• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AAO輔助三唑亞鐵納米材料:一維限制生長(zhǎng)和二維表面成膜及自旋轉(zhuǎn)換性能

    2017-12-13 10:52:05李志華王玉俠李在均顧志國(guó)
    關(guān)鍵詞:亞鐵三唑孔道

    李志華 王玉俠 邱 丹 李在均 顧志國(guó)*,,2

    AAO輔助三唑亞鐵納米材料:一維限制生長(zhǎng)和二維表面成膜及自旋轉(zhuǎn)換性能

    李志華1王玉俠1邱 丹1李在均1顧志國(guó)*,1,2

    (1江南大學(xué)化學(xué)與材料工程學(xué)院,無(wú)錫 214122)
    (2合成膠體與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,無(wú)錫 214122)

    通過(guò)連續(xù)多步自組裝的方式分別將三唑亞鐵(SCO1)和氨基三唑亞鐵(SCO2)自旋轉(zhuǎn)換納米材料生長(zhǎng)于氧化鋁模板(AAO)的孔道內(nèi)和表面上。利用掃描電鏡(SEM)、紅外光譜(IR)、粉末X射線衍射(PXRD)、拉曼光譜(Raman)等手段對(duì)SCO1-1D+2D和SCO2-1D+2D納米材料進(jìn)行表征,SEM表明隨著自組裝時(shí)間的增加,球狀的SCO納米顆粒生長(zhǎng)于AAO孔道內(nèi),并逐漸形成1D的納米結(jié)構(gòu),而在AAO表面則形成致密均勻的SCO-2D薄膜。兩種SCO-1D+2D納米粒子都具有兩步自旋行為(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K)。 對(duì)相應(yīng)的SCO-1D和SCO-2D磁性結(jié)果表明,兩步自旋轉(zhuǎn)換行為的產(chǎn)生是由于SCO組裝體形貌的差異。其中,低溫區(qū)的自旋轉(zhuǎn)換行為是由生長(zhǎng)于AAO表面的SCO-2D自旋轉(zhuǎn)換性能所致,而發(fā)生在更高溫度的第二階段的自旋轉(zhuǎn)換行為則歸因于生長(zhǎng)于AAO孔道內(nèi)的SCO-1D的自旋轉(zhuǎn)換性能。

    納米材料;氧化鋁模板;自組裝;兩步自旋轉(zhuǎn)換

    0 Introduction

    Spin-crossover(SCO)compounds are well known as a class of bistable materials,displaying a reversible switching between low spin(LS)state and high spin(HS)state of d4~d7transition metal centres in response to the external perturbations such as pressure,temperature,illumination or magnetic fields[1].Recently,SCO nanomaterials have drawn the widespread attention as their spin conversion can be modified by size,morphologies and preparation method[2],which offers various possible applications in molecular switches,memory devices,sensors and displayers[3].However,assembling SCO nanoparticles(NPs)still shows more challenges while affords new and exciting opportunities for the development of SCO devices.Among the configurations of SCO nanoparticle assembly,one-dimensional(1D)confined assembly and two-dimensional(2D)multi-layered films may be considered as useful models to explore the effect of dimensionality on SCO property[4]. Reliable thin-film etching[5],templateassisted electrodeposition routes[6]and template-assisted assembly methods[7]have been established to obtain the 1D SCO nanomaterials.Meanwhile,several methods have been used to fabricate SCO nanomaterials as two-dimensional (2D) films,including Langmuir-Blodgett(LB)deposition[8],surface-assisted molecular self-assembly[9],spin coating[10],dip/drop casting[11],constructive methods[12]and vacuum sublimation[13].The research for SCO 1D and 2D nano-entities suggests that the assembly morphologies have a strong influence on spin conversion property.To the best of our knowledge,there is no report on the formation of the nanostructure combining the 1D confined assembly and 2D film of SCO compounds.While fabricating the nanostructures consisted of 1D and 2D assembly morphologies simultaneously probably can impart the SCO nanomaterials special spin-crossover properties,which provide a platform for the application of SCO materials into functional devices.With this perspective,we envisaged to prepare one SCO compound with different dimensional assembly morphologies by a facile template assisted self-assembly method.

    In order to fabricate the nanomaterial consisted of 1D confined assembly and 2D film simultaneously,it′s crucial to select the suitable template.Anodic aluminium oxide (AAO)membrane is considered as an ideal candidate since:(1)AAO membranes form a cylindrically close packed ordered structure,which can give access to SCO compound growing into their channels as 1D SCO confined assembly[14].(2)The abundant-OH on the surface of AAO membranes can coordinate with metallic centres[15],which makes 2D SCO film growing on AAO surface possible.The typical iron髤-triazole polymers,[Fe(Htrz)2(trz)](ClO4)[16](SCO1)and Fe(NH2trz)3](ClO4)2[17](SCO2)(Htrz=1,2,4-triazole,NH2trz=4-amino-1,2,4-triazole)undergoing spin transition with well-defined thermal hysteresis loops close to room temperature are selected as model compounds in this paper to study their assembly in the channel and on the surface of AAO templates.Detailed scanning electron microscopy(SEM)will be presented to characterize the formation of the novel nanostructures.And the effect of different dimensional assembly morphologies on their magnetic properties will also be discussed.

    1 Experimental

    1.1 Chemical materials

    Fe(ClO4)2·6H2O,Htrz(Htrz=1,2,4-triazole),NH2trz(4-amino-1,2,4-triazole),and ethanol were all reagent grade and purchased from Sigma-Aldrich,and could be used without further purification.Ultrapure milli-Q water (18.2 MΩ·cm)was used in all experiments.AAO(≥99%)were purchased from LeSen nano science and technology co.,LTD,and without any purification.

    1.2 Physical measurements

    Fourier transform infrared (FT-IR)spectra were recorded by FALA2000 FT-IR spectrometer(ABB Bomen Canada)(KBr disk).Powder X-ray diffraction(PXRD)patterns were collected on a D8 Advance X-ray diffractometer(Bruker AXS Germany)with Cu Kα radiation (λ=0.154 046 nm)in a 2θ range from 5°to 60°at the speed of 2°· min-1at room temperature.The operating voltage and current are 40 kV and 40 mA,respectively.Raman spectra of these nanomaterials were obtained from Invia Raman spectra(Reinshaw England)with 785 nm excitation line.The laser power intensity was adjusted by changing the percentage of 280 mW,the largest laser power intensity in 785 nm excitation line.SEM images were operated by S4800 scanning electron microscope(SEM)(Rili Japan)at an operating voltage of 2 kV.Magnetic measurements were carried out by a MPMS-XL-7 super strong quantum interference magnetometer(Quantum Design US).The direction of the magnetic field is parallel to the sample.The samples were testing at two temperature stages with a heating and cooling sweep rate of 3 K·min-1.The SCO phenomenon of each samples were clearly displayed by HS fraction vs T curves,in which HS fraction refers to the ratio of iron髤at high spin state.Data were corrected forthe diamagnetic contribution calculated from Pascal constants.

    1.3 Synthetic procedures

    1.3.1 Synthesis of SCO1-1D+2D and SCO2-1D+2D nanomaterials

    AAO(Φ=300~400 nm)templates were immersed into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 1 h.Then,these AAO templates were washed with ethanol carefully to remove the redundant Fe2+.Afterwards,the templates were soaked into 3 mol·L-1ethanol solution of Htrz for 1 h,and then also washed with ethanol carefully to make sure that the growth rate of 1D SCO nanostructure is much faster than that of the 2D SCO nanoassemblies.Repeat the procedure above for 1,6,12,24 times respectively to obtain a series of SCO1-1D+2D nanoassembly with cycle number of 1,6,12,24 times.SCO1-1D+2D spincrossover nanomaterials were obtained by washing with 4 mL ethanol for three times and dried in vacuum at 45℃overnight.Fabrication of SCO2-1D+2D was similar to that of the SCO1-1D+2D except replacing the Htrz with NH2trz.

    1.3.2 Synthesis of SCO1-2D and SCO2-2D nanomaterials

    Firstly,AAO(Φ=30~40nm)templatesweresoaked into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 5 min,and put into ethanol for 1 min,successively.Then they were moved into 3 mol·L-1ethanol solution of Htrz for 5 min,followed by putting into ethanol for 1 min.After recycling for 24 times,they were washed by ethanol for three times to remove the superfluous nanoparticles and dried at 45℃in vacuum for 12 h.The synthesis of SCO2-2D was similar to that of SCO1-2D,but NH2trz was used instead of Htrz.

    1.3.3 Synthesis of SCO1-1D and SCO2-1D nanomaterials

    AAO(Φ=300~400 nm)was put into 1 mol·L-1ethanol solution of Fe(ClO4)2·6H2O for 1 h,followed by washing with ethanol carefully for three times to remove Fe2+on the surface of AAO templates.Then these templates were transferred to 3 mol·L-1ethanol solution of Htrz for 1 h and washed with ethanol carefully for three times,successively.After repeating the above procedure for 24 times,SCO1-1D nanomaterials were prepared by washing with ethanol three times and drying at 45℃in vacuum for 12 h.The fabrication of SCO2-1D was similar to that of SCO1-1D using NH2trz instead of Htrz.

    2 Results and discussion

    The AAO template-assisted SCO nanostructures are prepared via a facile sequentialmultistep assembly method (Fig.1)[18].Firstly,AAO templates were soaked into the ethanol solution of Fe(ClO4)2·6H2O at room temperature.This procedure can make sure that the Fe2+coordinated with-OH in the channel of the AAO templates adequately by capillarity,and-OH on the surface of AAO templates by surface deposition.Then,these AAO templates were immersed into the ethanolsolution ofHtrzorNH2trzto coordinate with Fe2+attached to the AAO templates.Repeating the procedure above to insure the SCO NPs gradually deposited on the surface and filled in the channel of AAO templates.The sequential multistep assembly approach introduced here shows the merit that the growth and nucleation of the 1D and 2D SCO nanostructures based on the AAO templates can be tuned by adjusting the assembly cycle numbers.

    Fig.1 Scheme of the synthesis for SCO nanocomposite with sequential multistep assembly method

    IR spectra of SCO1-1D+2D and SCO2-1D+2D nanomaterials indicate that the bands observed for two nanostructures are mainly due to vibrations of the triazole derivative ligand,slightly perturbed by coordination (Fig.S1).In particular,the vibrational modes at ca.1 221,1 496 and 1 453 cm-1can be attributed to the ring stretching of the triazole ligands.The peak at ca.634 cm-1is referred to the out-of-plane vibration of the triazole ligand[19].Furthermore,the ClO4-anion possesses characteristic vibrational frequencies at ca.941 and 1 120 cm-1[20].The peaks of near 3 360 and 3 284 cm-1refer to the stretching of-NH2on triazole ligands.IR result implies the formation of AAO-assisted SCO materials preliminarily.

    The powder X-ray diffraction(PXRD)patterns of the as-prepared SCO1-1D+2D and SCO2-1D+2D nanomaterials are shown in Fig.S2.The diffraction peaks(2θ)of the SCO1-1D+2D nano-assemblies at ca.10°,18°,25°are consistent with the standard XRD data for the bulk[Fe(Htrz)2(trz)](ClO4)[19,21].While the diffraction peaks for SCO2-1D+2D nanomaterials correspond to the crystalline[Fe(NH2trz)3](ClO4)2reported previously[21].PXRD analysis indicates the existence of[Fe(Htrz)2(trz)](ClO4)and[Fe(NH2trz)3](ClO4)2in the AAO membrane.

    To identify the SCO compound assembled in the channel and on the surface of AAO templates,Raman microscopy measurements were carried out at 785 nm.It was obvious that the characteristic Raman signals were preserved in the obtained AAO membranes assisted nanomaterials (Fig.S3).The wavenumber values below 400 cm-1are assigned to the metal-ligand Fe-N vibrations,and those between 900 and 1 600 cm-1are related to the vibrations of triazole ring[17b,21a,23].Typically,the drastic changes in the low wavenumber region below 400 cm-1are applied to monitor the spin state of the iron髤triazole complexes.In a complete spin conversion,the Raman modes at 106 cm-1display intensely in the HS state and vanish in the LS state,while the Raman signals at 286 cm-1corresponds to the LS state[24].Raman spectra further demonstrate the SCO compound growing on the AAO substrates.

    Fig.2 SEM images of SCO1-1D+2D with different cycles

    The obtained SCO-1D+2D nanomaterials by AAO templates with channel size of 300~400 nm were characterized by the scanning electron microscope(SEM)measurement to study their nucleation and growth of SCO NPs on AAO substrates.Fig.2 showed the SEM images of SCO1 NPs on the surface and in the internal channels of AAO templates with different assembly cycle numbers(n=1,6,12 and 24).At the beginning(reacting for only 1 cycle),almost no SCO1 NPs are found in the substrates in Fig.2a and 2b.With reacting for 6 cycles,SCO1 NPs could be clearly observed on the surface and in the crosssection of AAO templates(Fig.2c and 2d),shaped as sphere and most of the NPs look inhomogeneous due to the aggregation.This reveals the beginning of growth and nucleation of the SCO1 crystals.As expected,SCO1 NPs in the channel of AAO templates augmente largely by the number of cycles adding(Fig.2d and 2f).Besides,the deposition of SCO1 NPs on the surface of AAO membranes grows more slowly than that in the cross-section of AAO templates(Fig.2c and 2e).This is attributed to the procedure of washing with ethanol carefully.As the cycle number increased,more and more NPs stacked in the channel and on the surface of AAO membrane templates.When 24 cycles have been realized,the surfaces of AAO templates are covered with aggregated SCO1 NPs assembling as uniform and dense SCO1 films(Fig.2g),while the AAO membrane channels are filled withSCO1 NPsaccumulated asone-dimensional confined nanostructure(Fig.2h).It should be mentioned that there are two different dimensional assembly morphologies of SCO1 in the SCO1-1D+2D,which intuitively confirms the successful synthesis of the special SCO1-1D+2D nanomaterials.Furthermore,the deposition and assembly morphology of SCO1 NPs on the surface and in the channels of AAO templates are able to be adjusted by controlling the reaction cycle numbers in two precursor solutions.

    In order to study the growth and nucleation of different assembly morphologies of SCO compound respectively,the SCO1 assemblies growing on the surface of AAO templates (SCO1-2D)and in the channel of AAO templates(SCO1-1D)were obtained by choosing AAO templates with different channel size.The SCO1-2D nanomaterials are fabricated by AAO templates with narrow channel size of 30~40 nm to ensure the SCO NPs only growing on the surface of AAO membranes.Accordingly,the synthesis of SCO1-1D nanomaterials is realized by the assist of AAO templates with large channel size (300~400 nm),and washing with ethanol carefully to make sure that no SCO1 NPs grow on the surface of AAO membranes.Fig.3a displays that the spherical and inhomogeneous SCO1 NPs grow on the surface of AAO templates assembling as 2D film with large surface areas,while no SCO1 NPs is found on the AAO channels(Fig.3b).In contrast,Fig.3c and 3d suggest that the homogeneously spherical SCO1 NPs accumulate only in the internal channels of AAO membranes,and form the 1D confined SCO1 nanostructures.

    Fig.3 SEM images of SCO1-2D(a,b)and SCO1-1D(c,d)

    Fig.4 SEM images of SCO2-1D+2D with different cycles

    To study the influence of iron髤-triazole NPs with different organic ligands by the support of AAO membrane templates,SCO2-1D+2D,SCO2-2D and SCO2-1D nanostructures via the similar methods were synthesized,and SEM images were set out in Fig.4 and Fig.5.In SCO2-1D+2D,there are some little[Fe(NH2trz)3](ClO4)2NPs growing in the channel of AAO membranes when reacting for the first cycle.As the reacting cycles added,the size and amount of these NPs increase gradually.Some NPs occurred to stack at a certain extent,as shown in Fig.4c~4f.After cycling for 24 times,the SCO2 NPs on the surface of the membranes are lamellate-like and stacked as 2D SCO films,and those accumulated in the channels of templates fill most volume of the apertures,as 1D confined nano-assembly.The surface of -2D are arranged of[Fe(NH2trz)3](ClO4)2laminar film for the intensive surface deposition effect.Similarly,theSCO2NPsinSCO2-1D accumulateinthe channels and there is almost nothing on the surface of the AAO membranes.Comparison in morphological analysis of SCO1-1D+2D and SCO2-1D+2D implies that the organic ligands have an influence on the morphologies of the iron髤triazole nanoassemblies.Furthermore,it also demonstrates that the confined growth and surface filming effect of AAO templates have a directive effect on the formation of different assembly morphologies of[Fe(Htrz)2(trz)](ClO4)and[Fe(NH2trz)3](ClO4)2NPs.

    Fig.6 Plots of HS fraction vs T for SCO1-1D+2D(a),SCO1-2D(b)and SCO1-1D(c)nanostructures

    To investigate the spin-crossover property of the obtained AAO-assisted SCO nanomaterials with differentdimensionalassembly morphologies,the magnetic property of the SCO1-1D+2D were measured over the temperature range from 300 to 400 K with a heating and cooling sweep.As shown in Fig.6a,the spin-crossover behaviour of SCO1-1D+2D shows a two-step spin transition property which is interesting to be observed in one triazole-based iron髤polymer.The first step revealed a gradual and narrow hysteresis loop of ca.6 K with spin transition temperatures Tc1↑=319 K in the warming process and Tc1↓=313 K in the cooling process.While for the second step,it exhibits a rather steep and broad spin-crossover behaviour,and the transition temperatures in the heating and cooling mode appeared at Tc2↑=381 K and Tc2↓=340 K with a hysteresis loop width of ca.41 K.Compared with the transition temperature of bulk powder of SCO1 (Tc↑=360 K and Tc↓=339 K,ΔT=21 K)[16],the first step transition of SCO1-1D+2D moves to a lower temperature with a narrower hysteresis width.While the transition temperatures in the second step shift to a higher region and the hysteresis loop becomes much wider.It can be deduced that this specialstepwise spin-crossoverbehaviourofthe SCO1-1D+2D is probably attributed to the different dimensional assembly morphologies of SCO nanomaterials on the surface and in the channels of AAO templates.In order to further study the two-step spin transition behaviour of SCO1-1D+2D nanomaterials,the magnetic properties of SCO1-2D and SCO1-1D were measured (Fig.6b and 6c).The transition temperatures of SCO1-2D are Tc↑=340 K in warming and Tc↓=320 K in cooling with a hysteresis width of ca.20 K,which are conformed to the first step SCO behaviour of SCO1-1D+2D nanostructures.Correspondingly,the transition temperatures of SCO1-1D at Tc↑=390 K in warming mode and Tc↓=350 K in cooling mode are in accordance with the second step SCO behaviour of SCO1-1D+2D nanostructures.However,contrasting the stepwise SCO behaviourof SCO1-1D+2D with SCO1-2D and SCO1-1D nanomaterials,it can be clearly inferred that the first step transition of SCO1-1D+2D moves to a lower temperature with narrower hysteresis width and the second conversion temperatures of SCO1-1D+2D are also lower than those of SCO1-1D but the wide hysteresis remains almost unchanged.We deduce that this is probably attributed to the influence of the synergistic effect for the combination of two different dimensional assembly morphologies.The nanoparticles growing on the surface of AAO are on 2D templates and grow in a single direction,while the nanoparticles growing on the channel of the AAO are on 1D template and grow in two orientations.Furthermore,contrasting the 1D SCO nano-assembly with 2D SCO nanostructures,the transition temperature of SCO-2D is lower than that of SCO-1D,and there are some reasons to explain:(1)The defects for SCO-2D are much more than that of SCO-1D[25,13c].(2)The difference in growth orientation affects their assembly morphologies,and then indirectly impacts their transition property[26].In a word,the meaningful SCO1-1D+2D nano-object with two-step SCO property resulting from the morphology effect has been obtained by the support of AAO templates.

    Fig.7 Plots of HS fraction vs T for SCO2-1D+2D(a),SCO2-2D(b)and SCO2-1D(c)nanostructures

    Magnetic property of SCO2-1D+2D nanostructures was operated similar to that of the SCO1-1D+2D.As it expected in Fig.7a,the two-step SCO property was also measured in SCO2-1D+2D nanomaterials,but the two transition temperatures were lower than that of the SCO1-1D+2D due to the influence of different organic ligands.The transition temperatures of SCO2-1D+2D are at Tc1↑=181 K,Tc2↑=246 K in the warming sweep and Tc1↓=155 K,Tc2↓=233 K in the cooling sweep with the hysteresis loop widths of 26 and 13 K,respectively.Combined with the magnetic analysis of SCO1-1D+2D,it can be inferred that the first step SCO behaviour is attributed to that of the[Fe(NH2trz)3](ClO4)2film assembling on the surface of the AAO porous templates,and the second step SCO property corresponds to the[Fe(NH2trz)3](ClO4)2confined nanostructure accumulating in the channel of AAO porous templates.To verify this speculation,the SCO properties of SCO2-2D and SCO2-1D were studied as well,as displayed in Fig.7b and 7c.The transition temperatures of SCO2-2D are Tc↑=190 K in the warming branch and Tc↓=172 K in the cooling branch,while those of SCO2-1D are Tc↑=255 K in the warming mode and Tc↓=243 K in the cooling mode.Contrasting the spin-crossover property of SCO2-1D+2D with SCO2-2D and SCO2-1D nanomaterials,the transition temperatures of SCO2-1D+2D move to a lower region.The results for magnetic analysis of the SCO2-1D+2D,SCO2-2D and SCO2-1D nanomaterials further demonstrate that different assembly morphologies lead to the special stepwise SCO behaviour.What′s more,this also indicates that the change of organic ligands doesn′t have an effect on the appearance of two-step SCO behaviour.

    3 Conclusions

    In conclusion,a facile and efficient sequential multistep assembly method was employed to synthesize iron髤 triazole SCO nanostructures with different assembly morphologies,which exhibit two-step spincrossover property.There is no report on this spincrossover phenomenon.The two-step spin transition of SCO-1D+2D corresponds to the SCO NPs assembling on the surface and in the channels of AAO membranes,suggesting that the difference in dimensional assembly morphologies and arrangements of the SCO NPs has a great effect on its SCO property.The fabrication of AAO-assisted 1D+2D spin-crossover nanomaterials provides a novel perspective for producing SCO nanostructure and the basis for the potential application in memory components,data storage and optoelectronic devices.

    Supporting information is available at http://www.wjhxxb.cn

    [1](a)Brooker S.Chem.Soc.Rev.,2015,44:2880-2892

    (b)Quintero C M,Félix G,Suleimanov I,et al.Beilstein J.Nanotechnol.,2014,5:2230-2239

    (c)Bousseksou A,Molnár G,Salmon L,et al.Chem.Soc.Rev.,2011,40:3313-3335

    (d)Gütlich P,Gaspar A B,Garcia Y.Beilstein J.Org.Chem.,2013,9:342-391

    (e)Gütlich P,Goodwin H A.Top.Curr.Chem.,2004,233:1-47

    [2](a)Mikolasek M,Félix G,Nicolazzi W,et al.New J.Chem.,2014,38:1834-1839

    (b)Nagy V,Suleimanov I,Molnár G,et al.J.Mater.Chem.C,2015,3:7897-7905

    (c)Giménez-Marqués M,de Larrea M L G S,Coronado E.J.Mater.Chem.C,2015,3:7946-7953

    (d)Bartual-Murgui C,Natividad E,Roubeau O.J.Mater.Chem.C,2015,3:7916-7924

    (e)Lapresta-Fernández A,Cuéllar M P,Herrera J M,et al.J.Mater.Chem.C,2014,2:7292-7303

    (f)WANG Yu-Xia(王玉俠),QIU Dan(邱丹),XI Sai-Fei(奚賽飛),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(11):1965-1972b

    [3](a)Linares J,Codjovi E,Garcia Y.Sensors,2012,12:4479-4492

    (b)Kahn O,Martinez C J.Science,1998,279:44-48

    (c)Rotaru A,Dugay J,Tan R P,et al.Adv.Mater.,2013,25:1745-1749

    (d)Hayami S,Holmes S M,Halcrow M A.J.Mater.Chem.C,2015,3:7775-7778

    (e)Bartual-Murgui C,Akou A,Thibault C,et al.J.Mater.Chem.C,2015,3:1277-1285

    (f)Molnár G,Salmon L,Nicolazzi W,et al.J.Mater.Chem.C,2014,2:1360-1366

    [4](a)Martinho P N,Rajnak C,Ruben M.Spin-Crossover Mater.,2013:375-404

    (b)Cavallini M.Phys.Chem.Chem.Phys.,2012,14:11867-11876

    [5](a)Thomas L,Hayashi M,Jiang X,et al.Science,2007,315:1553-1556

    (b)WoltersdorfG,BackCH.Phys.Rev.Lett.,2007,99:227207

    [6](a)Ebels U,Radulescu A,Henry Y,et al.Phys.Rev.Lett.,2000,84:983-986

    (b)Guo L M,Wang X H,Zhong C F,et al.J.Appl.Phys.,2012,111:026104

    (c)Reddy S M,Park J J,Na S M,et al.Adv.Funct.Mater.,2011,21:4677-4683

    (d)Liu M,Lagdani J,Imrane H,et al.Appl.Phys.Lett.,2007,90:103105

    [7]Martinho P N,Lemma T,Gildea B,et al.Angew.Chem.Int.Ed.,2012,51:11995-11999

    [8](a)Soyer H,Mingotaud C,Boillot M L,et al.Langmuir,1998,14:5890-5895

    (b)Soyer H,Dupart E,Gómez-García C J,et al.Adv.Mater.,1999,11:382-384

    (c)Létard J F,Nguyen O,Soyer H,et al.Inorg.Chem.,1999,38:3020-3021

    (d)Roubeau O,Agricole B,Clérac,et al.J.Phys.Chem.B,2004,108:15110-15116

    (e)Roubeau O,Natividad E,Agricole B,et al.Langmuir,2007,23:3110-3117

    (f)White N G,Feltham H L C,Gandolfi C,et al.Dalton Trans.,2010,39:3751-3758

    (g)Kitchen J A,White N G,Gandolfi C,et al.Chem.Commun.,2010,46:6464-6466

    [9](a)Ruben M,Rojo J,Romero-Salguero F J,et al.Angew.Chem.Int.Ed.,2004,43:3644-3662

    (b)Cobo S,Molnár G,Real J A,et al.Angew.Chem.Int.Ed.,2006,45:5786-5789

    [10](a)Jenekhe S A.Polym.Eng.Sci.,1983,23:830-834

    (b)Matsuda M,Tajima H.Chem.Lett.,2007,36:700-701

    (c)Matsuda M,Isozaki H,Tajima H.Thin Solid Films,2008,517:1465-1467

    (d)Quintero C M,Salmon L,Molnár G,et al.J.Mater.Chem.,2012,22:3745-3751

    (e)Félix G,Abdul-Kader K,Mahfoud T,et al.J.Am.Chem.Soc.,2011,133:15342-15345

    (f)Tissot A,Bardeau J F,Rivière E,et al.Dalton Trans.,2010,39:7806-7812

    [11](a)Deegan R D,Bakajin O,Dupont T F,et al.Nature,1997,389:827-829

    (b)Galyametdinov Y,Ksenofontov V,Prosvirin A,et al.Angew.Chem.Int.Ed.,2001,40:4269-4271

    [12](a)Agusti G,Cobo S,Gaspar A B,et al.Chem.Mater.,2008,20:6721-6732

    (b)Bartual-Murgui C,Salmon L,Akou A,et al.New J.Chem.,2011,35:2089-2094

    [13](a)Witte G,Wll C.J.Mater.Res.,2004,19:1889-1916

    (b)Naggert H,Bannwarth A,Chemnitz S,et al.Dalton Trans.,2011,40:6364-6366

    (c)Shi S,Schmerber G,Arabski J,et al.Appl.Phys.Lett.,2009,95:043303

    [14](a)Lai P,Hu M Z,Shi D,et al.Chem.Commun.,2008:1338-1340

    (b)Wang Y,Qin Y,Berger A,et al.Adv.Mater.,2009,21:2763-2766

    (c)Wang K,Jin S M,Xu J,et al.ACS Nano,2016,10:4954-4960

    [15](a)Terekhov S N,Kachan S M,Panarin A Y,et al.Phys.Chem.Chem.Phys.,2015,17:31780-31789

    (b)Fang Z,Wang Y,Peng X,et al.Mater.Lett.,2003,57:4187-4190

    (c)Cui M,Wang F,Miao Z,et al.RSC Adv.,2015,5:65627-65634

    [16](a)Roubeau O.Chem.Eur.J.,2012,18:15230-15244(b)Sugiyarto K H,Goodwin H A.Aust.J.Chem.,1994,47:263-277

    [17](a)Krober J,Codjovi E,Kahn O,et al.J.Am.Chem.Soc.,1993,115:9810-9811

    (b)Smit E,Manoun B,Waal D.J.Raman Spectrosc.,2001,32:339-344

    (c)Varnek V A,Lavrenova L G.J.Struct.Chem.,1995,36:104-111

    (d)Chen Y,Ma J G,Zhang J J,et al.Chem.Commun.,2010,46:5073-5075

    (e)Kahn O,Sommier L,Codjovi E.Chem.Mater.,1997,9:3199-3205

    [18]He M,Yao J,Low Z X,et al.RSC Adv.,2014,4:7634-7639

    [19]Durand P,Pillet S,Bendeif E E,et al.J.Mater.Chem.C,2013,1:1933-1942

    [20](a)Hetmańczyk J,Hetmańczyk 覵,Migda-Mikuli A,et al.J.Raman Spectrosc.,2012,43:1118-1125

    (b)Abdollahi-Alibeik M,Sadeghi-Vasafi N,Moaddeli A,et al.Res.Chem.Intermed.,2016,42:2867-2881

    [21](a)Urakawa A,Van Beek W,Monrabal-Capilla M,et al.J.Phys.Chem.C,2010,115:1323-1329

    (b)Grosjean A,Négrier P,Bordet P,et al.Eur.J.Inorg.Chem.,2013,2013:796-802

    [22]Chen Y,Ma J G,Zhang J J,et al.Chem.Commun.,2010,46:5073-5075

    [23]Lefter C,Tricard S,Peng H,et al.J.Phys.Chem.C,2015,119:8522-8529

    [24](a)Qiu D,Gu L,Sun X L,et al.RSC Adv.,2014,4:61313-61319

    (b)Moussa N O,Ostrovskii D,Garcia V M,et al.Chem.Phys.Lett.,2009,477:156-159

    [25](a)Rotaru A,Molnár G,Salmon L,et al.Chem.Commun.,2012,48:4163-4165

    (b)Larionova J,Salmon L,Guari Y,et al.Angew.Chem.Int.Ed.,2008,120:8360-8364

    (c)Gütlich P,Hauser A,Spiering H.Angew.Chem.Int.Ed.,1994,33:2024-2054

    [26]Wang Y X,Qiu D,Xi S F,et al.Chem.Commun.,2016,52:8034-8037

    AAO Assisted 1D Confined Assembly and 2D Surface Filming of Iron髤Triazole Nanomaterial and Spin-Crossover Properties

    LI Zhi-Hua1WANG Yu-Xia1QIU Dan1LI Zai-Jun1GU Zhi-Guo*,1,2
    (1School of Chemistry and Material Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
    (2Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,Wuxi,Jiangsu 214122,China)

    Iron髤 triazole(SCO1)and iron髤 4-amino-triazole(SCO2)spin-crossover(SCO)nanomaterials were assembled in the channel and on the surface of anodic aluminum oxide (AAO)templates simultaneously by a facile sequential multistep assembly method.The obtained SCO1-1D+2D and SCO2-1D+2D nanomaterials have been characterized by SEM,FT-IR,PXRD,and Raman spectra.SEM images show that spherical SCO NPs growing in the channel of AAO templates aggregate with time going on,and assemble as 1D nanostructure.While those growing on the surface of AAO substrates assemble as uniform and dense 2D SCO film.It is interesting that both SCO-1D+2D nanostructures present a special two-step spin-crossover behaviour with hysteresis loops(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K).The magnetic measuring of SCO-1D and SCO-2D indicates that the two-step SCO behaviour results from the different assembly morphologies of SCO.The first step spin transition at lower temperature is ascribed to the properties of 2D SCO films growing on the surface of AAO templates,while thetransition in the second step at higher temperature can be attributed to the 1D SCO confined assembly growing in the channel of AAO membranes.

    nanomaterials;anodic aluminum oxide(AAO)templates;self-assembly;two-step spin-crossover behavior

    TB33

    A

    1001-4861(2017)12-2311-11

    10.11862/CJIC.2017.200

    2017-05-28。收修改稿日期:2017-07-16。

    國(guó)家自然科學(xué)基金(No.21771089)和中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(No.JUSRP51725B,JUSRP51513)資助。

    *通信聯(lián)系人。 E-mail:zhiguogu@jiangnan.edu.cn

    猜你喜歡
    亞鐵三唑孔道
    再生亞鐵絡(luò)合物脫硝液研究進(jìn)展
    能源工程(2022年1期)2022-03-29 01:06:40
    基于ANSYS的液壓集成塊內(nèi)部孔道受力分析
    接觸壓力非均勻分布下彎曲孔道摩阻損失分析
    不同濃度三唑錫懸浮劑防治效果研究
    鋼渣對(duì)亞鐵離子和硫離子的吸附-解吸特性
    三組分反應(yīng)高效合成1,2,4-三唑烷類化合物
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    離子對(duì)SBA-15形貌與孔道結(jié)構(gòu)的影響
    電解制備氫氧化亞鐵微型設(shè)計(jì)
    毒死蜱和三唑磷將禁止在蔬菜上使用
    亚洲精品久久午夜乱码| 日本av免费视频播放| 国产91精品成人一区二区三区 | 久久 成人 亚洲| 久久ye,这里只有精品| 亚洲国产欧美在线一区| 成人国语在线视频| 久久性视频一级片| 色精品久久人妻99蜜桃| 国产免费福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区久久久樱花| 亚洲精品国产精品久久久不卡| 久久中文看片网| 国产精品二区激情视频| 热99久久久久精品小说推荐| 99国产极品粉嫩在线观看| 少妇精品久久久久久久| 亚洲伊人色综图| 国产精品麻豆人妻色哟哟久久| 亚洲欧美色中文字幕在线| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| h视频一区二区三区| 国产淫语在线视频| 亚洲国产看品久久| 亚洲精品久久成人aⅴ小说| 久久毛片免费看一区二区三区| 国产亚洲精品一区二区www | 1024香蕉在线观看| 久久av网站| 国产免费av片在线观看野外av| 国产亚洲av片在线观看秒播厂| 狠狠精品人妻久久久久久综合| 三上悠亚av全集在线观看| 12—13女人毛片做爰片一| 欧美 日韩 精品 国产| 亚洲全国av大片| 久久久久久久大尺度免费视频| 少妇 在线观看| 久久久精品区二区三区| 激情视频va一区二区三区| 婷婷色av中文字幕| 亚洲成人免费电影在线观看| 天堂俺去俺来也www色官网| 日韩中文字幕欧美一区二区| 麻豆乱淫一区二区| 老司机靠b影院| 动漫黄色视频在线观看| 黄网站色视频无遮挡免费观看| 在线观看www视频免费| 不卡一级毛片| 婷婷成人精品国产| 啦啦啦啦在线视频资源| 窝窝影院91人妻| 一级毛片女人18水好多| 99热网站在线观看| 欧美在线一区亚洲| 纵有疾风起免费观看全集完整版| 欧美黄色片欧美黄色片| 91成年电影在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕人妻丝袜制服| 交换朋友夫妻互换小说| 汤姆久久久久久久影院中文字幕| 欧美成狂野欧美在线观看| 日本一区二区免费在线视频| 夜夜夜夜夜久久久久| 亚洲精品国产色婷婷电影| 国产日韩一区二区三区精品不卡| 日日爽夜夜爽网站| 日韩免费高清中文字幕av| 狂野欧美激情性bbbbbb| 国产精品一二三区在线看| 久久久久久人人人人人| av在线app专区| 欧美97在线视频| 亚洲男人天堂网一区| 国产精品av久久久久免费| 午夜福利在线免费观看网站| 捣出白浆h1v1| 国产在线免费精品| 欧美xxⅹ黑人| 男女之事视频高清在线观看| 永久免费av网站大全| 国产黄色免费在线视频| 色精品久久人妻99蜜桃| 成人黄色视频免费在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产色婷婷电影| 国产免费视频播放在线视频| 欧美性长视频在线观看| 丝袜脚勾引网站| 不卡一级毛片| 无遮挡黄片免费观看| 国产av一区二区精品久久| 亚洲男人天堂网一区| 精品国产一区二区三区久久久樱花| cao死你这个sao货| 中文欧美无线码| av片东京热男人的天堂| 国产亚洲午夜精品一区二区久久| 黑人欧美特级aaaaaa片| 精品国产国语对白av| 亚洲一区中文字幕在线| 韩国高清视频一区二区三区| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 亚洲视频免费观看视频| 欧美激情极品国产一区二区三区| 日韩欧美免费精品| 久久精品成人免费网站| 一进一出抽搐动态| 国产亚洲欧美精品永久| 青青草视频在线视频观看| 在线观看免费高清a一片| 国产成人a∨麻豆精品| 亚洲自偷自拍图片 自拍| 亚洲精品国产区一区二| 国产成人系列免费观看| 91麻豆精品激情在线观看国产 | 叶爱在线成人免费视频播放| 美女大奶头黄色视频| 中文字幕人妻熟女乱码| 久久久久国产一级毛片高清牌| 黑人欧美特级aaaaaa片| 精品少妇内射三级| 亚洲欧美日韩另类电影网站| 热99国产精品久久久久久7| 久久人人爽人人片av| 国产精品影院久久| 精品一品国产午夜福利视频| 国产一区二区三区在线臀色熟女 | 黄色视频,在线免费观看| 人成视频在线观看免费观看| 免费观看a级毛片全部| 热99re8久久精品国产| 国产精品一区二区在线不卡| 一区二区三区四区激情视频| 两性午夜刺激爽爽歪歪视频在线观看 | 巨乳人妻的诱惑在线观看| 亚洲男人天堂网一区| 国产精品av久久久久免费| 黄片大片在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产高清国产精品国产三级| 丰满少妇做爰视频| 亚洲精品一卡2卡三卡4卡5卡 | 一二三四社区在线视频社区8| 成年美女黄网站色视频大全免费| 男女边摸边吃奶| 少妇人妻久久综合中文| 欧美国产精品一级二级三级| 99久久99久久久精品蜜桃| 亚洲五月色婷婷综合| 国产亚洲av片在线观看秒播厂| 久久久久精品人妻al黑| 51午夜福利影视在线观看| 精品熟女少妇八av免费久了| 黑人猛操日本美女一级片| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 青春草视频在线免费观看| 黄色视频不卡| 久久精品成人免费网站| av片东京热男人的天堂| 久久99热这里只频精品6学生| 岛国在线观看网站| 国产精品影院久久| 久久亚洲国产成人精品v| 高清黄色对白视频在线免费看| 午夜精品久久久久久毛片777| 中文精品一卡2卡3卡4更新| av在线播放精品| 丝袜脚勾引网站| 亚洲全国av大片| 亚洲第一青青草原| 国产福利在线免费观看视频| 老司机午夜十八禁免费视频| 精品一区二区三区av网在线观看 | 精品欧美一区二区三区在线| 亚洲成人手机| 国产亚洲一区二区精品| 日韩电影二区| 国产欧美日韩精品亚洲av| 中亚洲国语对白在线视频| 亚洲成国产人片在线观看| 国产成人免费无遮挡视频| 久久久久国产精品人妻一区二区| videos熟女内射| 五月开心婷婷网| 国产精品成人在线| 色综合欧美亚洲国产小说| 黑人欧美特级aaaaaa片| 美女国产高潮福利片在线看| 91成人精品电影| 亚洲中文av在线| 亚洲人成电影观看| 国产精品免费大片| netflix在线观看网站| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 99精国产麻豆久久婷婷| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 丝袜脚勾引网站| 日本91视频免费播放| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 久久久久久亚洲精品国产蜜桃av| 丁香六月欧美| 婷婷色av中文字幕| 在线永久观看黄色视频| 成年美女黄网站色视频大全免费| 日本一区二区免费在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩另类电影网站| 波多野结衣av一区二区av| 国产亚洲欧美在线一区二区| 中文字幕人妻熟女乱码| 亚洲av电影在线观看一区二区三区| 欧美日韩av久久| 国产精品香港三级国产av潘金莲| 亚洲九九香蕉| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕av电影在线播放| 国产视频一区二区在线看| 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 大片电影免费在线观看免费| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 国产一卡二卡三卡精品| 天天添夜夜摸| cao死你这个sao货| 国产成人欧美在线观看 | 1024香蕉在线观看| 人成视频在线观看免费观看| 国产97色在线日韩免费| 咕卡用的链子| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 亚洲欧美一区二区三区久久| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| 美女黄网站色视频| tocl精华| 好看av亚洲va欧美ⅴa在| 欧美又色又爽又黄视频| 久久久久国内视频| 亚洲av片天天在线观看| 午夜a级毛片| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 国产精品一及| 午夜激情福利司机影院| 全区人妻精品视频| а√天堂www在线а√下载| 99热这里只有是精品50| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 精品高清国产在线一区| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 手机成人av网站| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色| 日韩中文字幕欧美一区二区| 日本a在线网址| 黄色a级毛片大全视频| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 在线国产一区二区在线| 波多野结衣高清作品| www国产在线视频色| 三级男女做爰猛烈吃奶摸视频| 露出奶头的视频| 久久久久精品国产欧美久久久| 波多野结衣高清无吗| 免费看十八禁软件| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 欧美乱妇无乱码| www日本在线高清视频| 长腿黑丝高跟| 伦理电影免费视频| 99re在线观看精品视频| 精品一区二区三区四区五区乱码| 国产午夜福利久久久久久| 性色av乱码一区二区三区2| 国内精品久久久久精免费| 亚洲国产看品久久| 国产区一区二久久| 亚洲全国av大片| 欧美成人一区二区免费高清观看 | 欧美国产日韩亚洲一区| 亚洲性夜色夜夜综合| 国产精品av视频在线免费观看| 人人妻,人人澡人人爽秒播| 久久欧美精品欧美久久欧美| 亚洲精品久久成人aⅴ小说| 丰满人妻一区二区三区视频av | 亚洲精品av麻豆狂野| 亚洲中文日韩欧美视频| 亚洲av片天天在线观看| www日本黄色视频网| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 久99久视频精品免费| 成人永久免费在线观看视频| 久久精品综合一区二区三区| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 亚洲精品中文字幕在线视频| 禁无遮挡网站| 小说图片视频综合网站| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 亚洲成人免费电影在线观看| 欧美成人一区二区免费高清观看 | 一a级毛片在线观看| 三级毛片av免费| 欧美三级亚洲精品| 日本 欧美在线| 特级一级黄色大片| av在线天堂中文字幕| 国产99久久九九免费精品| 两个人免费观看高清视频| 99久久精品国产亚洲精品| ponron亚洲| 午夜免费激情av| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 午夜日韩欧美国产| 国产三级黄色录像| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲| 久久草成人影院| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 精品国产亚洲在线| 十八禁人妻一区二区| 亚洲一区中文字幕在线| 狠狠狠狠99中文字幕| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 午夜久久久久精精品| 99re在线观看精品视频| 中出人妻视频一区二区| 日韩成人在线观看一区二区三区| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 欧美丝袜亚洲另类 | 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 国产成人系列免费观看| 女人被狂操c到高潮| av中文乱码字幕在线| 一级作爱视频免费观看| 亚洲成人久久性| 午夜免费激情av| 国产亚洲av高清不卡| 日韩av在线大香蕉| 亚洲最大成人中文| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 免费看美女性在线毛片视频| 2021天堂中文幕一二区在线观| 丝袜人妻中文字幕| 精品少妇一区二区三区视频日本电影| 免费人成视频x8x8入口观看| 白带黄色成豆腐渣| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 无限看片的www在线观看| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 免费高清视频大片| 精品国内亚洲2022精品成人| 变态另类丝袜制服| 国产av麻豆久久久久久久| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 床上黄色一级片| 50天的宝宝边吃奶边哭怎么回事| 黄色视频不卡| 一级毛片高清免费大全| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 日本熟妇午夜| 99国产精品一区二区蜜桃av| 亚洲av五月六月丁香网| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 小说图片视频综合网站| 91国产中文字幕| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 亚洲成人久久爱视频| 国产精品综合久久久久久久免费| 精品一区二区三区四区五区乱码| 少妇人妻一区二区三区视频| 精品日产1卡2卡| 精华霜和精华液先用哪个| 人妻久久中文字幕网| 一区福利在线观看| 精品久久久久久久久久久久久| 国产91精品成人一区二区三区| 午夜久久久久精精品| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 长腿黑丝高跟| 欧美高清成人免费视频www| 91成年电影在线观看| 久久久久久久久中文| 听说在线观看完整版免费高清| 国产成+人综合+亚洲专区| 香蕉丝袜av| 又黄又爽又免费观看的视频| 又大又爽又粗| 日本黄大片高清| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 亚洲第一欧美日韩一区二区三区| 国产精品久久久av美女十八| 在线看三级毛片| 又黄又爽又免费观看的视频| 亚洲激情在线av| 99热6这里只有精品| 女同久久另类99精品国产91| 国产亚洲精品久久久久5区| 国产片内射在线| 亚洲电影在线观看av| 亚洲av第一区精品v没综合| 久久人妻av系列| 好男人电影高清在线观看| 一个人免费在线观看电影 | 十八禁人妻一区二区| 超碰成人久久| 视频区欧美日本亚洲| 精品午夜福利视频在线观看一区| 亚洲精品在线美女| 一个人免费在线观看电影 | 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 欧美zozozo另类| 国产激情偷乱视频一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 成人一区二区视频在线观看| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 在线观看66精品国产| 露出奶头的视频| 午夜精品一区二区三区免费看| 欧美黑人精品巨大| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 露出奶头的视频| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 国产精品一区二区免费欧美| 色综合站精品国产| 欧美性长视频在线观看| 久久久久国内视频| 97碰自拍视频| 色综合欧美亚洲国产小说| 丰满人妻一区二区三区视频av | 狂野欧美白嫩少妇大欣赏| 2021天堂中文幕一二区在线观| 亚洲av电影不卡..在线观看| 丰满人妻一区二区三区视频av | 毛片女人毛片| 欧美+亚洲+日韩+国产| 国产成人欧美在线观看| 久久中文看片网| 啦啦啦韩国在线观看视频| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| 亚洲成人久久性| 性欧美人与动物交配| 亚洲美女视频黄频| 免费在线观看日本一区| 男女之事视频高清在线观看| 动漫黄色视频在线观看| 免费在线观看亚洲国产| 一区福利在线观看| 一级毛片精品| 日本a在线网址| 欧美成人午夜精品| 三级毛片av免费| 亚洲精品久久成人aⅴ小说| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 欧美日韩精品网址| 欧美人与性动交α欧美精品济南到| 精品人妻1区二区| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 十八禁网站免费在线| 精品国内亚洲2022精品成人| 一个人免费在线观看电影 | 国产蜜桃级精品一区二区三区| 高潮久久久久久久久久久不卡| 色综合站精品国产| 国产成人av激情在线播放| 99国产极品粉嫩在线观看| 制服丝袜大香蕉在线| 久久精品aⅴ一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看 | 亚洲欧美日韩东京热| 香蕉丝袜av| 国产午夜精品论理片| 天天添夜夜摸| 香蕉久久夜色| 久久久久久久午夜电影| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 亚洲国产精品999在线| 国产真实乱freesex| av福利片在线观看| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点| 亚洲熟妇中文字幕五十中出| 日韩欧美国产在线观看| 久久亚洲精品不卡| 欧美一级毛片孕妇| 男女午夜视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 亚洲精品色激情综合| 午夜久久久久精精品| 亚洲精品美女久久久久99蜜臀| 波多野结衣巨乳人妻| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 欧美日韩亚洲综合一区二区三区_| 可以在线观看毛片的网站| 哪里可以看免费的av片| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 窝窝影院91人妻| 露出奶头的视频| 国产午夜精品论理片| 欧美zozozo另类| 在线观看免费视频日本深夜| 91国产中文字幕| 精品电影一区二区在线| 操出白浆在线播放| 亚洲专区中文字幕在线| 中文字幕精品亚洲无线码一区| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 国产在线观看jvid| 法律面前人人平等表现在哪些方面| 久久精品国产清高在天天线| 91大片在线观看| 麻豆国产97在线/欧美 | 老司机靠b影院| 亚洲欧美激情综合另类| 精品久久久久久,| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 淫妇啪啪啪对白视频| 国产黄色小视频在线观看| 两个人的视频大全免费| 成人18禁在线播放| 日韩欧美免费精品| 身体一侧抽搐| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线在线观看| 日本成人三级电影网站| 国产单亲对白刺激| 久久精品影院6| 一二三四在线观看免费中文在| 成年免费大片在线观看| 哪里可以看免费的av片| 一级黄色大片毛片| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 成年免费大片在线观看| 国产av不卡久久| 在线观看66精品国产| 成人国语在线视频| 国产一区二区在线av高清观看| 手机成人av网站| 国内精品久久久久久久电影| 久久中文看片网| 岛国在线观看网站| 观看免费一级毛片| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 亚洲午夜精品一区,二区,三区| 欧美成人一区二区免费高清观看 | 免费在线观看影片大全网站| 老司机午夜福利在线观看视频|