• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    α-Ti(HPO4)2微球負(fù)載型催化劑的合成及其烯烴聚合催化性能

    2017-12-13 10:52:10義建軍石于堅(jiān)徐慶紅
    關(guān)鍵詞:球型丙烯烯烴

    袁 苑 義建軍 石于堅(jiān) 徐慶紅*,

    α-Ti(HPO4)2微球負(fù)載型催化劑的合成及其烯烴聚合催化性能

    袁 苑1,2義建軍2石于堅(jiān)1徐慶紅*,1

    (1北京化工大學(xué)理學(xué)院,化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100029)
    (2中國(guó)石油天然氣股份有限公司石油化工研究院,北京 102206)

    2種茂金屬催化劑及1種后過渡金屬催化劑分別被固載于經(jīng)過甲基鋁氧烷處理后的α-Ti(HPO4)2微球表面,制備得到3種微球負(fù)載型催化劑。在烯烴聚合反應(yīng)過程中,3種負(fù)載型催化劑均表現(xiàn)出比硅膠負(fù)載型催化劑更高的催化活性。2種茂金屬負(fù)載型催化劑在乙烯、丙烯聚合反應(yīng)中的活性分別高達(dá)6.8×107gPE·(molZr·h)-1和5.0×107gPP·(molZr·h)-1,所產(chǎn)生的烯烴聚合產(chǎn)物分子量分布較窄(Mw/Mnlt;2.3),表現(xiàn)出良好的單中心催化特性,而且丙烯聚合產(chǎn)物的等規(guī)度高達(dá)96.5%。負(fù)載型后過渡金屬催化劑在乙烯聚合反應(yīng)中的活性稍低,但也能夠達(dá)到8.3×106gPE·(molFe·h)-1。3種負(fù)載型催化劑催化烯烴聚合產(chǎn)物均成微球型,能夠很好地復(fù)制載體的形貌。

    α-Ti(HPO4)2;球型;茂金屬;后過渡金屬催化劑;烯烴聚合

    0 Introduction

    Since pioneering works of Ziegler and Natta in coordination polymerization[1-2],the research on polyolefin catalyst has made great progress and promoted the development of polyolefin industry.Today,Ziegler-Natta catalyst (titanium catalyst)[3]and Phillips catalyst(chromium catalyst)[4]are the most widely used catalysts to produce HDPE,LLDPE,PP and other polyolefin products.Although amount of metallocene catalysts[5]applied in polyolefin industry is relatively small,the demand of metallocene polyolefin grows very fast.

    In the last two decades,some non-metallocene transition metal catalysts with high activity were reported,such as Ni α-diimine catalyst[6-7],Fe pyridine-diimine catalyst[8-9],FI catalyst[10-11]and PI catalyst[12-13].These new catalysts can be used to prepare polyolefin with unique properties,such as highly branched polyethylene[14-15],ethylene/polar monomer copolymer[16],multiblock copolymer[17-18], olefin block copolymers(OBCs)[19-20],which are hardly produced by the traditional catalysts.

    The homogeneous metallocene catalyst and late transition metal catalyst have stimulated considerable research efforts in the polyolefin area[21-24].In comparison with the conventional Ziegler-Natta catalyst,these homogeneous catalysts exposed two main problems fora large-scale production:difficulty controlling polymer particle morphology and severe reactor fouling.To overcome these drawbacks,homogeneous catalysts are supported on proper carriers[25-26].A variety of materials have been used as carriers for metallocene or non-metallocene catalysts,such as silica[27-28],MgCl2[29-30],Al2O3[31],zeolite[32-33],montmorillonite[34-35],LDHs[36],polystyrene[37-38]and polysiloxane[39].

    The acidity in solid supports is found to have benefit in polymerization process,and the existence of Lewis acid sites are found to increase activity of the catalyst[40-41].In our previous studies[42],α-Ti(HPO4)2,a solid acid,was prepared and used to support metallocene catalysts.Fine powdery polyolefin were prepared without obvious bulk and no polymer stuck on the inner wall of polymerizer by using the powder α-Ti(HPO4)2supported metallocene catalysts,and the supported catalysts show higher activities than that of the silica supported catalysts under similar polymerization conditions.α-Ti(HPO4)2can improve efficiency of active sites in metallocene/MAO system and kept the single-site characteristic ofmetallocene.The polyethylene and polypropylene obtained in our previous studies[42]have narrow molecular weight distributions.However,the morphology of polymer particles is irregular which may decrease flow ability and bulk density of the product.

    It is known that the morphologies of polyolefin catalysts can be replicated into the polymer particles[43-44],so we designed to use spherical α-Ti(HPO4)2supported catalysts to obtain ball-shaped polyolefin.In our present experiments,α-Ti(HPO4)2was prepared firstly and the spherical carrier was finally prepared by spray drying the slurry of α-Ti(HPO4)2.After being treated with methylaluminoxane (MAO),the new spherical carrier was used to load metallocene or late transition metal catalysts.The supported catalysts were studied and compared with referenced silica supported catalysts in olefin polymerizations.

    1 Experimental

    1.1 Materials

    Methylaluminoxane (MAO)was purchased from Albemarle Corporation(USA)as 10%(w/w)in toluene.H3PO4,TiCl4,Hexane,Toluene were purchased from Sinopharm Chemical Reagent Co.,Ltd (P.R.China).Hexane and Toluene were refluxed over sodium with benzophenone as indicator and distilled under a nitrogen atmosphere prior to use.Silica support 2408d stored under nitrogen protection was purchased from Grace Corporation(USA).(nBuCp)2ZrCl2(98%)and rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2(97%)were purchased from Jamp;K Scientific LTD (USA)and used without further purification.

    2,6-Bis(1-(2,6-diisopropyl)phenylimino)ethyl pyridine iron髤chloride was synthesized according to a published procedure[45].

    Molecular structures of the above three compounds are shown in Scheme 1.

    Scheme 1 Molecular structures of(nBuCp)2ZrCl2(A),rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2(B)and 2,6-Bis(1-(2,6-diisopropyl)phenylimino)ethyl pyridine iron髤(C)

    1.2 Preparation of spherical α-Ti(HPO4)2support

    600 mL of TiCl4aqueous solution (1.2 mol·L-1)was added slowly to 1 500 mL of H3PO4aqueous solution(1.0 mol·L-1)by stirring at room temperature.The mixing was refluxed for 72 h.The precipitate was separated by centrifuging and washed with deionized waterforseveraltimesuntilpH value ofthe centrifugal liquid was about 6.5.The wet precipitate was stirred at a high speed with deionized water to form white slurry(α-Ti(HPO4)2content in the mixture was about 6%,w/w)and the slurry was spray dried.The wet sample was dried at 160℃under vacuum to remove water and later it was kept under nitrogen protection.

    1.3 Preparations of supported catalysts

    All manipulations relating to air and/or moisture sensitive compounds were performed in a dry nitrogen glove boxorin schlenk bottlesundernitrogen protection.

    α-Ti(HPO4)2/MAO/(nBuCp)2ZrCl2catalyst(cat-1).5 g of the spherical α-Ti(HPO4)2was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution (10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.70 mg of(nBuCp)2ZrCl2was dissolved in 10 mL dry toluene,followed by addition of 1.0 mL MAO solution(10%in toluene,w/w).The solution was stirred at room temperature for 30 min under nitrogen protection.The(nBuCp)2ZrCl2solution was added to the suspension of spherical α-Ti(HPO4)2support drop by drop by stirring at the same time,and the mixture was stirred and further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    α-Ti(HPO4)2/MAO/[2,6-bis(1-(2,6-diisopropyl)phenylimino)ethyl pyridine iron髤chloride]catalyst(cat-2).5 g of spherical α-Ti(HPO4)2support was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution (10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.100 mg of 2,6-Bis(1-(2,6-diisopropyl)phenylimino)ethyl pyridine iron髤chloride was added to the suspension later.The mixture was further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    α-Ti(HPO4)2/MAO/rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2catalyst(cat-3).5 g of spherical α-Ti(HPO4)2support was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution(10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.100 mg of rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2was dissolved in 20 mL dry toluene,followed by addition of 10 mL MAO solution(10%in toluene,w/w).The solution was stirred at room temperature for 30 min under nitrogen protection.The rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2solution was later added to the suspension of spherical α-Ti(HPO4)2support drop by drop by stirring at the same time,and the mixture was stirred and further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    Silica/MAO/(nBuCp)2ZrCl2catalyst(Refcat-1).5 g of silica support was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution(10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.70 mg of(nBuCp)2ZrCl2was dissolved in 10 mL dry toluene,followed by addition of 1.0 mL MAO solution(10%in toluene,w/w).The solution was stirred at room temperature for 30 min under nitrogen protection.The(nBuCp)2ZrCl2solution was then added to the suspension containing silica support,and the mixture was further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    Silica/MAO/[2,6-Bis(1-(2,6-diisopropyl)phenylimino)ethyl pyridine iron髤chloride]catalyst(Refcat-2).5 g of silica support was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution(10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.100 mg of 2,6-Bis(1-(2,6-diisopropyl)phenylimino)ethylpyridine iron髤chloride was added to the above suspension,and the mixture was further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    Silica/MAO/rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2catalyst(Refcat-3).5 g of silica support was suspended into 25 mL dry toluene,followed by addition of 15 mL MAO solution (10%in toluene,w/w).The suspension was stirred at 40℃for 1 h under nitrogen protection.100 mg of rac-Me2Si (2-Me-4,5-PhInd)2ZrCl2was dissolved in 20 mL dry toluene,followed by addition of 10 mL MAO solution (10%in toluene,w/w),and the solution was stirred at room temperature for 30 min under nitrogen protection.Later,the rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2solution was dropped into the suspension containing silica support by stirring at the same time,and the suspension was further heated at 40℃for 2 h.The solid product was finally obtained by filtration,washing with toluene and hexane for several times,and dried under vacuum at room temperature.

    1.4 Ethylene and propylene polymerizations

    100 mg of cat-1(or Refcat-1,cat-2,Refcat-2),2.0 mL of 2.4 mol·L-1triethylaluminium (TEAL,in dried hexane)and 1.0 L of dried hexane were added to an autoclave(2.0 L).Ethylene gas was continuously fed into the autoclave at 1.0 MPa during polymerization,and the temperature in autoclave was kept at 60℃.One hour later,the reaction was stopped.The polymer was quickly filtered and dried in a vacuum oven at 60℃overnight.

    400 mg of cat-3 (or Refcat-3),1.0 mL of 2.4 mol·L-1TEAL(in dried hexane)and 1.0 kg of purified liquid propylene were added to an autoclave (5.0 L).Polymerization was carried out at 60℃for 2 h.The polymer was finally obtained by rapid filtration and drying in a vacuum oven at 60℃overnight.

    1.5 Characterizations

    Crystal structure of the relative samples synthesized were determined on powder X-ray diffraction(PXRD),using a Rigaku D/MAX diffractometer(made in Japan)with Cu Kα radiation (λ=0.154 06 nm,scanning speed=10°·min-1)operated at 40 kV and 40 mA.Fourier transform-infrared (FT-IR)spectra of the samples were recorded from KBr pellet(1 mg of sample to 100 mg of KBr)over the range of 400~4 000 cm-1,at 2 cm-1resolution using a Bruker Vector-22 spectrometer(made in Germany).N2sorption isotherms were recorded on a Quantachrome NOVA 2000e sorption analyzer(made in USA)at liquid nitrogen temperature(-196℃).Samples were degassed at 150℃ overnight prior to measurement.Surface areas were determined using the Brunauer-Emmett-Teller (BET)method.Surface acidic strength of the samples were determined by thermo programmed desorption of ammonia(NH3-TPD)on a Thermo TPORO 1100 series(made in USA).Particle sizes of the support and the supported catalyst were measured by MS2000 particle analyzer(made in UK),using hexane as dispersant.Content of Zr and Fe in the supported catalysts were determined by inductively coupled plasma opticalemission spectroscopy (ICP-OES)on a PerkinElmer Optima 2000DV instrument (made in Japan).Electronic micrographs of the samples were observed using a Hitachi S4700 scanning electron microscope(SEM,made in Japan)operated at 15 kV.Mwand polydispersity(Mw/Mn)of the polymers were measured on a PlomerChar GPC-IR(made in Spain)at 140℃,using 1,2,4-trichlorobenzene as the solvent.

    2 Results and discussion

    2.1 Characterizations of spherical α-Ti(HPO4)2support and the supported catalysts

    X-ray powder diffraction of spherical α-Ti(HPO4)2synthesized is shown in Fig.1.Three characteristic diffractions are found at 2θ angles of 11.64°,20.86°and 25.80°,fitting to the standard spectrum of α-Ti(HPO4)2reported(PDF No.38-334)[46].The peak at 11.64°,corresponding to (002),is characteristic of crystalline α-Ti(HPO4)2.Due to the easy occurrence of ionization,a strong stretching vibration absorption contributing to P-O-groups at about 1 030 cm-1is found in IR spectrum (Fig.2),while the stretching vibration absorption of P-OH is commonly found from 2 000 to 2 600 cm-1.The other two absor-ptions at 1 459 and 1 400 cm-1,corresponding to P-O-and P-OH in the figure[47],also prove the existence of free mobile H+ions in interlayer of α-Ti(HPO4)2.

    Fig.1 PXRD pattern of spherical α-Ti(HPO4)2

    Fig.2 FT-IR spectrum of spherical α-Ti(HPO4)2

    Examination of the prepared support with SEM shows that the dried solid support particles are mostly in spherical form (Fig.3A).Average diameter of these particles is about 6.3 μm that was detected by laser particle analyzer.Magnified SEM image (Fig.3B)to one spherical particle indicates that the surface of the support is composited by some sheet-like α-Ti(HPO4)2microcrystallites.SEM image of the spherical α-Ti(HPO4)2supported catalysts (Fig.3C,Fig.3E and Fig.3F)prepared is similar to that of the support(Fig.3A).The majority of catalyst particles are spherical.The α-Ti(HPO4)2microcrystallites can still be found in the surface of catalyst (Fig.3D).The average particle diameter size of the supported catalyst is about 8.7 μm,bigger than that of the pure support(6.3 μm).

    Fig.3 SEM images of some samples

    Nitrogen adsorption-desorption isotherms of the spherical α-Ti(HPO4)2and a commercial silica support(2408d)are shown in Fig.4.The BET surface area and total pore volume of α-Ti(HPO4)2are about 131 m2·g-1and 0.82 cm3·g-1(Fig.4A),less than those of parameters of silica support (320 m2·g-1and 1.60 cm3·g-1,respectively,Fig.4B).

    The Zr(in metallocenes)and Fe(in late transition metal compound)contents of the supported catalysts were list in Table 1.The metal contents of in spherical α-Ti(HPO4)2supported catalysts are in therange of 0.20%~0.30%,which are similar to those in the referenced silica supported catalysts.Therefore,the spherical α-Ti(HPO4)2support shows similar adsorption capacity as silica support in this experiment.

    Table 1 Results for olefin polymerization using the supported catalysts

    Fig.4 N2adsorption-desorption isotherm of the spherical α-Ti(HPO4)2(A)and silica(B)

    2.2 Olefin polymerization results

    All the supported catalysts have been tested for their performance in the olefin polymerization with TEAL as cocatalysts.The activities of the supported catalysts and referenced catalysts are listed in Table 1.The polymerization reactions proceeded very smoothly,producing free-flowing polyolefin in high yields.There is no evident reactor fouling or leaching of the catalyst from the support in any experiments.The activities of cat-1 and cat-3 in ethylene and propylene polymerizations are up to 6.8×107gPE·(molZr·h)-1and 5.0 ×107gPP·(molZr·h)-1respectively.The activities of spherical α-Ti(HPO4)2supported catalysts are higherthan the referenced silica supported catalysts under the same polymerization conditions,and even higher than the metallocene catalysts in homogeneous system(4.7×107gPE·(molZr·h)-1and 4.5×107gPP·(molZr·h)-1respectively,using MAO as cocatalyst,nAl/nZr=500).Molecular weight distributions(Mw/Mn)of PE-1 from cat-1 and PP from cat-3 are all no more than 2.3,indicating single-site catalytic behaviors of the composite catalysts.Due to C2symmetry in molecular structure of rac-Me2Si(2-Me-4,5-PhInd)2ZrCl2[48],the isotactic index of polypropylene produced by cat-3 is near to 96.5%.

    Although the activity of cat-2(the late transition metal catalyst supported on spherical α-Ti(HPO4)2)is less than the correspondent catalyst in homogeneous system(4.0×107gpolym·(molFe·h)-1,using MAO as cocatalyst,nAl/nFe=2 500)in ethylene polymerization,the supported catalyst exhibits higher activity in ethylene polymerization than that of the catalyst supported on silica(Refcat-2).The broad molecular weight distribution of polyethylene (about 19.2,Fig.5A)produced by cat-2 indicates thatthe supported catalysthas multiple active sites.For comparison,the molecular weight distributions of the polyethylene produced by cat-1 (Fig.5A)and the polypro-pylene produced by cat-3(Fig.5B)are obviously narrow.

    Fig.5 MWD curves of the polyolefin samples

    Despite the fact that the spherical α-Ti(HPO4)2support has lower BET surface area and total pore volume than the silica support,spherical α-Ti(HPO4)2supported catalysts show higher activities and produce polyolefin with higher molecular weight.The reason possibly comes from the different acidity in the two materials.The promoting performance of acidic center in support or adding Lewis acid in olefin polymerization has already been proved.Nicholas prepared a kind of super acidic carrier by using concentrated sulfuric acid to deal with γ-Al2O3,and found that the Lewis acidity(coming from the induced effect of sulfate ions)and Br覬nsted acidity on the surface of γ-Al2O3were both increased[49].Cp′Zr(CH3)3loaded on this super acidic support has almost 10 times higher activity than Cp′Zr(CH3)3(Cp′=η5-(CH3)5C5)loaded on dehydroxylated alumina in ethylene homopolymeriza-tion.Damiani found when AlCl3(Lewis acid)was added in an ethylene polymerization system,the activity of EtInd2ZrCl2/MAO increased greatly[40].In his experiment,the activity of EtInd2ZrCl2was about 1.5 times,when cMAO/cAlCl3is about 13 to 14,to no AlCl3added,and the molecular weight and melting point of polyethylene both increased.

    Fig.6 NH3-TPD of α-Ti(HPO4)2(a)and silica(b)

    As shown in Fig.6,silica has no response to NH3added,indicating that the silica material close to neutral;however,the acidity of α-Ti(HPO4)2is evident for its strong adsorption to NH3.In this studies,the acidity of α-Ti(HPO4)2plays an important role.As a strong solid acid,α-Ti(HPO4)2acts to MAO to increase Lewis acidity of Al3+in MAO.The α-Ti(HPO4)2modified MAO generates an ionic pair with an increased cationic character on active metal sites,which is shown in the following reaction equations.This system would have an increased olefin insertion constant and decrease chain transfer to MAO.

    Fig.7 SEM images of the polyolefin produced by using spherical α-Ti(HPO4)2supported catalysts

    Morphologies of the polyolefin produced under existence of the catalysts supported on spherical α-Ti(HPO4)2are shown in Fig.7.It is easily found that the polyethylene-1 (PE-1,Fig.7A)produced by cat-1,polyethylene-2 (PE-2,Fig.7B)produced by cat-2 and polypropylene (PP,Fig.7C)produced by cat-3 all have typical spherical micromorphologies,which well duplicated the spherical shape of original support.Surface study to the magnified image of one particle(Fig.7D) indicates thatthe spherical polyolefin particle is an agglomeration of smaller polymer blocks and fibers,suggesting that the catalyst particles are broke into subparticles during polymerization followed the growth of polymer particles.Although the catalyst particles are broken,the subparticles are separated and covered by the growing polymer to keep regular ball-shape micromorphologies.Due to the growth of the polymer chains from the active sites on the surface of catalyst subparticle,the polymer chains are wrapped and drawn to form the fibersamong microspheres of the broken supported catalyst particles.An illustration of the above course is shown in Scheme 2.

    Scheme 2 Particle growth model for olefin polymerization with spherical α-Ti(HPO4)2supported catalyst

    3 Conclusions

    A new carrier of spherical α-Ti(HPO4)2for metallocenes and late transition metal catalyst in olefin polymerizations was synthesized by spray drying α-Ti(HPO4)2slurry in this paper.Polyolefins,including polyethylene and polypropylene,were prepared under existence of the supported catalysts without any reactor fouling,and the polymer particles could replicate the spherical morphology of α-Ti(HPO4)2support,which is favorable for industrial application.

    The activities of the spherical α-Ti(HPO4)2supported catalysts are higher than those of their referenced silica supported catalystundersame polymerization conditions.Molecular weight distributions of the polymers produced by the supported metallocene catalysts are narrow and isotacticity of polypropylene synthesized is high.The broad molecular weight distribution of polyethylene produced by the supported late transition metal catalyst reveals the existence of multiple active sites in the catalyst.According to the results,spherical α-Ti(HPO4)2supported catalysts can keep the advantage ofthe homogeneous catalysts.

    Acknowledgements:We are grateful to the financial support from Project of National Natural Science Foundation of China (Grant No.U1362113).And we are also grateful to the financial support from PetroChina Company Ltd.

    [1]Ziegler K,Holzkamp E,Breil H,et al.Angew.Chem.,1955,67:541-547

    [2]Natta G.Makromol.Chem.,1955,16:213-237

    [3]Busico V.Adv.Polym.Sci.,2013,257:37-57

    [4]McDaniel M P.Adv.Catal.,2010,53:123-606

    [5]Sedov I V,Makhaev V D,Matkovskii P E.Catal.Ind.,2012,4:129-140

    [6]Johnson L K,Killian C M,Brookhart M.J.Am.Chem.Soc.,1995,117:6414-6415

    [7]Camacho D H,Salo E V,Ziller J W,et al.Angew.Chem.Int.Ed.,2004,43:1821-1825

    [8]Britovsek G J P,Gibson V C,Kimberley B S,et al.Chem.Commun.,1998:849-850

    [9]Small B L,Brookhart M,Bennett A M A.J.Am.Chem.Soc.,1998,120:4049-4050

    [10]Matsui S,Tohi Y,Mitani M,et al.Chem.Lett.,1999,28:1065-1066

    [11]Furuyama R,Saito J,Ishii S,et al.J.Organomet.Chem.,2005,690:4398-4413

    [12]Yoshida Y,Matsui S,Takagi Y,et al.Organometallics,2001,20:4793-4799

    [13]Yoshida Y,Matsui S,Fujita T.J.Organomet.Chem.,2005,690:4382-4397

    [14]Guan Z B,Cotts P M,McCord E F,et al.Science,1999,283:2059-2062

    [15]Guan Z B.Chem.Eur.J.,2002,8:3086-3092

    [16]Terao H,Ishii S,Mitani M,et al.J.Am.Chem.Soc.,2008,130:17636-17637

    [17]Mitani M,Nakano T,Fujita T.Chem.Eur.J.,2003,9:2396-2403

    [18]Eagan J M,Xu J,Di Girolamo R,et al.Science,2017,355:814-816

    [19]Arriola D J,Carnahan E M,Hustad P D,et al.Science,2006,312:714-719

    [20]Wang H P,Chum S P,Hiltner A,et al.J.Appl.Polym.Sci.,2009,113:3236-3244

    [21]Zhang J,Wang X,Jin G X.Coord.Chem.Rev.,2006,250:95-109

    [22]Gibson V C,Spitzmesser S K.Chem.Rev.,2003,103:283-316

    [23]Alt H G,Kppl A.Chem.Rev.,2000,100:1205-1222

    [24]Gibson V C,Redshaw C,Solan G A.Chem.Rev.,2007,107:1745-1776

    [25]Dos Ouros A C,De Souzab M O,Pastore H O.J.Braz.Chem.Soc.,2014,25:2164-2185

    [26]Severn J R,Chadwick J C,Duchateau R,et al.Chem.Rev.,2005,105:4073-4147

    [27]Fink G,Steinmetz B,Zechlin J,et al.Chem.Rev.,2000,100(4):1377-1390

    [28]Ma Z,Sun W H,Zhu N,et al.Polym.Int.,2002,51:349-352

    [29]Conte A,Marques M F V.Eur.Polym.J.,2001,37:1887-1893

    [30]Xu R W,Liu D B,Wang S B,et al.Macromol.Chem.Phys.,2006,207:779-786

    [31]Saga K,Uozumi T,Saitoa M,et al.Macromol.Chem.Phys.,1994,195:1503-1515

    [32]Kageyama K,Ng S M,Ichikawa H,et al.Macromol.Symp.,2000,157:137-142

    [33]Guo C,Jin G X,Wang F S.J.Polym.Sci.Part A:Polym.Chem.,2004,42:4830-4837

    [34]Weiss K,Wirth-Pfeifer C,Hofmanna M,et al.J.Mol.Catal.A:Chem.,2002,182-183:143-149

    [35]Choi Y Y,Shin S Y A,Soares J B P.Macromol.Chem.Phys.,2010,211:1026-1034

    [36]Buffet J C,Wanna N,Arnold T A Q,et al.Chem.Mater.,2015,27:1495-1501

    [37]Nishida H,Uozumi T,Arai T,et al.Macromol.Rapid Commun.,1995,16:821-830

    [38]Naundorf C,Matusi S,Saito J,et al.J.Polym.Sci.,Part A:Polym.Chem.,2006,44:3103-3113

    [39]Soga K,Ban H T,Arai T,et al.Macromol.Chem.Phys.,1997,198:2779-2787

    [40]Belelli P G,Ferreira M L,Damiani D E.Macromol.Chem.Phys.,2000,201:1458-1465

    [41]Belelli P G,Ferreira M L,Damiani D E.Macromol.Chem.Phys.,2000,201:1466-1475

    [42]Shi Y S,Yuan Y,Xu Q H,et al.Appl.Surf.Sci.,2016,383:126-132

    [43]Morrow D R,Richardson G C,Kleinman L,et al.J.Polym.Sci.Part B:Polym.Phys.,1967,5:493-494

    [44]Mu觡oz-Escalona A,Hernandez J G,Gallardo J A.J.Appl.Polym.Sci.,1984,29:1187-1202

    [45]Small B L,Brookhart M,Bennett A M A.J.Am.Chem.Soc.,1998,120:4049-4050

    [46]Slade R C T,Knowles J A,Jones D J,et al.Solid State Ionics,1997,96:9-19

    [47]Ortíz-Oliveros H B,Flores-Espinosa R M,Ordoez-Regil E,et al.Chem.Eng.J.,2014,236:398-405

    [48]Kaminsky W.Pure Appl.Chem.,1998,70:1229-1235

    [49]Nicholas C P,Hongsang A H S,Marks T J.J.Am.Chem.Soc.,2003,125:4325-4331

    Spherical α-Ti(HPO4)2Supported Catalysts:Synthesis and Catalytic Properties in Olefin Polymerizations

    YUAN Yuan1,2YI Jian-Jun2SHI Yu-Jian1XU Qing-Hong*,1
    (1State Key Laboratory of Chemical Resource Engineering,College of Science,Beijing University of Chemical Technology,Beijing 100029,China)
    (2Petrochemical Research Institute,PetroChina Company Limited,Beijing 102206,China)

    Two metallocene catalysts and one late transition metal catalyst were immobilized respectively on the surface of spherical α-Ti(HPO4)2treated with methylaluminoxane.All the supported catalysts have higher activities than those of their referenced silica supported catalysts in olefin polymerizations.The activities of α-Ti(HPO4)2supported metallocene catalysts in ethylene and propylene polymerizations are up to 6.8 ×107gPE·(molZr·h)-1and 5.0×107gPP·(molZr·h)-1.These supported catalysts can produce narrow molecular weight distribution polyolefins(Mw/Mnlt;2.3)and polypropylene with high isotactic index(96.5%).The late transition metal catalyst supported on α-Ti(HPO4)2has relatively less activity(8.3×106gPE·(molFe·h)-1)in ethylene polymerization but the produced polyethylene has a very broad Mw/Mn(gt;19).The particles of the produced polyolefins are mainly ball-shaped which replicate the morphology of spherical α-Ti(HPO4)2.

    α-Ti(HPO4)2;spherical;metallocene;late transition metal catalyst;olefin polymerization

    O614 文獻(xiàn)識(shí)別碼:A

    1001-4861(2017)12-2329-09

    10.11862/CJIC.2017.274

    2017-07-21。收修改稿日期:2017-09-06。

    國(guó)家自然科學(xué)基金(No.U1362113)資助項(xiàng)目。

    *通信聯(lián)系人。 E-mail:xuqh@mail.buct.edu.cn

    猜你喜歡
    球型丙烯烯烴
    CO2刺激響應(yīng)球型水凝膠的制備及在蛋白質(zhì)分離中的應(yīng)用
    錢愛康
    《共生》主題系列作品
    大眾文藝(2022年16期)2022-09-07 03:08:04
    淺談BIM技術(shù)應(yīng)用于球型網(wǎng)架空間坐標(biāo)的智能檢測(cè)
    煤制烯烴副產(chǎn)混合碳四的綜合利用
    云南化工(2021年8期)2021-12-21 06:37:38
    烯烴不稀罕
    苯丙烯菌酮
    基于可操作性指標(biāo)的球型腕優(yōu)化*
    液化氣中的丙烯含有的雜質(zhì)對(duì)丙烯聚合反應(yīng)的影響
    MTO烯烴分離回收技術(shù)與烯烴轉(zhuǎn)化技術(shù)
    中文字幕亚洲精品专区| 日韩一区二区三区影片| 亚洲婷婷狠狠爱综合网| xxxhd国产人妻xxx| 久久久久久久精品精品| 一二三四中文在线观看免费高清| 一二三四中文在线观看免费高清| 毛片一级片免费看久久久久| 咕卡用的链子| 中文字幕精品免费在线观看视频| 国产精品熟女久久久久浪| 毛片一级片免费看久久久久| 午夜日韩欧美国产| 午夜福利视频精品| 国产亚洲最大av| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机靠b影院| 亚洲欧美一区二区三区久久| 午夜91福利影院| 日韩中文字幕欧美一区二区| av视频免费观看在线观看| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 丰满迷人的少妇在线观看| 色老头精品视频在线观看| 亚洲精品在线观看二区| 女性生殖器流出的白浆| 一区在线观看完整版| 在线播放国产精品三级| 在线观看免费视频日本深夜| 亚洲精品一二三| 在线看a的网站| bbb黄色大片| 国产成人av激情在线播放| 激情在线观看视频在线高清| 欧美黑人精品巨大| 中国美女看黄片| 高清av免费在线| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 日韩精品免费视频一区二区三区| 99国产精品一区二区蜜桃av| 多毛熟女@视频| 香蕉久久夜色| 999精品在线视频| 国产精品免费一区二区三区在线| av超薄肉色丝袜交足视频| 久久久国产成人精品二区 | 国产伦人伦偷精品视频| 精品欧美一区二区三区在线| 亚洲午夜精品一区,二区,三区| 动漫黄色视频在线观看| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 麻豆久久精品国产亚洲av | 99久久99久久久精品蜜桃| 不卡一级毛片| 中文字幕人妻丝袜一区二区| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区蜜桃| 日本免费a在线| 精品久久久久久电影网| 高清欧美精品videossex| 人人妻,人人澡人人爽秒播| 五月开心婷婷网| 制服诱惑二区| 国产精品野战在线观看 | 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 午夜a级毛片| 精品福利永久在线观看| 精品久久蜜臀av无| 黄色成人免费大全| 久久久水蜜桃国产精品网| 高清毛片免费观看视频网站 | 国产xxxxx性猛交| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 黄色成人免费大全| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 精品一区二区三区av网在线观看| 午夜精品国产一区二区电影| 99在线人妻在线中文字幕| 在线观看日韩欧美| 国产激情欧美一区二区| 日韩欧美国产一区二区入口| 99精国产麻豆久久婷婷| 法律面前人人平等表现在哪些方面| 成年版毛片免费区| 在线永久观看黄色视频| 69精品国产乱码久久久| 久久精品亚洲精品国产色婷小说| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 久久久久久久午夜电影 | 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 久久香蕉精品热| 精品乱码久久久久久99久播| 天堂中文最新版在线下载| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费成人在线视频| 人成视频在线观看免费观看| 黄片播放在线免费| 好男人电影高清在线观看| 99国产精品免费福利视频| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| 久久人妻av系列| 欧美激情久久久久久爽电影 | 国产av在哪里看| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 两性夫妻黄色片| 国产高清videossex| 不卡一级毛片| 在线天堂中文资源库| 91国产中文字幕| 久久久久久久久免费视频了| 久久国产精品影院| 丰满的人妻完整版| 久久亚洲真实| 校园春色视频在线观看| 少妇 在线观看| 一a级毛片在线观看| 少妇裸体淫交视频免费看高清 | 国产精品一区二区免费欧美| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看| 国产精品久久电影中文字幕| 欧美成人午夜精品| 亚洲精品一二三| 麻豆av在线久日| 夫妻午夜视频| 亚洲五月色婷婷综合| 国产又爽黄色视频| 欧美在线一区亚洲| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| av福利片在线| 99久久99久久久精品蜜桃| 国产深夜福利视频在线观看| 91av网站免费观看| 夫妻午夜视频| 动漫黄色视频在线观看| 天天添夜夜摸| 很黄的视频免费| 色播在线永久视频| 国产在线观看jvid| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 国产成人系列免费观看| 亚洲色图 男人天堂 中文字幕| 久久人人爽av亚洲精品天堂| 久久久久久人人人人人| 国产亚洲欧美在线一区二区| 亚洲一区高清亚洲精品| 亚洲一区中文字幕在线| 日韩欧美一区二区三区在线观看| 成在线人永久免费视频| 日本wwww免费看| 中文字幕最新亚洲高清| 老司机亚洲免费影院| 欧美黑人精品巨大| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 80岁老熟妇乱子伦牲交| 久久久国产成人免费| 脱女人内裤的视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 午夜久久久在线观看| 啦啦啦在线免费观看视频4| 日韩免费高清中文字幕av| 天堂俺去俺来也www色官网| 精品国产美女av久久久久小说| 国产精品久久视频播放| 精品久久久久久久久久免费视频 | 在线观看一区二区三区激情| cao死你这个sao货| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 午夜两性在线视频| av有码第一页| 色婷婷av一区二区三区视频| 国产精品久久久久成人av| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看| 黄色毛片三级朝国网站| 久久精品国产清高在天天线| 中文欧美无线码| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 日本a在线网址| 欧美中文日本在线观看视频| 国产高清视频在线播放一区| 天堂中文最新版在线下载| 淫妇啪啪啪对白视频| 亚洲成人久久性| 91麻豆精品激情在线观看国产 | 久久久久国产精品人妻aⅴ院| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美98| 水蜜桃什么品种好| 久久香蕉国产精品| 亚洲精品国产一区二区精华液| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 黄色怎么调成土黄色| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 亚洲国产中文字幕在线视频| 亚洲成人久久性| 一个人观看的视频www高清免费观看 | 精品少妇一区二区三区视频日本电影| 亚洲七黄色美女视频| 女人被狂操c到高潮| 欧美日韩av久久| 18禁国产床啪视频网站| aaaaa片日本免费| 国产精品野战在线观看 | 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 在线国产一区二区在线| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 看免费av毛片| 巨乳人妻的诱惑在线观看| 久99久视频精品免费| 亚洲一区二区三区不卡视频| 国产一卡二卡三卡精品| 久久久精品国产亚洲av高清涩受| 色婷婷久久久亚洲欧美| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美精品永久| 波多野结衣高清无吗| 日韩av在线大香蕉| 脱女人内裤的视频| 岛国视频午夜一区免费看| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 国产成人av教育| 老熟妇乱子伦视频在线观看| 深夜精品福利| 日本黄色日本黄色录像| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 丝袜美足系列| 久热这里只有精品99| 青草久久国产| 国产伦一二天堂av在线观看| 男女做爰动态图高潮gif福利片 | 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 亚洲 国产 在线| 亚洲精品中文字幕一二三四区| 国产人伦9x9x在线观看| 日韩免费av在线播放| 亚洲人成电影观看| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| avwww免费| 中文欧美无线码| 亚洲av片天天在线观看| 久久精品影院6| 可以免费在线观看a视频的电影网站| 久热爱精品视频在线9| 国产成年人精品一区二区 | 成人精品一区二区免费| 亚洲专区中文字幕在线| 青草久久国产| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 99精品欧美一区二区三区四区| 99国产精品一区二区蜜桃av| 欧美人与性动交α欧美精品济南到| 免费高清视频大片| 国产一区二区三区在线臀色熟女 | 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全免费视频| 国产麻豆69| 看免费av毛片| 黄色 视频免费看| 午夜福利欧美成人| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 在线观看日韩欧美| 欧美最黄视频在线播放免费 | 久久久国产欧美日韩av| 亚洲精品美女久久av网站| 别揉我奶头~嗯~啊~动态视频| 真人做人爱边吃奶动态| 999精品在线视频| 国产精品日韩av在线免费观看 | 99riav亚洲国产免费| 制服人妻中文乱码| 乱人伦中国视频| 国产精品一区二区三区四区久久 | 一区二区日韩欧美中文字幕| 亚洲五月天丁香| xxx96com| 99久久人妻综合| 99国产精品一区二区蜜桃av| 久久青草综合色| 韩国精品一区二区三区| 亚洲黑人精品在线| 9色porny在线观看| 亚洲熟女毛片儿| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 在线视频色国产色| 日韩欧美免费精品| 欧美丝袜亚洲另类 | av有码第一页| 麻豆av在线久日| 国产精品久久电影中文字幕| 中文字幕高清在线视频| 国产精品久久久久成人av| av视频免费观看在线观看| 视频在线观看一区二区三区| 亚洲欧美精品综合久久99| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 9色porny在线观看| 天天躁夜夜躁狠狠躁躁| 日韩欧美免费精品| 国产成人av教育| 中文字幕最新亚洲高清| 欧美日韩瑟瑟在线播放| 久久精品aⅴ一区二区三区四区| 在线观看午夜福利视频| 两个人看的免费小视频| 亚洲成人久久性| 一个人免费在线观看的高清视频| 久99久视频精品免费| 看片在线看免费视频| 999久久久国产精品视频| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 国产成人欧美| 岛国视频午夜一区免费看| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产乱人伦免费视频| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 丁香欧美五月| 日韩高清综合在线| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 久久久久国产精品人妻aⅴ院| 高清黄色对白视频在线免费看| 亚洲国产精品合色在线| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲| 亚洲七黄色美女视频| 色播在线永久视频| 在线天堂中文资源库| 国产高清videossex| 男人舔女人下体高潮全视频| 国产欧美日韩综合在线一区二区| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 精品电影一区二区在线| 欧美激情极品国产一区二区三区| 黑人猛操日本美女一级片| 大型黄色视频在线免费观看| 99久久国产精品久久久| 久久久久久免费高清国产稀缺| 一级片免费观看大全| 香蕉久久夜色| 天天添夜夜摸| 免费观看精品视频网站| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影 | 91麻豆av在线| 亚洲精品一区av在线观看| 中文字幕人妻熟女乱码| 亚洲欧美激情在线| 亚洲五月天丁香| 97人妻天天添夜夜摸| 大型av网站在线播放| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 黑人操中国人逼视频| 99国产精品免费福利视频| 中文字幕av电影在线播放| 亚洲成人国产一区在线观看| 日日夜夜操网爽| 日本精品一区二区三区蜜桃| 日日摸夜夜添夜夜添小说| 中文字幕人妻丝袜一区二区| 国产1区2区3区精品| 国产精品一区二区三区四区久久 | 琪琪午夜伦伦电影理论片6080| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 精品一区二区三区四区五区乱码| 日韩免费av在线播放| 日本vs欧美在线观看视频| 欧美日韩亚洲高清精品| 18美女黄网站色大片免费观看| 亚洲午夜精品一区,二区,三区| 国产精品久久电影中文字幕| 亚洲五月色婷婷综合| 黄片大片在线免费观看| 侵犯人妻中文字幕一二三四区| 超色免费av| 一边摸一边抽搐一进一出视频| 午夜福利在线观看吧| 欧美日韩精品网址| 日韩欧美免费精品| 久久国产精品影院| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 不卡一级毛片| 男人操女人黄网站| 亚洲精品在线观看二区| 亚洲人成伊人成综合网2020| 悠悠久久av| av片东京热男人的天堂| 日韩成人在线观看一区二区三区| 亚洲国产中文字幕在线视频| 一区福利在线观看| 国产精品久久电影中文字幕| 一二三四社区在线视频社区8| 久久影院123| 1024香蕉在线观看| av天堂久久9| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址 | 国产三级黄色录像| 一级毛片精品| 色综合站精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线一区亚洲| 欧美不卡视频在线免费观看 | 亚洲av美国av| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 91在线观看av| 日韩欧美三级三区| 精品一区二区三卡| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 午夜免费鲁丝| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3 | 国产在线精品亚洲第一网站| 一a级毛片在线观看| 成年女人毛片免费观看观看9| 999精品在线视频| 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 亚洲中文av在线| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 精品少妇一区二区三区视频日本电影| 精品免费久久久久久久清纯| 色婷婷久久久亚洲欧美| 国产成人精品无人区| 日本黄色视频三级网站网址| 久久久久国内视频| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲全国av大片| 一区在线观看完整版| 亚洲成人精品中文字幕电影 | 18禁观看日本| 极品教师在线免费播放| 高清av免费在线| 久久久久久免费高清国产稀缺| 18禁美女被吸乳视频| 精品高清国产在线一区| 久久中文看片网| 成人三级做爰电影| 精品人妻1区二区| 成人黄色视频免费在线看| 91九色精品人成在线观看| 新久久久久国产一级毛片| 久久天躁狠狠躁夜夜2o2o| 精品高清国产在线一区| 岛国视频午夜一区免费看| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 99精国产麻豆久久婷婷| 久久久精品国产亚洲av高清涩受| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 国产aⅴ精品一区二区三区波| 亚洲成人久久性| 午夜免费激情av| 亚洲av成人一区二区三| 深夜精品福利| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 在线十欧美十亚洲十日本专区| 深夜精品福利| 精品久久久久久电影网| 日韩免费av在线播放| 国产精品 国内视频| netflix在线观看网站| avwww免费| x7x7x7水蜜桃| 亚洲三区欧美一区| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| a级片在线免费高清观看视频| 成人18禁在线播放| 欧美+亚洲+日韩+国产| 日韩人妻精品一区2区三区| 午夜91福利影院| 黄片小视频在线播放| 中文字幕色久视频| 久久久久久免费高清国产稀缺| 视频在线观看一区二区三区| 天堂俺去俺来也www色官网| videosex国产| 麻豆av在线久日| 日韩国内少妇激情av| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 欧美成人免费av一区二区三区| 色在线成人网| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸 | 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av香蕉五月| 国产97色在线日韩免费| 男人舔女人的私密视频| 日韩高清综合在线| 九色亚洲精品在线播放| 欧美日韩乱码在线| 国产区一区二久久| 色综合婷婷激情| 日本黄色日本黄色录像| 亚洲精品国产一区二区精华液| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆| 国产亚洲精品第一综合不卡| 老司机午夜十八禁免费视频| 黄色 视频免费看| www.www免费av| 精品福利观看| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 亚洲色图 男人天堂 中文字幕| 悠悠久久av| 国产成人欧美在线观看| 成人三级黄色视频| 亚洲avbb在线观看| a级片在线免费高清观看视频| 久久久久久久久免费视频了| 岛国视频午夜一区免费看| 国产人伦9x9x在线观看| 日韩欧美三级三区| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月| 亚洲男人的天堂狠狠| 99精品欧美一区二区三区四区| 91老司机精品| 日本精品一区二区三区蜜桃| 黑人猛操日本美女一级片| 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| 香蕉丝袜av| 丁香六月欧美| 啦啦啦 在线观看视频| 亚洲国产欧美网|