex when fully bound to DNA.The binding constant Kbvalues (Table 2)follow the order:2(9.60×104L·mol-1)gt;1(4.21×104L·mol-1),which suggest that complex 2 has slightly stronger binding affinity than 1.The Kbvalues are smaller than reported for typical classical intercalators(EB-DNA,3.3×105mol·L-1in 50 mmol·L-1Tris-HCl/1.0 mol·L-1NaCl buffer,pH 7.5)[21],which suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.

    Table 2 Absorption spectral and fluorescence spectral properties of complexes 1 and 2 bound to CT-DNA

    In order to further clarify the CT-DNA binding activity,fluorescence spectralmeasurementswere carried out.No luminescence is observed for both complexes and CT-DNA at room temperature,therefore the binding activity is evaluated by the fluorescence emission intensity of EB bound to DNA as a probe.EB-DNA emits intense fluorescent due to their strong intercalation between the adjacent DNA base pairs[22],which could be quenched by the addition of another compound.The relative binding propensity of the complexes toEB-DNA studied in buffer solution (5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl,pH=7.2)is shown in Fig.S2(a~b),and the plots of I0/I versus ccomplexfor the quenched intensity of 1 and 2 to EB-DNA are shown in the insets,respectively.Fluorescence intensities of EB-DNA at 602 nm(510 nm excitation)were measured,and the extent of reduction of the emission intensity by varying the concentration of the complexes gives a measure of the binding propensity.In the Stern-Volmer equation I0/I=1+KcQ[23],I0and I represent the fluorescence intensities in the absence and presence of quencher,respectively;K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher.The quenching plot indicates the quenching of EB bound to CT-DNA by complex is in agreement with the linear Stern-Volmer equation.In the equation KEBcEB=Kappccomplex,KEBis a constant of 1.0×107mol·L-1(cEB=2.4 μmol·L-1),Kappis the calculated apparent binding constant values,and ccomplexis the concentration at a half reduction of the fluorescence intensity of EB.The Kappvalues(Table 2)are nearly equal and follow the order:1(7.13×105L·mol-1)gt;2(6.83×105L·mol-1).The apparent binding constants values are less than that of the classical intercalators and metallointercalators(1.0×107L·mol-1)[24],indicating medium binding strength of the complexes with CT-DNA.On the whole,the result of fluorescence spectral measurements is consistent with obtained Kbvalues by UV spectroscopy.2.2.2 DNA Cleavage Studies

    Agarose gel electrophoresis was used to explore the supercoiled (SC)pBR322 plasmid DNA cleavage activity of the two complexes in a medium of 50 mmol·L-1Tris-HCl/NaCl buffer for 4 h.In the absence of external agents,the concentration-dependent DNA cleavage activities were observed under the nearly physiological conditions(pH=7.2,37℃)(Fig.S3),and both of 1 and 2 could not induce obvious DNA cleavage with the increase of concentration (10~130 μmol·L-1).The ratios of SC DNA (Form Ⅰ)for complex 1 gradually reduce with the increase of concentration,while NC DNA (Form Ⅱ )doesn′t increase,which suggests that 1 partially degraded SC DNA into undetectable minor fragments[25].When the concentration of 2 increase to 130 μmol·L-1,no obvious change for the ratios of FormⅠand FormⅡwere observed.The above suggest that 1 showed slightly better concentration-dependent activities than 2.The concentration-dependent DNA cleavage experidments by complex were also performed in the presence of H2O2(Fig.2)and GSH(glutathione)(Fig.3),respectively.Notably,the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement.In Fig.2,at the concentration of 10 μmol·L-1Cu2+,both complexes are efficient cleavers of SC DNA(FormⅠ)and produce more than 90%of NC DNA(FormⅡ),which implies that H2O2as a revulsant or an activator plays a vital role.When the concentration of complex increase to 40 μmol·L-1,obvious LC DNA(FormⅢ)is produced and the ratios of which followed the order of 1(57.3%)gt;2(31.0%).In order to further clarify the vital role of external revulsant,the GSH (glutathione)instead of H2O2were added.Similarly,as shown in Fig.3 (lane 2~5),the DNA cleavage efficiencies of both complexes also exhibit remarkable increases.At the concentration of 50 μmol·L-1Cu2+,the DNA cleavage efficiencies(the ratios of FormⅢ)follow the order of 1(61.8%)gt;2(45.2%).Both H2O2and GSH showed similar behavior in DNA cleavage reactions,although H2O2was slightly more active than GSH.

    Fig.2 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.3 Gel electrophoresis diagrams showing the cleavage of pBR322 DNA(0.1 μg·μL-1)with complex 1(a)and 2(b)in Tris-HCl/NaCl buffer(pH=7.2)at 37℃

    Fig.4 Time-dependence of pBR322 DNA cleavage by complexes 1(a)and 2(b)according to the inset

    To further assess the cleavage rate of chemical nuclease,the kinetic parameters for complexes 1 and 2 promoted DNA cleavage were determined.The timedependence ofDNA cleavage experimentswere carried out(Fig.4)under the same condition(pH=7.2,37 ℃,cGSH=250 μmol·L-1,cCu2+=10 μmol·L-1).The ratios of FormⅠgradually disappeared and FormⅡincreased with reaction time increase (3~15 min).More than 90%NC DNA(FormⅡ)was observed within 9 min for complex 1 (Fig.4a Inset)and within 15 min for complex 2 (Fig.4b Inset).The decrease of FormⅠor increase of FormⅡwas fitted to a single exponential decay curve (pseudo-first-order kinetics)by the equation[26-27]:y=(100-y0)[1-exp(-kobsx)],where y0is the initial ratio of a form of DNA;y is the ratio of a specific form of DNA at time x;kobsis the apparent rate constant.The reaction profile for the complex displayed approximately pseudo-first-order kinetic behavior(Fig.4(a~b))with kobsfollow the order of 1(0.35 min-1)gt;2(0.22 min-1),showing better than the result of the kobsfor copper-ATCUN complexes(0.07 and 0.14 min-1)obtained by Cowan′s group[28].

    In order to obtain the information about the active oxygen species(ROS)which was responsible for the DNA cleavage,the potential mechanism of DNA cleavage mediated by the complex was investigated in the presence of GSH.DNA cleavage experiments(Fig.5)were carried out using reagents like KI as hydroxyl radical scavenger(·OH),NaN3as singlet oxygen(1O2)quencher,EDTA as the chelator of complex,catalase ashydrogen peroxide scavenger,and superoxide dismutase(SOD)as O2-radical scavenger.In Fig.5(a~b),addition of KI(lane 3)to SC DNA partly inhibited the DNA cleavageactivity,which suggested the possible involvement of hydroxyl radial(·OH)as the reactive species.Also,the complexes showed partial inhibition of DNA-cleavage in the presence of the NaN3(lane 4),and D2O (lane 8)enhanced the DNA cleavage[29],indicating possible involvement of singlet oxygen as the reactive species.No obvious inhibition was observed for other radical scavengers.Therefore,the data suggest the involvement of both hydroxyl radicals (·OH)and singlet oxygen (1O2)as ROS.In addition,The EDTA (lane 5),a Cu髤-specific chelating agent that strongly bind to Cu髤f(xié)orming a stable complex,can efficiently inhibit DNA cleavage,indicating metalion playsthekeyrolein the cleavage.The addition of methyl green(lane 9),which is known to interact to DNA at major groove[30],effectively inhibited DNA cleavage by complex.The result suggests that the complex mainly has interaction with DNA through major groove.

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1 μg·μL-1)in presence of 20 μmol·L-1complex 1(a)~2(b)(0.04%DMF)and different inhibitors after 4 h incubation at 37℃

    2.3 MTT assay

    MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)assay is a colorimetric assay based on the conversion of the yellow tetrazolium salt to purple formazan crystals by metabolically active cells,which has been done to test the ability of complexes to inhibit cell growth and induce cell death in HeLa(human cervical carcinoma),HepG-2 (human liver hepatocellularcarcinoma)and SGC-7901 (human gastric carcinoma)cancer cell lines.In Table 2,both1 and 2 exhibit significant cytotoxic activities toward tested tumor cells and inhibit the growth of cells in a dose-dependent manner,and 2 shows slightly better antitumor effect than 1.Complex 2 exhibits strong anti-proliferative effect on HepG-2 cells with the IC50value of(34.2±2.3)μmol·L-1,which is close to the cisplatin(IC50=(25±3.1)μmol·L-1)and probably has the potential to act as an effective metal-based anticancer drug.

    Table 2 IC50of complexes 1 and 2 obtained with different cell lines for 48 h

    3 Conclusions

    Two new mononuclear Cu髤complexes have been synthesized and characterized.Crystal structure showed that the metal center of 1 is hepta-coordinated with N3O4donorsets,existing weak coordinated interactions,and can be described as a distorted pentagonal bipyramidal.Weak coordinated interaction also exists in the crystal unit of 2 where the metal center is hexa-coordinated and the geometry can be described as a distorted octahedron. Partial intercalation and medium binding strength between the complexes and CT-DNA has been demonstrated.The DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of H2O2or GSH,and H2O2was slightly more active than GSH.The oxidative cleavage mechanism was confirmed via a pathway involving formation of both·OH and1O2as ROS.The in vitro cytotoxicity of the complexes has been assessed by MTT on tumor cells lines(HeLa,HepG-2 and SGC-7901),both 1 and 2 exhibit significant cytotoxic activities and inhibit the proliferation of cells.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grant No.31171580),Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2015148),Natural Science Foundation of Shanxi (Grants No.201601D011076,201701D221157),Shanxi Key Research and Development Program (Grants No.201703D221008-4,201703D221004-5),Shanxi Agricultural University youth topnotch innovative personnel support program(Grant No.201203),the PhD Research Startup Foundation of Shanxi Agricultural University (Grant No.2013YJ40),The Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).The Natural Science Foundation of Inner Mongolia (Grant No.2016BS0206),and The Inner Mongolia Autonomous Region Higher Scientific Research Project(Grant No.NJZY088).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [2]Muhammad N,Guo Z.Curr.Opin.Chem.Biol.,2014,19:144-153

    [3]Garbutcheon-Singh K B,Grant M P,Harper B W,et al.Curr.Top.Med.Chem.,2011,11(5):521-542

    [4]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev.,2013,257(19/20):2848-2862

    [5]Deo K M,Pages B J,Ang D L,et al.Int.J.Mol.Sci.,2016,17(11):1818(17 pages)

    [6]Zaki M,Arjmand F,Tabassum S.Inorg.Chim.Acta,2016,444:1-22

    [7]Marloye M,Berger G,Gelbcke M,et al.Future Med.Chem.,2016,8(18):2263-2286

    [8]Ott I,Gust R.Arch.Pharm.,2007,340(3):117-126

    [9]Santini C,Pellei M,Gandin V,et al.Chem.Rev.,2014,114(1):815-862

    [10]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35(6):534-544

    [11]Salassa L.Eur.J.Inorg.Chem.,2011(32):4931-4947

    [12]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39):30768-30779

    [13]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41(39):12220-12232

    [14]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40(9):7513-7521

    [15]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G觟ttingen,Germany,1997.

    [16]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G觟ttingen,Germany,1997.

    [17]ZHANG Yong-Po(張永坡),YANG Jia-Jia(楊佳佳),L譈 Jia-Yuan(呂佳苑),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2016,32(12):2172-2182

    [18]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [19]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg.Chem.,2004,43(22):7170-7179

    [20]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26(20):6392-6396

    [21]Strothkamp K G,Strothkamp R E.J.Chem.Educ.,1994,71(1):77-79

    [22]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16):4246-4253

    [23]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [24]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc.,1985,107(8):2528-2536

    [25]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg.Chem.,2011,50(14):6458-6471

    [26]Googisman J,Kirk C,Dabrowiak J C.Biophys.Chem.,1997,69:249-268

    [27]Ordoukhanian E,Joyee G F.J.Am.Chem.Soc.,2002,124(42):12499-12506

    [28]Jin Y,Cowan J A.J.Am.Chem.Soc.,2005,127(23):8408-8415

    [29]Merkel P B,Kearns D R.J.Am.Chem.Soc.,1972,94(3):1029-1030

    [30]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol.,2004,29(4):282-289

    Two Copper髤Complexes with dpa-Based Ligand:Syntheses,Structures,Nuclease Activity and Cytotoxicity

    YUE Ai-Qin1ZHANG Yu-Ting2ZHANG Peng-Qian3GAO Yuan-Yuan4ZHANG Yong-Po2
    WANG Min1GAO Chun-Yan*,2ZHAO Jin-Zhong2DU Wei-Jun*,1
    (1College of Agronomy,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (2College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)
    (3Beijing Milu Ecological Research Center,Beijing 100076,China)
    (4Chemical Engineering College,Inner Mongolia University of Technology,Hohhot 010051,China)

    Two new mononuclear copper髤complexes,[CuL(NO3)2](1)and[CuL(OAc)(H2O)]ClO4(2),with dpabased ligand(L=4-methyl-N,N-bis(pyridin-2-ylmethyl)aniline)have been synthesized and characterized by various physico-chemical techniques.The crystal structure of complex 1 displays a distorted pentagonal bipyramidal geometry,and the geometry around copper center of 2 can be described as a distorted octahedron.Interaction of the complexes with CT-DNA has been explored by using absorption and emission spectral methods,and the result suggests that the binding strength of the two complexes with DNA is a medium intercalative mode.Theconcentration-dependent and time-dependent DNA cleavage activity and the mechanism of DNA cleavage have been investigated,which suggest the DNA cleavage efficiencies of both complexes exhibit remarkable enhancement in the presence of external revulsants,and oxidative mechanism has been demonstrated via the pathway involving both hydroxyl radicals(·OH)and singlet oxygen(1O2)as ROS.The in vitro cytotoxic activity of the complexes has been examined by MTT on three cell lines such as HeLa,HepG-2 and SGC-7901.CCDC:1521098,1;1521097,2.

    copper髤complexes;dpa-based ligand;DNA binding;DNA cleavage;cytotoxicity

    O614.121

    A

    1001-4861(2017)12-2287-09

    10.11862/CJIC.2017.273

    2017-05-15。收修改稿日期:2017-09-28。

    國家自然科學(xué)基金(No.31171580)、山西省高等學(xué)??萍紕?chuàng)新項(xiàng)目(No.2015148)、山西省自然科學(xué)基金(No.201601D011076,201701D221157)、山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No.201703D221008-4,201703D221004-5)、山西農(nóng)業(yè)大學(xué)中青年拔尖創(chuàng)新人才支持計(jì)劃(No.201203)、山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40)、山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)、內(nèi)蒙古自然科學(xué)基金(No.2016BS0206)和內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項(xiàng)目(No.NJZY088)。

    *通信聯(lián)系人。 E-mail:gaocynk@163.com,duweijun68@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    核酸酶農(nóng)業(yè)大學(xué)配體
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類配體的合成及其光學(xué)性能
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    十八禁国产超污无遮挡网站| av专区在线播放| 美女黄网站色视频| 内射极品少妇av片p| 久久人人爽人人片av| 国产精品一区二区三区四区久久| 亚洲欧美精品综合久久99| av视频在线观看入口| 精品久久久久久久久亚洲| 免费观看精品视频网站| 午夜激情欧美在线| 日本免费a在线| 伊人久久精品亚洲午夜| 91精品国产九色| 日韩av在线大香蕉| 男人舔女人下体高潮全视频| 日本成人三级电影网站| 国产色爽女视频免费观看| 少妇人妻精品综合一区二区 | 国产白丝娇喘喷水9色精品| 免费看日本二区| 日韩欧美精品v在线| 亚洲丝袜综合中文字幕| 国产黄色视频一区二区在线观看 | 国产日本99.免费观看| 超碰av人人做人人爽久久| 国产一级毛片七仙女欲春2| 亚洲欧美精品综合久久99| 欧美成人一区二区免费高清观看| 精品熟女少妇av免费看| 国产精品久久电影中文字幕| 一级毛片久久久久久久久女| 欧美又色又爽又黄视频| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 国产一区二区亚洲精品在线观看| 男人舔奶头视频| 国产精品一二三区在线看| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 免费看日本二区| 床上黄色一级片| 国产成年人精品一区二区| 婷婷六月久久综合丁香| 国产av不卡久久| 欧美性猛交黑人性爽| 国产精品女同一区二区软件| 听说在线观看完整版免费高清| 深爱激情五月婷婷| 免费看美女性在线毛片视频| 亚洲aⅴ乱码一区二区在线播放| 欧美成人a在线观看| 麻豆国产av国片精品| 日韩亚洲欧美综合| 免费在线观看成人毛片| 成年免费大片在线观看| 99久国产av精品| 又爽又黄a免费视频| 亚洲欧美日韩高清在线视频| 成人精品一区二区免费| 亚洲av中文字字幕乱码综合| 在线播放无遮挡| 亚洲性久久影院| 日韩国内少妇激情av| 老熟妇乱子伦视频在线观看| 日本-黄色视频高清免费观看| 欧美三级亚洲精品| 我的老师免费观看完整版| 男人舔奶头视频| 亚洲精品日韩av片在线观看| 国产精品免费一区二区三区在线| 深夜精品福利| 国产精品三级大全| 国产精品女同一区二区软件| 在线观看午夜福利视频| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 午夜精品一区二区三区免费看| 国内精品久久久久精免费| 男女那种视频在线观看| 十八禁国产超污无遮挡网站| 日韩欧美在线乱码| 伦理电影大哥的女人| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成人中文字幕在线播放| 亚洲精品成人久久久久久| 国产精品免费一区二区三区在线| 亚洲自偷自拍三级| 偷拍熟女少妇极品色| 国产黄色小视频在线观看| 午夜老司机福利剧场| 国产av不卡久久| 精品久久国产蜜桃| 一夜夜www| 国产成人影院久久av| 国产麻豆成人av免费视频| 非洲黑人性xxxx精品又粗又长| 成人鲁丝片一二三区免费| 精品99又大又爽又粗少妇毛片| 亚洲第一电影网av| 色av中文字幕| 亚洲三级黄色毛片| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 亚洲成人久久爱视频| 一级av片app| av黄色大香蕉| 人妻丰满熟妇av一区二区三区| 国产成人一区二区在线| 国产白丝娇喘喷水9色精品| 亚洲电影在线观看av| 麻豆久久精品国产亚洲av| 亚洲美女黄片视频| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站| 岛国在线免费视频观看| 中国美女看黄片| 国产精品嫩草影院av在线观看| 欧美中文日本在线观看视频| 高清毛片免费看| 小蜜桃在线观看免费完整版高清| 国产单亲对白刺激| 一本精品99久久精品77| 日本一本二区三区精品| 免费看光身美女| 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 激情 狠狠 欧美| 18禁裸乳无遮挡免费网站照片| 亚洲四区av| 又爽又黄无遮挡网站| 午夜久久久久精精品| 国产午夜精品论理片| 日本黄大片高清| 欧美一区二区精品小视频在线| 一区二区三区高清视频在线| 亚洲国产精品sss在线观看| 亚洲精品粉嫩美女一区| 免费大片18禁| 久久九九热精品免费| 女人被狂操c到高潮| 国产又黄又爽又无遮挡在线| 大又大粗又爽又黄少妇毛片口| 内射极品少妇av片p| 国产精品一区二区性色av| 久久国产乱子免费精品| 香蕉av资源在线| 一级毛片电影观看 | 国内精品宾馆在线| 久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 午夜日韩欧美国产| 白带黄色成豆腐渣| 欧美日本亚洲视频在线播放| 亚洲av.av天堂| 国产黄色小视频在线观看| 男人和女人高潮做爰伦理| 久久草成人影院| 小蜜桃在线观看免费完整版高清| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 长腿黑丝高跟| 欧美zozozo另类| a级毛色黄片| 午夜精品一区二区三区免费看| 国语自产精品视频在线第100页| 久久精品人妻少妇| 亚洲18禁久久av| 性色avwww在线观看| 亚洲国产精品国产精品| 欧美人与善性xxx| 97碰自拍视频| 久久这里只有精品中国| 免费观看人在逋| 能在线免费观看的黄片| 久久99热6这里只有精品| 国产探花在线观看一区二区| 精品福利观看| av天堂在线播放| 亚洲av免费在线观看| 精品久久久久久久末码| 国产美女午夜福利| 午夜久久久久精精品| 亚洲av五月六月丁香网| ponron亚洲| 在线免费观看的www视频| 91久久精品国产一区二区成人| 桃色一区二区三区在线观看| 中文字幕久久专区| 亚洲国产精品合色在线| 日韩av不卡免费在线播放| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 色吧在线观看| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 美女被艹到高潮喷水动态| 国产视频一区二区在线看| 久久精品国产自在天天线| 日本免费a在线| 国产视频内射| 久久人妻av系列| av福利片在线观看| 婷婷色综合大香蕉| a级毛片a级免费在线| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 国产真实伦视频高清在线观看| 99在线人妻在线中文字幕| 免费观看的影片在线观看| 国产精品永久免费网站| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 免费黄网站久久成人精品| 熟妇人妻久久中文字幕3abv| 久久人人精品亚洲av| 色哟哟·www| 国产欧美日韩一区二区精品| 最近最新中文字幕大全电影3| 少妇高潮的动态图| 国产精品久久久久久亚洲av鲁大| 精品午夜福利在线看| 午夜老司机福利剧场| 亚洲精品456在线播放app| 久久精品国产99精品国产亚洲性色| 看黄色毛片网站| 色5月婷婷丁香| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 国产精品永久免费网站| 少妇高潮的动态图| 精品国产三级普通话版| av在线播放精品| 免费看av在线观看网站| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 欧美+日韩+精品| 男人舔奶头视频| 日本精品一区二区三区蜜桃| 久久韩国三级中文字幕| 精品午夜福利视频在线观看一区| 亚洲,欧美,日韩| 欧美日韩在线观看h| 国产精品女同一区二区软件| 少妇熟女欧美另类| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品合色在线| 国产一区二区在线观看日韩| 久久6这里有精品| 欧美激情在线99| 亚洲国产精品sss在线观看| a级毛片免费高清观看在线播放| 97热精品久久久久久| 十八禁国产超污无遮挡网站| 成人av一区二区三区在线看| 一进一出好大好爽视频| 俺也久久电影网| 又爽又黄a免费视频| 全区人妻精品视频| 亚洲av美国av| 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 一进一出抽搐gif免费好疼| 久久中文看片网| 日韩欧美精品免费久久| 国产大屁股一区二区在线视频| 亚洲精品一卡2卡三卡4卡5卡| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 午夜福利高清视频| 国产av不卡久久| 最近2019中文字幕mv第一页| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 国产av麻豆久久久久久久| 日本五十路高清| 久久久久久久午夜电影| 美女 人体艺术 gogo| 看片在线看免费视频| 亚洲激情五月婷婷啪啪| 久久精品综合一区二区三区| 国产黄色视频一区二区在线观看 | 日韩av在线大香蕉| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲精品久久久久久毛片| 十八禁网站免费在线| 久久国内精品自在自线图片| 又黄又爽又刺激的免费视频.| 97超碰精品成人国产| 一区二区三区高清视频在线| 亚洲自偷自拍三级| 国产亚洲av嫩草精品影院| 高清毛片免费看| 亚洲av二区三区四区| 搡老岳熟女国产| 综合色av麻豆| 午夜爱爱视频在线播放| 国产大屁股一区二区在线视频| 精品福利观看| 一进一出好大好爽视频| 舔av片在线| 欧美激情在线99| 久久精品国产清高在天天线| 嫩草影院新地址| 国产视频内射| 久久久久久久久久成人| av国产免费在线观看| 免费大片18禁| 久久久国产成人精品二区| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 校园人妻丝袜中文字幕| 97超级碰碰碰精品色视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲第一区二区三区不卡| 国产高清视频在线观看网站| 给我免费播放毛片高清在线观看| 亚洲美女搞黄在线观看 | 亚洲性久久影院| 少妇人妻一区二区三区视频| 女生性感内裤真人,穿戴方法视频| 搡老妇女老女人老熟妇| 51国产日韩欧美| 别揉我奶头 嗯啊视频| 久久精品91蜜桃| 嫩草影院精品99| 国产69精品久久久久777片| 国产成人一区二区在线| 日韩欧美精品v在线| 夜夜爽天天搞| 国产精品久久久久久久久免| 亚洲最大成人中文| www.色视频.com| 久久久国产成人免费| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 又爽又黄a免费视频| 国产精品综合久久久久久久免费| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 亚洲av电影不卡..在线观看| 精品熟女少妇av免费看| 日韩强制内射视频| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| 99久国产av精品| 三级国产精品欧美在线观看| 九色成人免费人妻av| 国产精品久久久久久久久免| 国产亚洲精品久久久久久毛片| 国产成人福利小说| 一进一出抽搐动态| 久久精品国产亚洲av涩爱 | 国产精品无大码| 性色avwww在线观看| 国产精品野战在线观看| 97人妻精品一区二区三区麻豆| 中国国产av一级| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 色播亚洲综合网| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 免费av毛片视频| 在线免费观看不下载黄p国产| 国产免费男女视频| 12—13女人毛片做爰片一| 岛国在线免费视频观看| 国产在线男女| 男女做爰动态图高潮gif福利片| 可以在线观看的亚洲视频| 国产毛片a区久久久久| 国产男人的电影天堂91| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| 成年女人永久免费观看视频| 国产v大片淫在线免费观看| 国内精品美女久久久久久| 亚洲av一区综合| 午夜福利成人在线免费观看| 国产69精品久久久久777片| 国产伦精品一区二区三区四那| 一a级毛片在线观看| 一夜夜www| 成人综合一区亚洲| 18禁黄网站禁片免费观看直播| 成人av在线播放网站| 国产探花极品一区二区| 99热只有精品国产| 亚洲一区高清亚洲精品| 午夜福利在线在线| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 国产成人freesex在线 | 天堂影院成人在线观看| 在线观看66精品国产| 久久久精品欧美日韩精品| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 成人无遮挡网站| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 美女高潮的动态| 一个人看的www免费观看视频| 一级毛片电影观看 | 国产熟女欧美一区二区| АⅤ资源中文在线天堂| 亚洲美女搞黄在线观看 | 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 国产三级在线视频| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 成人精品一区二区免费| av免费在线看不卡| 性欧美人与动物交配| 国产精品一区二区性色av| 天天躁日日操中文字幕| 亚洲欧美成人精品一区二区| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 美女大奶头视频| 亚洲四区av| 91狼人影院| 亚洲熟妇中文字幕五十中出| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 99热只有精品国产| 别揉我奶头 嗯啊视频| 国产av在哪里看| 男人和女人高潮做爰伦理| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 不卡视频在线观看欧美| 大型黄色视频在线免费观看| 毛片一级片免费看久久久久| 啦啦啦观看免费观看视频高清| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频 | 国产精品一及| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 永久网站在线| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 国产一区二区三区在线臀色熟女| 啦啦啦观看免费观看视频高清| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 给我免费播放毛片高清在线观看| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月| 在线播放无遮挡| 久久久精品94久久精品| 精品国内亚洲2022精品成人| av免费在线看不卡| 亚洲图色成人| 男女下面进入的视频免费午夜| 桃色一区二区三区在线观看| 久久热精品热| 亚洲国产色片| 国产精品一区二区性色av| 久久久久九九精品影院| 在线a可以看的网站| 69av精品久久久久久| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 国产 一区 欧美 日韩| 久久这里只有精品中国| 如何舔出高潮| 无遮挡黄片免费观看| 麻豆av噜噜一区二区三区| 国产精品久久久久久亚洲av鲁大| 在现免费观看毛片| 色哟哟哟哟哟哟| 99久久精品国产国产毛片| 熟女电影av网| 高清毛片免费观看视频网站| 国产精品亚洲一级av第二区| 最后的刺客免费高清国语| 精品福利观看| 欧美zozozo另类| 国产毛片a区久久久久| 亚洲av第一区精品v没综合| 伦精品一区二区三区| 淫秽高清视频在线观看| 人人妻人人看人人澡| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产高清激情床上av| 女人被狂操c到高潮| 亚洲精品在线观看二区| av女优亚洲男人天堂| 国产精品久久久久久久电影| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 综合色丁香网| 欧美日本视频| 床上黄色一级片| 99热精品在线国产| 丰满乱子伦码专区| 成人精品一区二区免费| or卡值多少钱| 日韩成人伦理影院| 日韩成人av中文字幕在线观看 | 国产av麻豆久久久久久久| 在线免费十八禁| 亚洲在线自拍视频| 免费看a级黄色片| 男人狂女人下面高潮的视频| 深夜a级毛片| 极品教师在线视频| 国产私拍福利视频在线观看| 成人美女网站在线观看视频| 床上黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 精品无人区乱码1区二区| 欧美bdsm另类| 国产成人a区在线观看| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 男插女下体视频免费在线播放| 91久久精品电影网| 午夜福利成人在线免费观看| 床上黄色一级片| 网址你懂的国产日韩在线| 毛片女人毛片| 无遮挡黄片免费观看| 亚洲人成网站高清观看| 校园人妻丝袜中文字幕| 日本黄大片高清| 国产日本99.免费观看| 免费av毛片视频| 欧美日本视频| 国产精华一区二区三区| 日韩欧美精品v在线| 一本精品99久久精品77| 俄罗斯特黄特色一大片| 亚洲国产高清在线一区二区三| 夜夜夜夜夜久久久久| 国产精品国产三级国产av玫瑰| 国产亚洲精品av在线| 亚洲va在线va天堂va国产| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 国产一区二区激情短视频| 亚洲经典国产精华液单| 日韩 亚洲 欧美在线| 草草在线视频免费看| 日韩欧美在线乱码| 亚洲va在线va天堂va国产| 成人三级黄色视频| 成人一区二区视频在线观看| 欧美在线一区亚洲| 日韩av不卡免费在线播放| 在线播放国产精品三级| 嫩草影院精品99| 在线天堂最新版资源| 久久精品国产99精品国产亚洲性色| 深夜精品福利| 看免费成人av毛片| 国产精品一区www在线观看| 亚洲欧美成人综合另类久久久 | 级片在线观看| 久久精品国产亚洲av香蕉五月| 少妇熟女欧美另类| 欧美一区二区精品小视频在线| 欧美xxxx黑人xx丫x性爽| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 日本一本二区三区精品| 久久国产乱子免费精品| 嫩草影院入口| 干丝袜人妻中文字幕| 国内精品久久久久精免费| 波野结衣二区三区在线| 久久久精品欧美日韩精品|