• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AAO輔助三唑亞鐵納米材料:一維限制生長(zhǎng)和二維表面成膜及自旋轉(zhuǎn)換性能

    2017-12-13 10:52:05李志華王玉俠李在均顧志國(guó)
    關(guān)鍵詞:亞鐵三唑孔道

    李志華 王玉俠 邱 丹 李在均 顧志國(guó)*,,2

    AAO輔助三唑亞鐵納米材料:一維限制生長(zhǎng)和二維表面成膜及自旋轉(zhuǎn)換性能

    李志華1王玉俠1邱 丹1李在均1顧志國(guó)*,1,2

    (1江南大學(xué)化學(xué)與材料工程學(xué)院,無(wú)錫 214122)
    (2合成膠體與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,無(wú)錫 214122)

    通過(guò)連續(xù)多步自組裝的方式分別將三唑亞鐵(SCO1)和氨基三唑亞鐵(SCO2)自旋轉(zhuǎn)換納米材料生長(zhǎng)于氧化鋁模板(AAO)的孔道內(nèi)和表面上。利用掃描電鏡(SEM)、紅外光譜(IR)、粉末X射線衍射(PXRD)、拉曼光譜(Raman)等手段對(duì)SCO1-1D+2D和SCO2-1D+2D納米材料進(jìn)行表征,SEM表明隨著自組裝時(shí)間的增加,球狀的SCO納米顆粒生長(zhǎng)于AAO孔道內(nèi),并逐漸形成1D的納米結(jié)構(gòu),而在AAO表面則形成致密均勻的SCO-2D薄膜。兩種SCO-1D+2D納米粒子都具有兩步自旋行為(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K)。 對(duì)相應(yīng)的SCO-1D和SCO-2D磁性結(jié)果表明,兩步自旋轉(zhuǎn)換行為的產(chǎn)生是由于SCO組裝體形貌的差異。其中,低溫區(qū)的自旋轉(zhuǎn)換行為是由生長(zhǎng)于AAO表面的SCO-2D自旋轉(zhuǎn)換性能所致,而發(fā)生在更高溫度的第二階段的自旋轉(zhuǎn)換行為則歸因于生長(zhǎng)于AAO孔道內(nèi)的SCO-1D的自旋轉(zhuǎn)換性能。

    納米材料;氧化鋁模板;自組裝;兩步自旋轉(zhuǎn)換

    0 Introduction

    Spin-crossover(SCO)compounds are well known as a class of bistable materials,displaying a reversible switching between low spin(LS)state and high spin(HS)state of d4~d7transition metal centres in response to the external perturbations such as pressure,temperature,illumination or magnetic fields[1].Recently,SCO nanomaterials have drawn the widespread attention as their spin conversion can be modified by size,morphologies and preparation method[2],which offers various possible applications in molecular switches,memory devices,sensors and displayers[3].However,assembling SCO nanoparticles(NPs)still shows more challenges while affords new and exciting opportunities for the development of SCO devices.Among the configurations of SCO nanoparticle assembly,one-dimensional(1D)confined assembly and two-dimensional(2D)multi-layered films may be considered as useful models to explore the effect of dimensionality on SCO property[4]. Reliable thin-film etching[5],templateassisted electrodeposition routes[6]and template-assisted assembly methods[7]have been established to obtain the 1D SCO nanomaterials.Meanwhile,several methods have been used to fabricate SCO nanomaterials as two-dimensional (2D) films,including Langmuir-Blodgett(LB)deposition[8],surface-assisted molecular self-assembly[9],spin coating[10],dip/drop casting[11],constructive methods[12]and vacuum sublimation[13].The research for SCO 1D and 2D nano-entities suggests that the assembly morphologies have a strong influence on spin conversion property.To the best of our knowledge,there is no report on the formation of the nanostructure combining the 1D confined assembly and 2D film of SCO compounds.While fabricating the nanostructures consisted of 1D and 2D assembly morphologies simultaneously probably can impart the SCO nanomaterials special spin-crossover properties,which provide a platform for the application of SCO materials into functional devices.With this perspective,we envisaged to prepare one SCO compound with different dimensional assembly morphologies by a facile template assisted self-assembly method.

    In order to fabricate the nanomaterial consisted of 1D confined assembly and 2D film simultaneously,it′s crucial to select the suitable template.Anodic aluminium oxide (AAO)membrane is considered as an ideal candidate since:(1)AAO membranes form a cylindrically close packed ordered structure,which can give access to SCO compound growing into their channels as 1D SCO confined assembly[14].(2)The abundant-OH on the surface of AAO membranes can coordinate with metallic centres[15],which makes 2D SCO film growing on AAO surface possible.The typical iron髤-triazole polymers,[Fe(Htrz)2(trz)](ClO4)[16](SCO1)and Fe(NH2trz)3](ClO4)2[17](SCO2)(Htrz=1,2,4-triazole,NH2trz=4-amino-1,2,4-triazole)undergoing spin transition with well-defined thermal hysteresis loops close to room temperature are selected as model compounds in this paper to study their assembly in the channel and on the surface of AAO templates.Detailed scanning electron microscopy(SEM)will be presented to characterize the formation of the novel nanostructures.And the effect of different dimensional assembly morphologies on their magnetic properties will also be discussed.

    1 Experimental

    1.1 Chemical materials

    Fe(ClO4)2·6H2O,Htrz(Htrz=1,2,4-triazole),NH2trz(4-amino-1,2,4-triazole),and ethanol were all reagent grade and purchased from Sigma-Aldrich,and could be used without further purification.Ultrapure milli-Q water (18.2 MΩ·cm)was used in all experiments.AAO(≥99%)were purchased from LeSen nano science and technology co.,LTD,and without any purification.

    1.2 Physical measurements

    Fourier transform infrared (FT-IR)spectra were recorded by FALA2000 FT-IR spectrometer(ABB Bomen Canada)(KBr disk).Powder X-ray diffraction(PXRD)patterns were collected on a D8 Advance X-ray diffractometer(Bruker AXS Germany)with Cu Kα radiation (λ=0.154 046 nm)in a 2θ range from 5°to 60°at the speed of 2°· min-1at room temperature.The operating voltage and current are 40 kV and 40 mA,respectively.Raman spectra of these nanomaterials were obtained from Invia Raman spectra(Reinshaw England)with 785 nm excitation line.The laser power intensity was adjusted by changing the percentage of 280 mW,the largest laser power intensity in 785 nm excitation line.SEM images were operated by S4800 scanning electron microscope(SEM)(Rili Japan)at an operating voltage of 2 kV.Magnetic measurements were carried out by a MPMS-XL-7 super strong quantum interference magnetometer(Quantum Design US).The direction of the magnetic field is parallel to the sample.The samples were testing at two temperature stages with a heating and cooling sweep rate of 3 K·min-1.The SCO phenomenon of each samples were clearly displayed by HS fraction vs T curves,in which HS fraction refers to the ratio of iron髤at high spin state.Data were corrected forthe diamagnetic contribution calculated from Pascal constants.

    1.3 Synthetic procedures

    1.3.1 Synthesis of SCO1-1D+2D and SCO2-1D+2D nanomaterials

    AAO(Φ=300~400 nm)templates were immersed into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 1 h.Then,these AAO templates were washed with ethanol carefully to remove the redundant Fe2+.Afterwards,the templates were soaked into 3 mol·L-1ethanol solution of Htrz for 1 h,and then also washed with ethanol carefully to make sure that the growth rate of 1D SCO nanostructure is much faster than that of the 2D SCO nanoassemblies.Repeat the procedure above for 1,6,12,24 times respectively to obtain a series of SCO1-1D+2D nanoassembly with cycle number of 1,6,12,24 times.SCO1-1D+2D spincrossover nanomaterials were obtained by washing with 4 mL ethanol for three times and dried in vacuum at 45℃overnight.Fabrication of SCO2-1D+2D was similar to that of the SCO1-1D+2D except replacing the Htrz with NH2trz.

    1.3.2 Synthesis of SCO1-2D and SCO2-2D nanomaterials

    Firstly,AAO(Φ=30~40nm)templatesweresoaked into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 5 min,and put into ethanol for 1 min,successively.Then they were moved into 3 mol·L-1ethanol solution of Htrz for 5 min,followed by putting into ethanol for 1 min.After recycling for 24 times,they were washed by ethanol for three times to remove the superfluous nanoparticles and dried at 45℃in vacuum for 12 h.The synthesis of SCO2-2D was similar to that of SCO1-2D,but NH2trz was used instead of Htrz.

    1.3.3 Synthesis of SCO1-1D and SCO2-1D nanomaterials

    AAO(Φ=300~400 nm)was put into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 1 h,followed by washing with ethanol carefully for three times to remove Fe2+on the surface of AAO templates.Then these templates were transferred to 3 mol·L-1ethanol solution of Htrz for 1 h and washed with ethanol carefully for three times,successively.After repeating the above procedure for 24 times,SCO1-1D nanomaterials were prepared by washing with ethanol three times and drying at 45℃in vacuum for 12 h.The fabrication of SCO2-1D was similar to that of SCO1-1D using NH2trz instead of Htrz.

    2 Results and discussion

    The AAO template-assisted SCO nanostructures are prepared via a facile sequentialmultistep assembly method (Fig.1)[18].Firstly,AAO templates were soaked into the ethanol solution of Fe(ClO4)2·6H2O at room temperature.This procedure can make sure that the Fe2+coordinated with-OH in the channel of the AAO templates adequately by capillarity,and-OH on the surface of AAO templates by surface deposition.Then,these AAO templates were immersed into the ethanolsolution ofHtrzorNH2trzto coordinate with Fe2+attached to the AAO templates.Repeating the procedure above to insure the SCO NPs gradually deposited on the surface and filled in the channel of AAO templates.The sequential multistep assembly approach introduced here shows the merit that the growth and nucleation of the 1D and 2D SCO nanostructures based on the AAO templates can be tuned by adjusting the assembly cycle numbers.

    Fig.1 Scheme of the synthesis for SCO nanocomposite with sequential multistep assembly method

    IR spectra of SCO1-1D+2D and SCO2-1D+2D nanomaterials indicate that the bands observed for two nanostructures are mainly due to vibrations of the triazole derivative ligand,slightly perturbed by coordination (Fig.S1).In particular,the vibrational modes at ca.1 221,1 496 and 1 453 cm-1can be attributed to the ring stretching of the triazole ligands.The peak at ca.634 cm-1is referred to the out-of-plane vibration of the triazole ligand[19].Furthermore,the ClO4-anion possesses characteristic vibrational frequencies at ca.941 and 1 120 cm-1[20].The peaks of near 3 360 and 3 284 cm-1refer to the stretching of-NH2on triazole ligands.IR result implies the formation of AAO-assisted SCO materials preliminarily.

    The powder X-ray diffraction(PXRD)patterns of the as-prepared SCO1-1D+2D and SCO2-1D+2D nanomaterials are shown in Fig.S2.The diffraction peaks(2θ)of the SCO1-1D+2D nano-assemblies at ca.10°,18°,25°are consistent with the standard XRD data for the bulk[Fe(Htrz)2(trz)](ClO4)[19,21].While the diffraction peaks for SCO2-1D+2D nanomaterials correspond to the crystalline[Fe(NH2trz)3](ClO4)2reported previously[21].PXRD analysis indicates the existence of[Fe(Htrz)2(trz)](ClO4)and[Fe(NH2trz)3](ClO4)2in the AAO membrane.

    To identify the SCO compound assembled in the channel and on the surface of AAO templates,Raman microscopy measurements were carried out at 785 nm.It was obvious that the characteristic Raman signals were preserved in the obtained AAO membranes assisted nanomaterials (Fig.S3).The wavenumber values below 400 cm-1are assigned to the metal-ligand Fe-N vibrations,and those between 900 and 1 600 cm-1are related to the vibrations of triazole ring[17b,21a,23].Typically,the drastic changes in the low wavenumber region below 400 cm-1are applied to monitor the spin state of the iron髤triazole complexes.In a complete spin conversion,the Raman modes at 106 cm-1display intensely in the HS state and vanish in the LS state,while the Raman signals at 286 cm-1corresponds to the LS state[24].Raman spectra further demonstrate the SCO compound growing on the AAO substrates.

    Fig.2 SEM images of SCO1-1D+2D with different cycles

    The obtained SCO-1D+2D nanomaterials by AAO templates with channel size of 300~400 nm were characterized by the scanning electron microscope(SEM)measurement to study their nucleation and growth of SCO NPs on AAO substrates.Fig.2 showed the SEM images of SCO1 NPs on the surface and in the internal channels of AAO templates with different assembly cycle numbers(n=1,6,12 and 24).At the beginning(reacting for only 1 cycle),almost no SCO1 NPs are found in the substrates in Fig.2a and 2b.With reacting for 6 cycles,SCO1 NPs could be clearly observed on the surface and in the crosssection of AAO templates(Fig.2c and 2d),shaped as sphere and most of the NPs look inhomogeneous due to the aggregation.This reveals the beginning of growth and nucleation of the SCO1 crystals.As expected,SCO1 NPs in the channel of AAO templates augmente largely by the number of cycles adding(Fig.2d and 2f).Besides,the deposition of SCO1 NPs on the surface of AAO membranes grows more slowly than that in the cross-section of AAO templates(Fig.2c and 2e).This is attributed to the procedure of washing with ethanol carefully.As the cycle number increased,more and more NPs stacked in the channel and on the surface of AAO membrane templates.When 24 cycles have been realized,the surfaces of AAO templates are covered with aggregated SCO1 NPs assembling as uniform and dense SCO1 films(Fig.2g),while the AAO membrane channels are filled withSCO1 NPsaccumulated asone-dimensional confined nanostructure(Fig.2h).It should be mentioned that there are two different dimensional assembly morphologies of SCO1 in the SCO1-1D+2D,which intuitively confirms the successful synthesis of the special SCO1-1D+2D nanomaterials.Furthermore,the deposition and assembly morphology of SCO1 NPs on the surface and in the channels of AAO templates are able to be adjusted by controlling the reaction cycle numbers in two precursor solutions.

    In order to study the growth and nucleation of different assembly morphologies of SCO compound respectively,the SCO1 assemblies growing on the surface of AAO templates (SCO1-2D)and in the channel of AAO templates(SCO1-1D)were obtained by choosing AAO templates with different channel size.The SCO1-2D nanomaterials are fabricated by AAO templates with narrow channel size of 30~40 nm to ensure the SCO NPs only growing on the surface of AAO membranes.Accordingly,the synthesis of SCO1-1D nanomaterials is realized by the assist of AAO templates with large channel size (300~400 nm),and washing with ethanol carefully to make sure that no SCO1 NPs grow on the surface of AAO membranes.Fig.3a displays that the spherical and inhomogeneous SCO1 NPs grow on the surface of AAO templates assembling as 2D film with large surface areas,while no SCO1 NPs is found on the AAO channels(Fig.3b).In contrast,Fig.3c and 3d suggest that the homogeneously spherical SCO1 NPs accumulate only in the internal channels of AAO membranes,and form the 1D confined SCO1 nanostructures.

    Fig.3 SEM images of SCO1-2D(a,b)and SCO1-1D(c,d)

    Fig.4 SEM images of SCO2-1D+2D with different cycles

    To study the influence of iron髤-triazole NPs with different organic ligands by the support of AAO membrane templates,SCO2-1D+2D,SCO2-2D and SCO2-1D nanostructures via the similar methods were synthesized,and SEM images were set out in Fig.4 and Fig.5.In SCO2-1D+2D,there are some little[Fe(NH2trz)3](ClO4)2NPs growing in the channel of AAO membranes when reacting for the first cycle.As the reacting cycles added,the size and amount of these NPs increase gradually.Some NPs occurred to stack at a certain extent,as shown in Fig.4c~4f.After cycling for 24 times,the SCO2 NPs on the surface of the membranes are lamellate-like and stacked as 2D SCO films,and those accumulated in the channels of templates fill most volume of the apertures,as 1D confined nano-assembly.The surface of -2D are arranged of[Fe(NH2trz)3](ClO4)2laminar film for the intensive surface deposition effect.Similarly,theSCO2NPsinSCO2-1D accumulateinthe channels and there is almost nothing on the surface of the AAO membranes.Comparison in morphological analysis of SCO1-1D+2D and SCO2-1D+2D implies that the organic ligands have an influence on the morphologies of the iron髤triazole nanoassemblies.Furthermore,it also demonstrates that the confined growth and surface filming effect of AAO templates have a directive effect on the formation of different assembly morphologies of[Fe(Htrz)2(trz)](ClO4)and[Fe(NH2trz)3](ClO4)2NPs.

    Fig.6 Plots of HS fraction vs T for SCO1-1D+2D(a),SCO1-2D(b)and SCO1-1D(c)nanostructures

    To investigate the spin-crossover property of the obtained AAO-assisted SCO nanomaterials with differentdimensionalassembly morphologies,the magnetic property of the SCO1-1D+2D were measured over the temperature range from 300 to 400 K with a heating and cooling sweep.As shown in Fig.6a,the spin-crossover behaviour of SCO1-1D+2D shows a two-step spin transition property which is interesting to be observed in one triazole-based iron髤polymer.The first step revealed a gradual and narrow hysteresis loop of ca.6 K with spin transition temperatures Tc1↑=319 K in the warming process and Tc1↓=313 K in the cooling process.While for the second step,it exhibits a rather steep and broad spin-crossover behaviour,and the transition temperatures in the heating and cooling mode appeared at Tc2↑=381 K and Tc2↓=340 K with a hysteresis loop width of ca.41 K.Compared with the transition temperature of bulk powder of SCO1 (Tc↑=360 K and Tc↓=339 K,ΔT=21 K)[16],the first step transition of SCO1-1D+2D moves to a lower temperature with a narrower hysteresis width.While the transition temperatures in the second step shift to a higher region and the hysteresis loop becomes much wider.It can be deduced that this specialstepwise spin-crossoverbehaviourofthe SCO1-1D+2D is probably attributed to the different dimensional assembly morphologies of SCO nanomaterials on the surface and in the channels of AAO templates.In order to further study the two-step spin transition behaviour of SCO1-1D+2D nanomaterials,the magnetic properties of SCO1-2D and SCO1-1D were measured (Fig.6b and 6c).The transition temperatures of SCO1-2D are Tc↑=340 K in warming and Tc↓=320 K in cooling with a hysteresis width of ca.20 K,which are conformed to the first step SCO behaviour of SCO1-1D+2D nanostructures.Correspondingly,the transition temperatures of SCO1-1D at Tc↑=390 K in warming mode and Tc↓=350 K in cooling mode are in accordance with the second step SCO behaviour of SCO1-1D+2D nanostructures.However,contrasting the stepwise SCO behaviourof SCO1-1D+2D with SCO1-2D and SCO1-1D nanomaterials,it can be clearly inferred that the first step transition of SCO1-1D+2D moves to a lower temperature with narrower hysteresis width and the second conversion temperatures of SCO1-1D+2D are also lower than those of SCO1-1D but the wide hysteresis remains almost unchanged.We deduce that this is probably attributed to the influence of the synergistic effect for the combination of two different dimensional assembly morphologies.The nanoparticles growing on the surface of AAO are on 2D templates and grow in a single direction,while the nanoparticles growing on the channel of the AAO are on 1D template and grow in two orientations.Furthermore,contrasting the 1D SCO nano-assembly with 2D SCO nanostructures,the transition temperature of SCO-2D is lower than that of SCO-1D,and there are some reasons to explain:(1)The defects for SCO-2D are much more than that of SCO-1D[25,13c].(2)The difference in growth orientation affects their assembly morphologies,and then indirectly impacts their transition property[26].In a word,the meaningful SCO1-1D+2D nano-object with two-step SCO property resulting from the morphology effect has been obtained by the support of AAO templates.

    Fig.7 Plots of HS fraction vs T for SCO2-1D+2D(a),SCO2-2D(b)and SCO2-1D(c)nanostructures

    Magnetic property of SCO2-1D+2D nanostructures was operated similar to that of the SCO1-1D+2D.As it expected in Fig.7a,the two-step SCO property was also measured in SCO2-1D+2D nanomaterials,but the two transition temperatures were lower than that of the SCO1-1D+2D due to the influence of different organic ligands.The transition temperatures of SCO2-1D+2D are at Tc1↑=181 K,Tc2↑=246 K in the warming sweep and Tc1↓=155 K,Tc2↓=233 K in the cooling sweep with the hysteresis loop widths of 26 and 13 K,respectively.Combined with the magnetic analysis of SCO1-1D+2D,it can be inferred that the first step SCO behaviour is attributed to that of the[Fe(NH2trz)3](ClO4)2film assembling on the surface of the AAO porous templates,and the second step SCO property corresponds to the[Fe(NH2trz)3](ClO4)2confined nanostructure accumulating in the channel of AAO porous templates.To verify this speculation,the SCO properties of SCO2-2D and SCO2-1D were studied as well,as displayed in Fig.7b and 7c.The transition temperatures of SCO2-2D are Tc↑=190 K in the warming branch and Tc↓=172 K in the cooling branch,while those of SCO2-1D are Tc↑=255 K in the warming mode and Tc↓=243 K in the cooling mode.Contrasting the spin-crossover property of SCO2-1D+2D with SCO2-2D and SCO2-1D nanomaterials,the transition temperatures of SCO2-1D+2D move to a lower region.The results for magnetic analysis of the SCO2-1D+2D,SCO2-2D and SCO2-1D nanomaterials further demonstrate that different assembly morphologies lead to the special stepwise SCO behaviour.What′s more,this also indicates that the change of organic ligands doesn′t have an effect on the appearance of two-step SCO behaviour.

    3 Conclusions

    In conclusion,a facile and efficient sequential multistep assembly method was employed to synthesize iron髤 triazole SCO nanostructures with different assembly morphologies,which exhibit two-step spincrossover property.There is no report on this spincrossover phenomenon.The two-step spin transition of SCO-1D+2D corresponds to the SCO NPs assembling on the surface and in the channels of AAO membranes,suggesting that the difference in dimensional assembly morphologies and arrangements of the SCO NPs has a great effect on its SCO property.The fabrication of AAO-assisted 1D+2D spin-crossover nanomaterials provides a novel perspective for producing SCO nanostructure and the basis for the potential application in memory components,data storage and optoelectronic devices.

    Supporting information is available at http://www.wjhxxb.cn

    [1](a)Brooker S.Chem.Soc.Rev.,2015,44:2880-2892

    (b)Quintero C M,Félix G,Suleimanov I,et al.Beilstein J.Nanotechnol.,2014,5:2230-2239

    (c)Bousseksou A,Molnár G,Salmon L,et al.Chem.Soc.Rev.,2011,40:3313-3335

    (d)Gütlich P,Gaspar A B,Garcia Y.Beilstein J.Org.Chem.,2013,9:342-391

    (e)Gütlich P,Goodwin H A.Top.Curr.Chem.,2004,233:1-47

    [2](a)Mikolasek M,Félix G,Nicolazzi W,et al.New J.Chem.,2014,38:1834-1839

    (b)Nagy V,Suleimanov I,Molnár G,et al.J.Mater.Chem.C,2015,3:7897-7905

    (c)Giménez-Marqués M,de Larrea M L G S,Coronado E.J.Mater.Chem.C,2015,3:7946-7953

    (d)Bartual-Murgui C,Natividad E,Roubeau O.J.Mater.Chem.C,2015,3:7916-7924

    (e)Lapresta-Fernández A,Cuéllar M P,Herrera J M,et al.J.Mater.Chem.C,2014,2:7292-7303

    (f)WANG Yu-Xia(王玉俠),QIU Dan(邱丹),XI Sai-Fei(奚賽飛),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(11):1965-1972b

    [3](a)Linares J,Codjovi E,Garcia Y.Sensors,2012,12:4479-4492

    (b)Kahn O,Martinez C J.Science,1998,279:44-48

    (c)Rotaru A,Dugay J,Tan R P,et al.Adv.Mater.,2013,25:1745-1749

    (d)Hayami S,Holmes S M,Halcrow M A.J.Mater.Chem.C,2015,3:7775-7778

    (e)Bartual-Murgui C,Akou A,Thibault C,et al.J.Mater.Chem.C,2015,3:1277-1285

    (f)Molnár G,Salmon L,Nicolazzi W,et al.J.Mater.Chem.C,2014,2:1360-1366

    [4](a)Martinho P N,Rajnak C,Ruben M.Spin-Crossover Mater.,2013:375-404

    (b)Cavallini M.Phys.Chem.Chem.Phys.,2012,14:11867-11876

    [5](a)Thomas L,Hayashi M,Jiang X,et al.Science,2007,315:1553-1556

    (b)WoltersdorfG,BackCH.Phys.Rev.Lett.,2007,99:227207

    [6](a)Ebels U,Radulescu A,Henry Y,et al.Phys.Rev.Lett.,2000,84:983-986

    (b)Guo L M,Wang X H,Zhong C F,et al.J.Appl.Phys.,2012,111:026104

    (c)Reddy S M,Park J J,Na S M,et al.Adv.Funct.Mater.,2011,21:4677-4683

    (d)Liu M,Lagdani J,Imrane H,et al.Appl.Phys.Lett.,2007,90:103105

    [7]Martinho P N,Lemma T,Gildea B,et al.Angew.Chem.Int.Ed.,2012,51:11995-11999

    [8](a)Soyer H,Mingotaud C,Boillot M L,et al.Langmuir,1998,14:5890-5895

    (b)Soyer H,Dupart E,Gómez-García C J,et al.Adv.Mater.,1999,11:382-384

    (c)Létard J F,Nguyen O,Soyer H,et al.Inorg.Chem.,1999,38:3020-3021

    (d)Roubeau O,Agricole B,Clérac,et al.J.Phys.Chem.B,2004,108:15110-15116

    (e)Roubeau O,Natividad E,Agricole B,et al.Langmuir,2007,23:3110-3117

    (f)White N G,Feltham H L C,Gandolfi C,et al.Dalton Trans.,2010,39:3751-3758

    (g)Kitchen J A,White N G,Gandolfi C,et al.Chem.Commun.,2010,46:6464-6466

    [9](a)Ruben M,Rojo J,Romero-Salguero F J,et al.Angew.Chem.Int.Ed.,2004,43:3644-3662

    (b)Cobo S,Molnár G,Real J A,et al.Angew.Chem.Int.Ed.,2006,45:5786-5789

    [10](a)Jenekhe S A.Polym.Eng.Sci.,1983,23:830-834

    (b)Matsuda M,Tajima H.Chem.Lett.,2007,36:700-701

    (c)Matsuda M,Isozaki H,Tajima H.Thin Solid Films,2008,517:1465-1467

    (d)Quintero C M,Salmon L,Molnár G,et al.J.Mater.Chem.,2012,22:3745-3751

    (e)Félix G,Abdul-Kader K,Mahfoud T,et al.J.Am.Chem.Soc.,2011,133:15342-15345

    (f)Tissot A,Bardeau J F,Rivière E,et al.Dalton Trans.,2010,39:7806-7812

    [11](a)Deegan R D,Bakajin O,Dupont T F,et al.Nature,1997,389:827-829

    (b)Galyametdinov Y,Ksenofontov V,Prosvirin A,et al.Angew.Chem.Int.Ed.,2001,40:4269-4271

    [12](a)Agusti G,Cobo S,Gaspar A B,et al.Chem.Mater.,2008,20:6721-6732

    (b)Bartual-Murgui C,Salmon L,Akou A,et al.New J.Chem.,2011,35:2089-2094

    [13](a)Witte G,Wll C.J.Mater.Res.,2004,19:1889-1916

    (b)Naggert H,Bannwarth A,Chemnitz S,et al.Dalton Trans.,2011,40:6364-6366

    (c)Shi S,Schmerber G,Arabski J,et al.Appl.Phys.Lett.,2009,95:043303

    [14](a)Lai P,Hu M Z,Shi D,et al.Chem.Commun.,2008:1338-1340

    (b)Wang Y,Qin Y,Berger A,et al.Adv.Mater.,2009,21:2763-2766

    (c)Wang K,Jin S M,Xu J,et al.ACS Nano,2016,10:4954-4960

    [15](a)Terekhov S N,Kachan S M,Panarin A Y,et al.Phys.Chem.Chem.Phys.,2015,17:31780-31789

    (b)Fang Z,Wang Y,Peng X,et al.Mater.Lett.,2003,57:4187-4190

    (c)Cui M,Wang F,Miao Z,et al.RSC Adv.,2015,5:65627-65634

    [16](a)Roubeau O.Chem.Eur.J.,2012,18:15230-15244(b)Sugiyarto K H,Goodwin H A.Aust.J.Chem.,1994,47:263-277

    [17](a)Krober J,Codjovi E,Kahn O,et al.J.Am.Chem.Soc.,1993,115:9810-9811

    (b)Smit E,Manoun B,Waal D.J.Raman Spectrosc.,2001,32:339-344

    (c)Varnek V A,Lavrenova L G.J.Struct.Chem.,1995,36:104-111

    (d)Chen Y,Ma J G,Zhang J J,et al.Chem.Commun.,2010,46:5073-5075

    (e)Kahn O,Sommier L,Codjovi E.Chem.Mater.,1997,9:3199-3205

    [18]He M,Yao J,Low Z X,et al.RSC Adv.,2014,4:7634-7639

    [19]Durand P,Pillet S,Bendeif E E,et al.J.Mater.Chem.C,2013,1:1933-1942

    [20](a)Hetmańczyk J,Hetmańczyk 覵,Migda-Mikuli A,et al.J.Raman Spectrosc.,2012,43:1118-1125

    (b)Abdollahi-Alibeik M,Sadeghi-Vasafi N,Moaddeli A,et al.Res.Chem.Intermed.,2016,42:2867-2881

    [21](a)Urakawa A,Van Beek W,Monrabal-Capilla M,et al.J.Phys.Chem.C,2010,115:1323-1329

    (b)Grosjean A,Négrier P,Bordet P,et al.Eur.J.Inorg.Chem.,2013,2013:796-802

    [22]Chen Y,Ma J G,Zhang J J,et al.Chem.Commun.,2010,46:5073-5075

    [23]Lefter C,Tricard S,Peng H,et al.J.Phys.Chem.C,2015,119:8522-8529

    [24](a)Qiu D,Gu L,Sun X L,et al.RSC Adv.,2014,4:61313-61319

    (b)Moussa N O,Ostrovskii D,Garcia V M,et al.Chem.Phys.Lett.,2009,477:156-159

    [25](a)Rotaru A,Molnár G,Salmon L,et al.Chem.Commun.,2012,48:4163-4165

    (b)Larionova J,Salmon L,Guari Y,et al.Angew.Chem.Int.Ed.,2008,120:8360-8364

    (c)Gütlich P,Hauser A,Spiering H.Angew.Chem.Int.Ed.,1994,33:2024-2054

    [26]Wang Y X,Qiu D,Xi S F,et al.Chem.Commun.,2016,52:8034-8037

    AAO Assisted 1D Confined Assembly and 2D Surface Filming of Iron髤Triazole Nanomaterial and Spin-Crossover Properties

    LI Zhi-Hua1WANG Yu-Xia1QIU Dan1LI Zai-Jun1GU Zhi-Guo*,1,2
    (1School of Chemistry and Material Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
    (2Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,Wuxi,Jiangsu 214122,China)

    Iron髤 triazole(SCO1)and iron髤 4-amino-triazole(SCO2)spin-crossover(SCO)nanomaterials were assembled in the channel and on the surface of anodic aluminum oxide (AAO)templates simultaneously by a facile sequential multistep assembly method.The obtained SCO1-1D+2D and SCO2-1D+2D nanomaterials have been characterized by SEM,FT-IR,PXRD,and Raman spectra.SEM images show that spherical SCO NPs growing in the channel of AAO templates aggregate with time going on,and assemble as 1D nanostructure.While those growing on the surface of AAO substrates assemble as uniform and dense 2D SCO film.It is interesting that both SCO-1D+2D nanostructures present a special two-step spin-crossover behaviour with hysteresis loops(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K).The magnetic measuring of SCO-1D and SCO-2D indicates that the two-step SCO behaviour results from the different assembly morphologies of SCO.The first step spin transition at lower temperature is ascribed to the properties of 2D SCO films growing on the surface of AAO templates,while thetransition in the second step at higher temperature can be attributed to the 1D SCO confined assembly growing in the channel of AAO membranes.

    nanomaterials;anodic aluminum oxide(AAO)templates;self-assembly;two-step spin-crossover behavior

    TB33

    A

    1001-4861(2017)12-2311-11

    10.11862/CJIC.2017.200

    2017-05-28。收修改稿日期:2017-07-16。

    國(guó)家自然科學(xué)基金(No.21771089)和中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(No.JUSRP51725B,JUSRP51513)資助。

    *通信聯(lián)系人。 E-mail:zhiguogu@jiangnan.edu.cn

    猜你喜歡
    亞鐵三唑孔道
    再生亞鐵絡(luò)合物脫硝液研究進(jìn)展
    能源工程(2022年1期)2022-03-29 01:06:40
    基于ANSYS的液壓集成塊內(nèi)部孔道受力分析
    接觸壓力非均勻分布下彎曲孔道摩阻損失分析
    不同濃度三唑錫懸浮劑防治效果研究
    鋼渣對(duì)亞鐵離子和硫離子的吸附-解吸特性
    三組分反應(yīng)高效合成1,2,4-三唑烷類化合物
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    離子對(duì)SBA-15形貌與孔道結(jié)構(gòu)的影響
    電解制備氫氧化亞鐵微型設(shè)計(jì)
    毒死蜱和三唑磷將禁止在蔬菜上使用
    久久天躁狠狠躁夜夜2o2o| 九色国产91popny在线| 精品国产国语对白av| 不卡一级毛片| 美女黄网站色视频| 最后的刺客免费高清国语| 国产日本99.免费观看| 天堂网av新在线| 婷婷精品国产亚洲av| 村上凉子中文字幕在线| 嫩草影院精品99| 一本一本综合久久| 国产 一区 欧美 日韩| 国产白丝娇喘喷水9色精品| 亚洲自拍偷在线| a级毛片a级免费在线| 亚洲欧美清纯卡通| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 九九久久精品国产亚洲av麻豆| 日本a在线网址| 麻豆精品久久久久久蜜桃| 天堂网av新在线| 国产午夜福利久久久久久| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 免费黄网站久久成人精品| 欧美最黄视频在线播放免费| 好男人在线观看高清免费视频| 成人国产综合亚洲| 亚洲无线观看免费| 欧美高清成人免费视频www| 国产色婷婷99| 最近最新中文字幕大全电影3| 日韩欧美在线二视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 嫩草影院精品99| 很黄的视频免费| 真人做人爱边吃奶动态| 神马国产精品三级电影在线观看| 欧美一区二区亚洲| 老司机福利观看| 黄色一级大片看看| 成人国产麻豆网| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 国产精品不卡视频一区二区| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 精品乱码久久久久久99久播| av女优亚洲男人天堂| 日韩高清综合在线| 麻豆国产av国片精品| 99在线视频只有这里精品首页| aaaaa片日本免费| 免费在线观看成人毛片| av女优亚洲男人天堂| 美女高潮的动态| 亚洲精品456在线播放app | 特级一级黄色大片| 黄色配什么色好看| 国产午夜福利久久久久久| ponron亚洲| 男人舔奶头视频| 3wmmmm亚洲av在线观看| 国产 一区精品| 在线观看一区二区三区| 男女做爰动态图高潮gif福利片| 一a级毛片在线观看| 欧美日韩精品成人综合77777| 搡女人真爽免费视频火全软件 | 黄色一级大片看看| 欧美日韩综合久久久久久 | 床上黄色一级片| 美女xxoo啪啪120秒动态图| 一个人免费在线观看电影| 免费看美女性在线毛片视频| 亚洲av日韩精品久久久久久密| 我要搜黄色片| 我要搜黄色片| 欧美日韩乱码在线| 免费观看人在逋| 亚洲欧美日韩卡通动漫| 亚洲人与动物交配视频| 国内精品久久久久久久电影| 欧美一区二区亚洲| 亚洲无线在线观看| a在线观看视频网站| 午夜爱爱视频在线播放| 亚洲av免费高清在线观看| 中国美女看黄片| 欧美黑人巨大hd| 天堂动漫精品| 精品久久久久久久久av| 综合色av麻豆| 精品久久国产蜜桃| 美女xxoo啪啪120秒动态图| 久久久久九九精品影院| 两人在一起打扑克的视频| 亚洲人成网站高清观看| 国产毛片a区久久久久| 日本免费一区二区三区高清不卡| 他把我摸到了高潮在线观看| 乱人视频在线观看| 夜夜爽天天搞| av女优亚洲男人天堂| 麻豆成人午夜福利视频| 男女视频在线观看网站免费| 一区二区三区免费毛片| 51国产日韩欧美| 女人被狂操c到高潮| 亚洲不卡免费看| 国产在视频线在精品| 美女被艹到高潮喷水动态| 亚洲国产日韩欧美精品在线观看| 看免费成人av毛片| 国产精品1区2区在线观看.| 人妻夜夜爽99麻豆av| 日韩欧美国产一区二区入口| www日本黄色视频网| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品有码人妻一区| 国产三级中文精品| 黄色女人牲交| 成人特级av手机在线观看| 啪啪无遮挡十八禁网站| 亚洲最大成人手机在线| 三级毛片av免费| 欧美xxxx性猛交bbbb| 乱系列少妇在线播放| 亚洲成人久久爱视频| 男插女下体视频免费在线播放| 尾随美女入室| 免费黄网站久久成人精品| 午夜福利成人在线免费观看| 亚洲久久久久久中文字幕| 亚洲欧美日韩高清在线视频| 国产色婷婷99| 国产精品野战在线观看| 国产精品人妻久久久久久| 黄色一级大片看看| 精品一区二区三区视频在线观看免费| 欧美日韩国产亚洲二区| 婷婷亚洲欧美| 在线a可以看的网站| 熟女电影av网| 日韩欧美精品v在线| 亚洲av美国av| 久久精品国产清高在天天线| 亚洲自偷自拍三级| 99在线人妻在线中文字幕| 91久久精品国产一区二区成人| 久久久国产成人免费| 欧美xxxx性猛交bbbb| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品乱码久久久v下载方式| 欧洲精品卡2卡3卡4卡5卡区| 老师上课跳d突然被开到最大视频| 日本一本二区三区精品| 小蜜桃在线观看免费完整版高清| 亚洲专区国产一区二区| 成人毛片a级毛片在线播放| 午夜福利高清视频| 亚洲精品一区av在线观看| 婷婷六月久久综合丁香| 热99在线观看视频| 我要看日韩黄色一级片| 欧美性感艳星| 搡老妇女老女人老熟妇| 日本a在线网址| 97热精品久久久久久| 一区二区三区四区激情视频 | 欧美xxxx性猛交bbbb| 久99久视频精品免费| 中文字幕av成人在线电影| 欧美人与善性xxx| 国产亚洲精品av在线| 日韩欧美在线乱码| 国产伦在线观看视频一区| 在线观看舔阴道视频| 亚洲专区国产一区二区| 久久精品91蜜桃| 国产午夜精品久久久久久一区二区三区 | 噜噜噜噜噜久久久久久91| 亚洲性夜色夜夜综合| 亚洲熟妇熟女久久| 日日啪夜夜撸| 亚洲第一区二区三区不卡| 欧美精品啪啪一区二区三区| 在线国产一区二区在线| 国内精品一区二区在线观看| 成人毛片a级毛片在线播放| 国产午夜精品久久久久久一区二区三区 | 国产成人影院久久av| 三级毛片av免费| av在线老鸭窝| 久久精品国产亚洲av涩爱 | 欧美黑人巨大hd| 欧美zozozo另类| 久久久久九九精品影院| 1024手机看黄色片| 少妇人妻精品综合一区二区 | 亚洲av五月六月丁香网| 久久精品91蜜桃| 精品人妻1区二区| 九九久久精品国产亚洲av麻豆| 制服丝袜大香蕉在线| 国产人妻一区二区三区在| 久久久久久久久久久丰满 | 身体一侧抽搐| 亚洲自偷自拍三级| 天天躁日日操中文字幕| 蜜桃亚洲精品一区二区三区| 国产伦在线观看视频一区| 亚洲成人久久性| 白带黄色成豆腐渣| 成人毛片a级毛片在线播放| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 亚洲av免费在线观看| xxxwww97欧美| 国产爱豆传媒在线观看| 国产精华一区二区三区| 国产毛片a区久久久久| 色哟哟·www| 中文字幕免费在线视频6| 国产高潮美女av| 日本a在线网址| 欧美潮喷喷水| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲精品不卡| 搡女人真爽免费视频火全软件 | av中文乱码字幕在线| 88av欧美| 精品一区二区三区视频在线| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 联通29元200g的流量卡| 大型黄色视频在线免费观看| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 51国产日韩欧美| 午夜免费男女啪啪视频观看 | 亚洲av美国av| 国产精品美女特级片免费视频播放器| 欧美最黄视频在线播放免费| 91午夜精品亚洲一区二区三区 | 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 69人妻影院| 精品午夜福利视频在线观看一区| 色综合婷婷激情| 日韩一本色道免费dvd| 色精品久久人妻99蜜桃| 天天一区二区日本电影三级| 国内毛片毛片毛片毛片毛片| 窝窝影院91人妻| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 国产熟女欧美一区二区| 久久午夜福利片| 久久久久免费精品人妻一区二区| 淫秽高清视频在线观看| 国产精品野战在线观看| 久久精品影院6| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 最近在线观看免费完整版| 黄色日韩在线| 狠狠狠狠99中文字幕| 色综合婷婷激情| 天堂动漫精品| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 狂野欧美激情性xxxx在线观看| 亚洲精品久久国产高清桃花| 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 在线看三级毛片| 免费看光身美女| 最新中文字幕久久久久| 男人的好看免费观看在线视频| 啦啦啦韩国在线观看视频| 成人国产一区最新在线观看| 校园人妻丝袜中文字幕| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 日韩欧美在线乱码| av国产免费在线观看| 一本久久中文字幕| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 免费人成在线观看视频色| 黄色女人牲交| 国产精品永久免费网站| 国产 一区精品| 韩国av在线不卡| 12—13女人毛片做爰片一| 俺也久久电影网| 久久久久久久久久成人| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 99热只有精品国产| 老女人水多毛片| 国内揄拍国产精品人妻在线| 国产日本99.免费观看| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 变态另类成人亚洲欧美熟女| 国模一区二区三区四区视频| 亚洲专区国产一区二区| videossex国产| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 欧美+日韩+精品| 丰满乱子伦码专区| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 看片在线看免费视频| 长腿黑丝高跟| 国内精品久久久久精免费| 久久久久久伊人网av| 欧美另类亚洲清纯唯美| 热99在线观看视频| 尤物成人国产欧美一区二区三区| 香蕉av资源在线| 色尼玛亚洲综合影院| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 国产不卡一卡二| 99久国产av精品| 欧美日本亚洲视频在线播放| 一级av片app| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 亚洲四区av| 久久香蕉精品热| 美女cb高潮喷水在线观看| 国产伦一二天堂av在线观看| 日本爱情动作片www.在线观看 | 人人妻,人人澡人人爽秒播| av女优亚洲男人天堂| 1000部很黄的大片| 狂野欧美白嫩少妇大欣赏| 免费在线观看影片大全网站| 久久久国产成人免费| 悠悠久久av| 99在线视频只有这里精品首页| 国内精品美女久久久久久| 一本一本综合久久| 在线观看av片永久免费下载| 免费在线观看成人毛片| 精品久久久久久,| 欧美中文日本在线观看视频| 日本色播在线视频| 亚洲avbb在线观看| 久久久久久伊人网av| 级片在线观看| 波多野结衣高清作品| 国产高清三级在线| 床上黄色一级片| 美女被艹到高潮喷水动态| 有码 亚洲区| 国产色婷婷99| 一级a爱片免费观看的视频| 欧美一区二区亚洲| 九九久久精品国产亚洲av麻豆| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱 | 成人av在线播放网站| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 免费观看在线日韩| 国产人妻一区二区三区在| 久久精品人妻少妇| 在线看三级毛片| 午夜福利18| 99久国产av精品| 男女下面进入的视频免费午夜| 色av中文字幕| 国产蜜桃级精品一区二区三区| 国产在视频线在精品| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 最后的刺客免费高清国语| 久久精品91蜜桃| 最近在线观看免费完整版| 午夜福利高清视频| 啦啦啦啦在线视频资源| 一区福利在线观看| 中文在线观看免费www的网站| 深夜精品福利| 国产激情偷乱视频一区二区| 日本 av在线| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 成人美女网站在线观看视频| 亚洲精品成人久久久久久| 一区二区三区四区激情视频 | 看片在线看免费视频| 搡老岳熟女国产| 在线免费十八禁| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 三级毛片av免费| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 听说在线观看完整版免费高清| 特级一级黄色大片| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 亚洲成人久久爱视频| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 黄色丝袜av网址大全| 亚洲av成人av| 色5月婷婷丁香| 丝袜美腿在线中文| 永久网站在线| 97超级碰碰碰精品色视频在线观看| 精品久久久久久,| 亚洲男人的天堂狠狠| 我的女老师完整版在线观看| 日韩一区二区视频免费看| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 日本一二三区视频观看| 国产精品久久久久久亚洲av鲁大| 99久国产av精品| 他把我摸到了高潮在线观看| 99久久精品一区二区三区| 一级毛片久久久久久久久女| 变态另类成人亚洲欧美熟女| 国产人妻一区二区三区在| 亚洲真实伦在线观看| 亚洲avbb在线观看| 国产亚洲91精品色在线| 国产亚洲精品av在线| 69av精品久久久久久| 小说图片视频综合网站| 亚洲人与动物交配视频| 欧美bdsm另类| 午夜精品一区二区三区免费看| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 午夜精品在线福利| 色在线成人网| 老师上课跳d突然被开到最大视频| 有码 亚洲区| 欧美激情国产日韩精品一区| 俺也久久电影网| 久久精品人妻少妇| 亚洲图色成人| 精品久久久久久久久亚洲 | 免费高清视频大片| 欧美+日韩+精品| 97热精品久久久久久| ponron亚洲| 极品教师在线视频| 精品午夜福利在线看| 在线观看舔阴道视频| 国产精品久久久久久av不卡| 老司机午夜福利在线观看视频| 日韩精品有码人妻一区| 啦啦啦韩国在线观看视频| 亚洲av一区综合| 三级男女做爰猛烈吃奶摸视频| 国产真实乱freesex| 国产 一区精品| 久久国产精品人妻蜜桃| a级毛片a级免费在线| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 国产一区二区三区av在线 | 亚洲avbb在线观看| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 亚洲五月天丁香| 成人毛片a级毛片在线播放| 国产精品伦人一区二区| 亚洲精品色激情综合| 91狼人影院| 99riav亚洲国产免费| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 亚洲无线在线观看| av福利片在线观看| 国产中年淑女户外野战色| 热99在线观看视频| 午夜视频国产福利| 久久久久久久精品吃奶| 成人毛片a级毛片在线播放| 91麻豆av在线| 国产高清视频在线观看网站| 搞女人的毛片| 在现免费观看毛片| av天堂在线播放| 99久久成人亚洲精品观看| 国产一区二区在线av高清观看| 欧美日韩瑟瑟在线播放| 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 国产成人a区在线观看| 观看美女的网站| 全区人妻精品视频| 干丝袜人妻中文字幕| 99热只有精品国产| 特级一级黄色大片| 久久久色成人| 精品久久久久久久久亚洲 | 国产伦人伦偷精品视频| 不卡一级毛片| 精品日产1卡2卡| 国产亚洲91精品色在线| 国产毛片a区久久久久| 午夜精品久久久久久毛片777| 精品久久久久久久久亚洲 | 国产高清有码在线观看视频| 两个人的视频大全免费| 中文字幕免费在线视频6| 国产一区二区在线av高清观看| 伦理电影大哥的女人| 熟女人妻精品中文字幕| avwww免费| 赤兔流量卡办理| videossex国产| 99国产极品粉嫩在线观看| 亚洲第一电影网av| 乱人视频在线观看| 亚洲国产高清在线一区二区三| 欧美色欧美亚洲另类二区| 91麻豆精品激情在线观看国产| 久久欧美精品欧美久久欧美| 国产精品永久免费网站| 国产精品精品国产色婷婷| 精品不卡国产一区二区三区| 麻豆av噜噜一区二区三区| 亚洲自偷自拍三级| 成人国产综合亚洲| 无人区码免费观看不卡| www.色视频.com| 91狼人影院| 在现免费观看毛片| 国产不卡一卡二| 波多野结衣巨乳人妻| 成人无遮挡网站| av在线观看视频网站免费| 中文在线观看免费www的网站| 免费大片18禁| 久久精品91蜜桃| 特大巨黑吊av在线直播| 床上黄色一级片| av天堂中文字幕网| 欧美3d第一页| 九色成人免费人妻av| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 波多野结衣高清无吗| 欧美丝袜亚洲另类 | 亚洲 国产 在线| 久久久国产成人免费| 22中文网久久字幕| 别揉我奶头~嗯~啊~动态视频| 久久热精品热| 啦啦啦啦在线视频资源| 日本 av在线| 亚洲av成人精品一区久久| 国产一区二区亚洲精品在线观看| netflix在线观看网站| 一区二区三区四区激情视频 | 性欧美人与动物交配| 欧美bdsm另类| 男女那种视频在线观看| 久久久久久大精品| 久久久久国产精品人妻aⅴ院| 性色avwww在线观看| 亚洲 国产 在线| 成熟少妇高潮喷水视频| 美女黄网站色视频| 国产在线男女| 亚洲av熟女| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区 | 乱码一卡2卡4卡精品| 91在线精品国自产拍蜜月| 91久久精品电影网| 亚洲第一电影网av| 国产伦人伦偷精品视频| 久久精品人妻少妇| 99热这里只有是精品50| 毛片一级片免费看久久久久 | 能在线免费观看的黄片| 99久久中文字幕三级久久日本| 欧美日韩瑟瑟在线播放|