• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3,5-二甲基苯溴化鎂修飾的ZSM-5催化劑乙苯歧化反應(yīng)

    2017-12-13 10:52:15李軍衛(wèi)武靜文許波連
    關(guān)鍵詞:乙苯二甲基分子篩

    張 英 李軍衛(wèi) 武靜文 許波連*,

    3,5-二甲基苯溴化鎂修飾的ZSM-5催化劑乙苯歧化反應(yīng)

    張 英1李軍衛(wèi)1武靜文2許波連*,2

    (1貴州電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,貴陽(yáng) 550002)
    (2南京大學(xué)化學(xué)化工學(xué)院,江蘇省機(jī)動(dòng)車(chē)尾氣污染控制重點(diǎn)實(shí)驗(yàn)室,南京 210093)

    采用尺寸較大的有機(jī)分子格式試劑(3,5-二甲基苯溴化鎂)修飾ZSM-5催化劑,用乙苯歧化反應(yīng)研究了修飾催化劑的擇形性,并利用探針?lè)肿觿?dòng)力學(xué)擴(kuò)散測(cè)試結(jié)合探針?lè)肿游郊t外等手段研究分子篩孔徑和內(nèi)外表面酸性性質(zhì)等。結(jié)果表明,少量的3,5-二甲基苯溴化鎂精確地中和了ZSM-5分子篩外表面的酸性中心,導(dǎo)致乙苯歧化反應(yīng)中極高的對(duì)二乙苯選擇性。而探針?lè)肿觿?dòng)力學(xué)結(jié)果表明,這種修飾并未引起分子篩孔道結(jié)構(gòu)的變化。

    ZSM-5分子篩;表面酸性;乙苯歧化;擇形催化

    0 Introduction

    Zeolite is a kind of special material with unique pores and channels.It is also called molecular sieve used for selective adsorption and separation[1-3].Since 1940s,many new kinds of zeolite with different pore size,pore structure and acid properties were invented.The varied molecular diffusion rate in these pores,as well as acidic properties,make it widely used in many chemical industrial processes as sorbent,catalyst andcatalyst support[4-7].Particularly,in petroleum chemical process,zeolite catalyst is more and more important used in catalytic cracking,alkyl benzene disproportionation,hysomer,aromatization[8-10],etc.In these processes,surface acid sites are the catalytic active sites.For example,the surface acid sites of ZSM-5 zeolite are the catalytic active sites for ethylbenzene(EB)disproportionation to p-diethylbenzene (p-DEB)reaction.Paparatto et al.concluded that three types of DEB are formed inside the channel of ZSM-5 crystal and then the primary product p-DEB formed under the steric constraints is further isomerized into m-and o-DEB toward the thermodynamic equilibrium on the external surface of ZSM-5[11].In order to obtain high p-DEB selectivity,it is necessary to passivate the acidic sites on the external surface of ZSM-5 for eliminating secondary isomerization of p-DEB.

    Therefore proper modification is of practical importance to improve the performance of ZSM-5.Many well known methods to modify external surface of the zeolite have been reported in the past years[12-15].Tetraethoxysilane(TEOS)[16]and other siloxane derived compounds[17]were usually used for their large molecular size which was bigger than zeolite pore diameter.Chemical vapor deposition(CVD)and chemical liquid deposition(CLD)of silica on the external surface of ZSM-5 were reported for ZSM-5 modification[18-22].However,during the deposition process,silica covered all ZSM-5 external surface,not only external acid sites.Thus,in order to neutralize the external acid sites completely,large amount of silica (usually mass loadings over 8%~10%)should be loaded,leading to the result that the modification of ZSM-5 not only eliminates the acidic sites but also narrows the pore sizes[23].Even then,there were residual acidic sites on silica deposited ZSM-5 surface.Because ofthe alkalescence of MgO,modification by loading MgO can also enhance the shape selectivity of ZSM-5[24-25].The normal precursor of MgO,magnesium acetate and magnesium nitrate[23,26]are small enough to enter the micropores.It can both eliminate the external and internal acidic sites[27].The modification just improves shape selectivity a little butdecreased reaction activity more.Usually,MgO is used as additives not the one and only modification reagent.It was reported that ZSM-5 catalyst modified by MgO after the modification of SiO2can further eliminate the residual acidic sites and enhance p-DEB selectivity[23].

    During shape selective catalytic reaction,pore size is very sensitive for different molecule size[28-30].To understand the role of pore size and external acid sites in these reactions,we want to develop a zeolite modification method without changing the two factors synchronously.In this work,a new kind of MgO modification precursor,3,5-dimethyl phenylmagnesium bromide,was prepared and used to modify ZSM-5,aimed at eliminating the external acidic sites without changing the pore size.

    1 Experimental

    1.1 Catalyst preparation

    3,5-dimethyl phenylmagnesium bromide was obtained by adding metal magnesium pellets with a partical of I2into 500 mL boiling flask under nitrogen atmosphere,followed by adding 10 mL tetrahydrofuran(Nanjing Chemical Reagent Limited Company)under stirring and adding 3,5-dimethyl benzene bromide(Beijing Ouhe Company)until all metal magnesium pellets were dissolved.

    The ZSM-5 catalyst modified by Grignard reagent,named as MB-xMgO/ZSM-5(x is the MgO loadings in weight percentage)was prepared by impregnating the suspension of 6 g ZSM-5(Nankai University,nSiO2/nAl2O3=50,particle size is 5 μm)and 150 mL hexane(Nanjing Chemical Reagent Limited Company)into the 3,5-dimethyl phenylmagnesium bromide solution prepared above,then stirring for 4 h.The solvent was evaporated by heating the flask to 353 K to get the solid sample.The sample was dried at 393 K for 2 h,then calcined at 773 K in air for 8 h.ZSM-5 catalyst modified by magnesium nitrate was prepared by impregnating ZSM-5 with ethanol(Nanjing Chemical Reagent Limited Company)solution of magnesium nitrate (Shanghai Zhenxing Reagent Factory).After 4 h of stirring,the catalyst was obtained by removing solvent,drying and calcining as the same procedure mentioned above.The sample was named as MN-xMgO/ZSM-5(x is the MgO loadings in weight percentage).

    1.2 Catalytic test

    The ethylbenzene disproportionation reaction was conducted in a continuous flow,fixed-bed reactor(quartz tube:Φ=6 mm,L=40 cm)under the following conditions:0.1 g catalyst,reaction temperature T=573 K,space velocity WHSV=1.5 h-1,pressure=1.0132 5×105Pa.Ethylbenzene was injected into the reactor using a metering pump.Argon was used as carrier gas in a flow rate of 10 mL·min-1.The effluent gas released from the reactor was analyzed by an on-line gas chromatography equipped with a FFAP column(Φ=0.25 mm,L=30 m)and a flame ionization detector.

    1.3 Catalyst characterization

    X-ray diffraction (XRD)analysis was performed on a Philips X′Pert MPD Pro X-ray diffractometer employing Ni-filtered Cu Kα radiation(λ=0.154 1 nm)in the 2θ range of 10°~80°.The X-ray tube was operated at 40 kV and 30 mA.

    The IR spectra of the sample was conducted with a self-supported wafer of sample using Perkin-Elmer 2000 FT-IR spectrometry.The experiment was carried out in order to identify whether the organic groups were completely removed or not.Before and after calcination the IR spectra of ZSM-5 modified by Grignard reagent were recorded.Besides,the IR spectra of parent ZSM-5 and ZSM-5 adsorbed mxylene and hexane were also recorded for comparison.

    The IR spectra of adsorbed 2,6-di-tert-butylpyridine(DTBPy-IR)to characterize the acidic sites on the external surface of ZSM-5 was conducted with a selfsupported waferofsample using the same IR spectrometry.Prior to DTBPy adsorption,the samples were evacuated 60 min at 673 K under high vacuum(1×10-2Pa)to clean the surface and eliminate possible impurities.DTBPy adsorption was carried out at room temperature until saturation(equilibration time 30 min)and the excess of physical adsorbed DTBPy was removed under vacuum(1×10-2Pa)at 473 K for 60 min.Then the corresponding spectrum was recorded.Similar process to characterize the total acidic sites was conducted for the IR spectra of adsorbed pyridine(Py-IR).

    The experiments of adsorption kinetics of probe molecule (EB,m-DEB,p-DEB)were carried out on self-supporting equipmentby gravimetric method.Before testing,samples were heated to 623 K and evacuated (0.1 Pa)for 2 h to clean the surface and eliminate possible impurities.Then the sample was cooled to 373 K.The weight increase was recorded after the vapor of probe molecule at 273 K was pulled into the vacuum system.

    2 Results and discussion

    2.1 Modification process analysis

    To investigate the MgO modification process,the IR spectra of the modified ZSM-5 with Grignard reagent before and after calcination are shown in Fig.1.The peak at 1 460 cm-1is associated with the vibration of C-H groups to m-xylene and hexane(Fig.1d and e),it can be easily found in Fig.1c.The results indicate that the organic compounds were still on ZSM-5 surface before calcination.After calcination,all organic compounds were removed and only the specific vibration of ZSM-5 at 1 628 and 1 872 cm-1can be observed (Fig.1b),which shows the same IR spectra as the parent ZSM-5(Fig.1a).So the Grignard reagent modification process can be described as schematic route showed in Fig.2.

    Fig.1 IR spectra of the modified ZSM-5 with Grignard reagent before and after calcinations

    Fig.2 Schematic illustration of Grignard reagent modification process

    The XRD results are shown in Fig.3.Not only the samples modified by magnesium nitrate,but also the samples modified by Grignard reagent show the same patterns as pure ZSM-5,which indicate that the crystalstructure ofZSM-5 is keptduring the magnesium oxide modification process.Because the MgO loading amount is very low (≤2%),no magnesium oxide signal was observed.

    Fig.3 XRD patterns of the parent ZSM and modified catalysts

    2.2 Catalytic properties analysis

    Ethylbenzene disproportionation reaction results are shown in Table 1.Parent ZSM-5 catalyst shows the highest EB conversion but the lowest p-DEB selectivity.After MgO modification,EB conversion decreases and p-DEB selectivity increases dramatically.Besides,with the increasing of MgO loading,EB conversion decreases and p-DEB selectivity increases.Compared to the catalysts modified by magnesium nitrate,the catalysts modified by Grignard reagent show similar EB conversion but much higher p-DEB/DEB selectivity under the same MgO loadings.

    Table 1 EB disproportionation results of parent and MgO modified ZSM-5 catalysts

    2.3 Surface acidity analysis

    Fig.4 Py-IR spectra of different samples

    To investigate the reason of EB disproportionation performances after MgO modification,the surface acidity and pore structure were studied by Py-IR,DTBPy-IR characterization and probe molecular adsorption kinetics experiment.Py-IR characterization in Fig.4 show that MgO modification resulted in the decrease of Br覬nsted acidic sites(1 540 cm-1)due to the coverage of acidic sites with deposited MgO despite of the modification method.It is well understood that Br覬nsted acidic sites are neutralized by basic MgO.On the other hand,Lewis acidic sites(1 450 cm-1)increases with deposited MgO because Mg2+ions creat a new kind of Lewis acid sites on ZSM-5 surface[26,31-32].Compared with adsorption of pyridine both on external surface and in channels of zeolite,the adsorption of 2,6-di-tert-butylpyridine occurs only on the external surface due to its large molecular size.DTBPy-IR results in Fig.5(a~c)show that Grignard reagent modification resulted in the decrease of Br覬nsted acidic sites(1 450 cm-1)while the increase of Lewis acidic sites(1 540 cm-1)due to the coverage of acidic sites with deposited MgO.It indicates that the Grignard reagent modification neutralized the external acid sites and most of the Mg2+was deposited on the external surface.DTBPy-IR characterization results of catalysts modified by magnesium nitrate are show in Fig.5(b′,c′).With the increasing of MgO loading,Br覬nsted acidic sites(1 540 cm-1)decreases slightly and no obvious Lewis acidic sites(1 450 cm-1)increase is observed.This result suggest that only partial deposited Mg2+ions disperse on the external surface.

    Fig.5 DTBPy-IR spectra of ZSM-5

    2.4 Diffusion kinetics analysis

    Adsorption curves of EB,p-DEB and m-DEB on parent and modified ZSM-5 are shown in Fig.6 and Fig.7,formodification by Grignard reagentand magnesium nitrate,respectively.For parent ZSM-5 catalyst,EB and p-DEB entered into the ZSM-5 channels easily while the m-DEB hardly entered into it.It is suggested that m-DEB formation can be prohibited in ZSM-5 channels while the pore size is suitable for p-DEB formation.The low p-DEB selectivity of parent ZSM-5 catalyst is caused by the external surface acid sites.After MgO modification,the EB,p-DEB and m-DEB adsorption kinetics follow a similar curve.It is suggested that both the catalysts modified by Grignard reagent and magnesium nitrate keep the same pore size as parent ZSM-5 during MgO modification.The deceasing of EB conversion and increasing of p-DEB selectivity are caused by external acid site removal,not by pore size modification.

    Fig.6 Adsorption kinetics curve of EB,p-DEB,m-DEB on(a)parent ZSM-5,(b)MB-1.0MgO/ZSM-5 and(c)MB-2.0MgO/ZSM-5

    Fig.7 Adsorption kinetics curve of EB,p-DEB,m-DEB on(a)parent ZSM-5,(b)MN-1.0MgO/ZSM-5 and(c)MN-2.0MgO/ZSM-5

    3 Conclusions

    EB,p-DEB and m-DEB adsorptionkinetics experiment results and XRD results indicate that both MB-MgO/ZSM-5 and MN-MgO/ZSM-5 catalysts have the same crystal structure and pore size.Py-IR show that MgO modification eliminates the surface acid sites and leads to the decrease of EB conversion and the increase of p-DEB selectivity during EB disproportionation reaction.In contrast,Grignard reagent is too large to enter into micropores of ZSM-5 while magnesium nitrate is small enough to enter into it,resulting in the different acidic sites distribution between MB-MgO/ZSM-5 and MN-MgO/ZSM-5 catalysts.DTBPy-IR reveals that the MB-MgO/ZSM-5 catalysts have much more decrease of amount of external acid sites than the MN-MgO/ZSM-5 catalysts.It leads to the higher selectivity of p-DEB for MBMgO/ZSM-5 catalysts than for MN-MgO/ZSM-5 catalysts.It offeres a new method by using small amount of modification reagent to remove the external acid sites of zeolite catalyst and keep its pore size.

    Acknowledgment:This work was financially supported by Science and technology project of China Southern Grid Corp(Grant No.GZ2015-2-0048).We are grateful to Prof.CHUN Yuan for adsorption kinetics experiment support and Prof.JI Wei-Jie for Py-IR and DTBPy-IR experiment support.

    [1]Keskin S.J.Phys.Chem.C,2011,115(3):800-807

    [2]Iwasaki M,Shinjoh H.J.Catal.,2010,273(1):29-38

    [3]Chakarova K,Hadjiivanov K.J.Phys.Chem.C,2011,115(11):4806-4817

    [4]Poissant R R,Huang Y N,Secco R A.Microporous Mesoporous Mater.,2004,74(1/2/3),231-238

    [5]Zhang S B,Zhou Y M,Zhang Y W,et al.Catal.Lett.,2010,135(1/2):76-82

    [6]Song Z,Takahashi A,Nakamura I,et al.Appl.Catal.,A,2010,384(1/2):201-205

    [7]Zhang Y,Zhou Y,Huang L,et al.Ind.Eng.Chem.Res.,1999,50(13):7896-7902

    [8]Rahimi N,Karimzadeh R.Appl.Catal.,A,2011,398(1/2):1-17

    [9]Tukur N M,Al-Khattaf S.Catal.Lett.,2009,131(1/2):225-233

    [10]Masiero S S,Marcilio N R,Perez-Lopez O W.Catal.Lett.,2009,131(1/2):194-202

    [11]Arsenova-Hartel N,Bludau H,Schumacher R,et al.J.Catal.,2000,191(2):326-331

    [12]Jin L,Hu H,Wang X,et al.Ind.Eng.Chem.Res.,1993,45(10):3531-3536

    [13]Ramesh K,Jie C,Han Y F,et al.Ind.Eng.Chem.Res.,1993,49(9):4080-4090

    [14]Ivanova I I,Blom N,Derouane E G.J.Mol.Catal.A:Chem.,1996,109(2):157-168

    [15]Choudhary V R,Jana S K.App.Catal.,A,2002,224(1/2):51-62

    [16]Berger C,Raichle A,Rakoczy R A,et al.Microporous Mesoporous Mater.,2003,59(1):1-12

    [17]Zhu Z,Xie Z,Chen Q,et al.Microporous Mesoporous Mater.,2007,101(1/2):169-175

    [18]Niwa M,Katada N,Murakami Y.J.Phys.Chem.,1990,94(16):6441-6445

    [19]Gründling C,Eder-Mirth G,Lercher J A.J.Catal.,1996,160(2):299-308

    [20]Roger H P,Kramer M,Moller K P,et al.Microporous Mesoporous Mater.,1998,21(4/6):607-614

    [21]Weber R W,Moller K P,Unger M,et al.Microporous Mesoporous Mater.,1998,23(3/4):179-187

    [22]Weber R W,Mller K P,O′Connor C T.Microporous Mesoporous Mater.,2000,35-36:533-543

    [23]Zhu Z,Chen Q,Xie Z,et al.J.Mol.Catal.A,2006,248(1/2):152-158

    [24]Uguina M A,Sotelo J L,Serrano D P.Ind.Eng.Chem.Res.,1993,32(1):49-55

    [25]Uguina M A,Sotelo J L,Serrano D P,et al.Ind.Eng.Chem.Res.,1994,33(1):26-31

    [26]Li X J,Liu S L,Zhu X X,et al.Catal.Lett.,2011,141(10):1498-1505

    [27]Zhu Z R,Chen Q L,Xie Z K,et al.J.Mol.Catal.A,2006,248(1/2):152-158

    [28]Niwa M,Kato M,Hattori T,et al.J.Phys.Chem.,1986,90(23):6233-6237

    [29]Viswanadham N,Dhar G M,Rao T.J.Mol.Catal.A,1997,125(2/3):L87-L90

    [30]Ohayon D,Le van Mao R,Ciaravino D,et al.Appl.Catal.,A,2001,217(1/2):241-251

    [31]Li Y G,Xie W H,Yong S.Appl.Catal.,A,1997,150(2):231-242

    [32]Xue B,Li Y,Deng L.Catal.Commun.,2009,10(12):1609-1614

    Ethylbenzene Disproportionation over ZSM-5 Modified by 3,5-Dimethyl Phenylmagnesium Bromide

    ZHANG Ying1LI Jun-Wei1WU Jing-Wen2XU Bo-Lian*,2
    (1The Electric Power Science Research Institute of Guizhou Power Grid Co.,Ltd,Guiyang 550002,China)
    (2Jiangsu Key Laboratory of Vehicle Emissions Control,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093,China)

    A new kind of ZSM-5 surface modification method was developed by using a large organic molecule Grignard reagent (3,5-dimethyl phenylmagnesium bromide).Their shape selective catalytic properties were studied by ethylbenzene(EB)disproportionation reaction test.The pore structure and surface acid properties were also investigated to understand the shape selectivity enhancement mechanism.Most of the MgO was deposited on external surface due to the big molecule size of 3,5-dimethyl phenylmagnesium bromide.The elimination of external surface acid sites by Grignard reagent is the main reason of its high p-diethylbenzene(p-DEB)selectivity in EB disproportionation reaction.The results of probe molecule adsorption kinetics experiment indicate that this modification method does not change the pore size of ZSM-5.

    ZSM-5;surface acidic site;ethylbenzene disproportionation;shape selective catalysis

    O647;O643.36

    A

    1001-4861(2017)12-2351-06

    10.11862/CJIC.2017.260

    2017-07-09。收修改稿日期:2017-09-27。

    中國(guó)南方電網(wǎng)公司科技項(xiàng)目(No.GZ2015-2-0048)資助項(xiàng)目。

    *通信聯(lián)系人。 E-mail:xubolian@nju.edu.cn;會(huì)員登記號(hào):S06N8035M1406。

    猜你喜歡
    乙苯二甲基分子篩
    沸石分子篩發(fā)展簡(jiǎn)述
    云南化工(2021年10期)2021-12-21 07:33:24
    均三乙苯的合成研究
    二甲基硅油結(jié)構(gòu)及熱穩(wěn)定性
    復(fù)合溶劑萃取N,N-二甲基乙酰胺
    固相微萃取-氣質(zhì)聯(lián)用法測(cè)定水中痕量土臭素和二甲基異崁醇
    對(duì)二乙苯生產(chǎn)技術(shù)評(píng)述
    ZSM-5分子篩膜制備方法的研究進(jìn)展
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    SAPO-56分子篩的形貌和粒徑控制
    乙苯/苯乙烯生產(chǎn)過(guò)程的優(yōu)化運(yùn)行研究
    中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 欧美激情高清一区二区三区| 国产国语露脸激情在线看| 黄色丝袜av网址大全| av电影中文网址| 精品电影一区二区在线| 国产免费现黄频在线看| 欧美色视频一区免费| 成人影院久久| 久久久久久免费高清国产稀缺| 国产一区在线观看成人免费| 51午夜福利影视在线观看| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区| 午夜免费观看网址| 午夜免费激情av| 久久伊人香网站| 色婷婷久久久亚洲欧美| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 亚洲第一av免费看| 夜夜爽天天搞| 搡老乐熟女国产| 国产精品免费视频内射| 国产精品免费一区二区三区在线| 高清毛片免费观看视频网站 | 亚洲欧美激情综合另类| 丝袜美足系列| 91成人精品电影| 国产精品爽爽va在线观看网站 | 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| cao死你这个sao货| 亚洲人成伊人成综合网2020| 中文字幕最新亚洲高清| 身体一侧抽搐| 欧美日韩中文字幕国产精品一区二区三区 | 日韩大尺度精品在线看网址 | 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| 亚洲中文av在线| 别揉我奶头~嗯~啊~动态视频| 国产成人av激情在线播放| 国产视频一区二区在线看| 80岁老熟妇乱子伦牲交| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 69精品国产乱码久久久| 亚洲av成人一区二区三| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 日本一区二区免费在线视频| 看黄色毛片网站| 久久人人97超碰香蕉20202| 五月开心婷婷网| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 欧美日韩亚洲综合一区二区三区_| 老司机午夜十八禁免费视频| 又黄又粗又硬又大视频| 久热这里只有精品99| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 最新美女视频免费是黄的| 亚洲欧美激情在线| av有码第一页| 国产区一区二久久| 一级a爱视频在线免费观看| 亚洲自拍偷在线| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片 | 99在线人妻在线中文字幕| 国产精华一区二区三区| 中文字幕av电影在线播放| 嫩草影视91久久| 国产一区二区三区在线臀色熟女 | 国产蜜桃级精品一区二区三区| av超薄肉色丝袜交足视频| 男女高潮啪啪啪动态图| 身体一侧抽搐| 91av网站免费观看| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 亚洲av美国av| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 久久久久久久精品吃奶| 我的亚洲天堂| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 欧美大码av| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 亚洲视频免费观看视频| 美女 人体艺术 gogo| 国产一卡二卡三卡精品| 久久性视频一级片| 美国免费a级毛片| 欧美在线黄色| 制服诱惑二区| 美国免费a级毛片| 久久狼人影院| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 丰满的人妻完整版| 亚洲人成伊人成综合网2020| 精品福利观看| 亚洲中文av在线| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 国产三级黄色录像| 校园春色视频在线观看| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 精品久久久久久电影网| av免费在线观看网站| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| a级毛片黄视频| 宅男免费午夜| 女警被强在线播放| 精品福利观看| 午夜福利免费观看在线| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 欧美午夜高清在线| 欧美日韩一级在线毛片| av电影中文网址| 男女做爰动态图高潮gif福利片 | 性少妇av在线| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲色图 男人天堂 中文字幕| 麻豆一二三区av精品| 亚洲成人免费av在线播放| 久久久久久久久久久久大奶| xxxhd国产人妻xxx| 亚洲久久久国产精品| 在线观看免费午夜福利视频| 老熟妇乱子伦视频在线观看| 亚洲熟妇熟女久久| 精品久久久久久成人av| 91字幕亚洲| 女性生殖器流出的白浆| 成人影院久久| 亚洲国产精品999在线| 午夜福利在线观看吧| 9色porny在线观看| 国产成人系列免费观看| 男人操女人黄网站| 国产精品98久久久久久宅男小说| 黄色视频不卡| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 女人精品久久久久毛片| 亚洲一区二区三区色噜噜 | 午夜免费鲁丝| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| av电影中文网址| 精品国产美女av久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图av天堂| 天堂动漫精品| www.精华液| 精品电影一区二区在线| 丝袜人妻中文字幕| 午夜日韩欧美国产| 在线免费观看的www视频| 国产国语露脸激情在线看| 曰老女人黄片| 成在线人永久免费视频| 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站 | 国产午夜精品久久久久久| av片东京热男人的天堂| 久久香蕉精品热| 久久久久久大精品| 人人澡人人妻人| 亚洲成人免费av在线播放| 男人的好看免费观看在线视频 | av超薄肉色丝袜交足视频| 看片在线看免费视频| 一a级毛片在线观看| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 最近最新中文字幕大全电影3 | 中文字幕精品免费在线观看视频| 天堂动漫精品| 婷婷丁香在线五月| 亚洲精品在线观看二区| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 亚洲av美国av| 日本三级黄在线观看| 黄色 视频免费看| 十八禁网站免费在线| 一区在线观看完整版| 国产熟女xx| 国产主播在线观看一区二区| 最近最新中文字幕大全免费视频| 高清av免费在线| 国产高清视频在线播放一区| 交换朋友夫妻互换小说| 国产熟女xx| 深夜精品福利| 男女高潮啪啪啪动态图| 99re在线观看精品视频| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 欧美老熟妇乱子伦牲交| 亚洲男人的天堂狠狠| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 亚洲av电影在线进入| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| 精品国产一区二区久久| 999精品在线视频| 交换朋友夫妻互换小说| 超碰成人久久| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 99国产极品粉嫩在线观看| 大香蕉久久成人网| 女性被躁到高潮视频| 国产成年人精品一区二区 | 日韩欧美三级三区| www.精华液| 男女午夜视频在线观看| 无人区码免费观看不卡| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 亚洲激情在线av| 亚洲欧美精品综合久久99| 久久人人97超碰香蕉20202| 午夜免费激情av| 亚洲国产精品合色在线| 丝袜美腿诱惑在线| 中文字幕高清在线视频| 亚洲中文av在线| 久久热在线av| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 每晚都被弄得嗷嗷叫到高潮| 1024视频免费在线观看| 成年版毛片免费区| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久午夜乱码| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 黄色片一级片一级黄色片| 激情视频va一区二区三区| 久久亚洲真实| 亚洲一区中文字幕在线| 精品免费久久久久久久清纯| 午夜日韩欧美国产| 久久久久久大精品| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 午夜免费鲁丝| www.999成人在线观看| www.精华液| 在线视频色国产色| 国产区一区二久久| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 午夜免费成人在线视频| 精品一区二区三区四区五区乱码| 悠悠久久av| 18禁裸乳无遮挡免费网站照片 | 高清在线国产一区| 黄色女人牲交| 国产av一区在线观看免费| 99re在线观看精品视频| 久久久国产一区二区| 免费看a级黄色片| bbb黄色大片| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av高清一级| 在线国产一区二区在线| 国产免费现黄频在线看| 亚洲国产欧美网| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 国产精品香港三级国产av潘金莲| 欧美一级毛片孕妇| 欧美在线黄色| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 精品人妻在线不人妻| 大码成人一级视频| 国产xxxxx性猛交| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 久久亚洲真实| 久热爱精品视频在线9| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 国产成人av激情在线播放| 国产精品免费一区二区三区在线| 9色porny在线观看| 亚洲av成人av| 亚洲 欧美一区二区三区| 深夜精品福利| 欧美最黄视频在线播放免费 | 高清av免费在线| 免费少妇av软件| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 久久久久久亚洲精品国产蜜桃av| 亚洲自拍偷在线| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 久久草成人影院| 亚洲美女黄片视频| 少妇的丰满在线观看| 91成人精品电影| 十分钟在线观看高清视频www| 婷婷精品国产亚洲av在线| bbb黄色大片| 91字幕亚洲| 黄色片一级片一级黄色片| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 999久久久国产精品视频| 一进一出抽搐动态| 午夜精品国产一区二区电影| 日韩有码中文字幕| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 老汉色∧v一级毛片| 午夜免费激情av| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 国产高清视频在线播放一区| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看 | 男人舔女人的私密视频| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 男女午夜视频在线观看| 校园春色视频在线观看| 亚洲综合色惰| 国产色婷婷99| 国产黄a三级三级三级人| 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 久久久久国产精品人妻aⅴ院| 最近中文字幕高清免费大全6 | 成人特级黄色片久久久久久久| 免费搜索国产男女视频| 在线观看舔阴道视频| 亚洲av成人av| 18+在线观看网站| 欧美精品国产亚洲| 天堂影院成人在线观看| 丰满的人妻完整版| 人妻丰满熟妇av一区二区三区| 波多野结衣高清作品| 欧美潮喷喷水| 听说在线观看完整版免费高清| 在线观看舔阴道视频| 我要搜黄色片| 国语自产精品视频在线第100页| 毛片一级片免费看久久久久 | 嫩草影视91久久| 99久久精品国产亚洲精品| 日本与韩国留学比较| 亚洲欧美精品综合久久99| av欧美777| 尤物成人国产欧美一区二区三区| 国产高清视频在线观看网站| 在线国产一区二区在线| 亚洲av第一区精品v没综合| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 999久久久精品免费观看国产| 简卡轻食公司| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 99热只有精品国产| 国产av麻豆久久久久久久| 最近视频中文字幕2019在线8| 午夜日韩欧美国产| 亚洲av熟女| 国产精品1区2区在线观看.| 性色avwww在线观看| 亚洲第一区二区三区不卡| 欧美日韩福利视频一区二区| 亚洲真实伦在线观看| 国产精品伦人一区二区| 国产蜜桃级精品一区二区三区| 日本一本二区三区精品| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 嫁个100分男人电影在线观看| 亚洲成人久久性| 精品无人区乱码1区二区| 97人妻精品一区二区三区麻豆| 中文字幕免费在线视频6| 久久久久久久久大av| 亚洲三级黄色毛片| 国产精品女同一区二区软件 | 久久99热这里只有精品18| 老女人水多毛片| 麻豆国产97在线/欧美| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6 | 97碰自拍视频| 99久国产av精品| 亚洲av.av天堂| 免费人成在线观看视频色| 欧美性猛交╳xxx乱大交人| 日韩精品中文字幕看吧| 久久九九热精品免费| 在线观看av片永久免费下载| 欧美中文日本在线观看视频| 欧美午夜高清在线| 赤兔流量卡办理| 一个人免费在线观看电影| 三级男女做爰猛烈吃奶摸视频| 久9热在线精品视频| 日韩免费av在线播放| 午夜a级毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 伊人久久精品亚洲午夜| or卡值多少钱| 国产午夜精品论理片| 嫩草影院精品99| 在线国产一区二区在线| 久久久久久国产a免费观看| 成人一区二区视频在线观看| www.999成人在线观看| 午夜久久久久精精品| 亚洲美女视频黄频| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 精品无人区乱码1区二区| 国产av在哪里看| 夜夜夜夜夜久久久久| 国产精品影院久久| x7x7x7水蜜桃| 亚洲 国产 在线| 男人和女人高潮做爰伦理| av福利片在线观看| 国产高清有码在线观看视频| 18+在线观看网站| 一二三四社区在线视频社区8| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 中文字幕精品亚洲无线码一区| 精品国产亚洲在线| 中亚洲国语对白在线视频| 一个人看视频在线观看www免费| 国产精品三级大全| 观看免费一级毛片| 美女免费视频网站| 亚洲欧美激情综合另类| 身体一侧抽搐| 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 欧美乱色亚洲激情| 丰满乱子伦码专区| 国内久久婷婷六月综合欲色啪| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app | 亚洲真实伦在线观看| 99热这里只有是精品在线观看 | 99精品久久久久人妻精品| 亚洲精品在线美女| a在线观看视频网站| 麻豆成人av在线观看| 色播亚洲综合网| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| a级一级毛片免费在线观看| 欧美精品国产亚洲| 99久久精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产伦精品一区二区三区四那| 国产精品日韩av在线免费观看| 在线播放无遮挡| 国产精品女同一区二区软件 | 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 久久香蕉精品热| 男人和女人高潮做爰伦理| 日韩人妻高清精品专区| 国产成人欧美在线观看| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 亚洲美女视频黄频| 精品久久久久久久久久久久久| 精品国产三级普通话版| 黄色丝袜av网址大全| 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 十八禁网站免费在线| 国产成人a区在线观看| 床上黄色一级片| 久久久久久久久中文| 亚洲性夜色夜夜综合| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6 | 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 国产精品亚洲av一区麻豆| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 精品人妻视频免费看| 色综合欧美亚洲国产小说| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 少妇被粗大猛烈的视频| 久久草成人影院| 日韩中字成人| 99久国产av精品| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 亚洲国产精品999在线| 欧美极品一区二区三区四区| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色| 国产爱豆传媒在线观看| 国产真实乱freesex| 国产高潮美女av| 少妇人妻精品综合一区二区 | 国产探花极品一区二区| 男女之事视频高清在线观看| 搡老熟女国产l中国老女人| 欧美性猛交╳xxx乱大交人| 欧美+日韩+精品| 夜夜爽天天搞| .国产精品久久| 久久性视频一级片| 神马国产精品三级电影在线观看| 99久国产av精品| 久久这里只有精品中国| 亚洲精品乱码久久久v下载方式| 久久婷婷人人爽人人干人人爱| 免费观看精品视频网站| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| 亚洲经典国产精华液单 | 中文亚洲av片在线观看爽| 午夜精品久久久久久毛片777| 国产野战对白在线观看| 欧美成人免费av一区二区三区| 日韩欧美三级三区| 国产欧美日韩精品一区二区| 日韩欧美免费精品| 国产精品1区2区在线观看.| 99精品久久久久人妻精品| 日韩欧美精品v在线| 久久伊人香网站| 国产一区二区激情短视频| 国产精品乱码一区二三区的特点| 青草久久国产| 2021天堂中文幕一二区在线观| 高清在线国产一区| 日本精品一区二区三区蜜桃| 99久久99久久久精品蜜桃| 色播亚洲综合网| 亚洲精品在线美女| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 色综合欧美亚洲国产小说| 国产精品一及| 啦啦啦观看免费观看视频高清|