• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性

    2020-07-20 02:06:44EdaengElifCansuTopkayaTolgaktrkRamazanGup
    關(guān)鍵詞:鍵合核酸酶銨鹽

    Eda ?engül Elif Cansu G?k?e Topkaya Tolga G?ktürk Ramazan Gup

    (Department of Chemistry,Faculty of Science,Mugla S?tk? Ko?man University,48000,Kotekli-Mugla,Turkey)

    0 Introduction

    DNA is the storage and transport of genetic information in the cell,and it is a prime target molecule for the drugs.The interaction of drugs with DNA can cause DNA damage in cancer cells,blocking the division of cancer cells and resulting in cell death[1-2].After success of cisplatin as an anticancer agent the design and use of metal based compounds as antitumor drugs have been become one of the most interdisciplinary research area for medicinal inorganic chemists[3-5].On the other hand,the use of platinum metal-based cisplatin drug in cancer therapy causes numerous side effects which unfortunately have limited its use[4]and paved the way for the development of new compounds[6-10].

    Inorganic chemistry presents a broad possibility for the design of new metal-based drugs based on the coordination and redox properties of metal complexes to treat cancer[11-15].Currently,various metal complexes are regarded as the most capable replacement for classical cisplatin-type drugs[16-19].Among the various metal complexes,copper-based metal complexes have been extensively investigated due to their low side effects and high biological activities after coordinated with ligands[20-22].

    Because of extensively using as chelating ligands in field of coordination chemistry,Schiff bases have been taken notice significant compounds in medicinal chemistry for decades.They can be easily synthesized and coordinated with different kinds of metal ions.Schiff base hydrazone derivatives as well as their coordination compounds have been used for various essential biological activities including anticancer,anti HIV,antibacterial activities,enzyme inhibitors,etc[16-17,23-27].In addition to these,the copper (Ⅱ)complexes of hydrazone ligands show good activity in binding and cleaving DNA[28-31].Therefore,they are one of the important candidates in metal-based drug medicinal researches.

    The compounds having quaternary ammonium salts moiety are widely used as bioactive agents.Quaternary ammonium salts have a significant role in the living organisms and are commonly used for the control of bacterial growth in clinical and industrial environments[32-34].Quaternary ammonium salts are used as fungicides,bactericides,antiseptics and therapeutic agents due to their excellent antimicrobial activity.The presence of alkyl chains in drugs increases the lipophilicity properties of compounds and enables these compounds to pass through bio-molecules.Keeping in minds the potential biological activities of hydrazones and quaternary ammonium salts,we have decided to design new copper (Ⅱ)complexes of Schiff base ligands bearing quaternary alkyl ammonium salts and hydrazones.DNA bindingin vitroand DNA cleavage studies have also been evaluated.

    1 Experimental

    1.1 Materials and instrumentation

    All reagents used in this work were purchased from Merck and Sigma-Aldrich and used as supplied.pBR322 DNA was purchased from Fermentas.Microanalysis(C,H,N)were performed on a LECO 932 CHNS analyzer and copper content was measured by atomic absorption spectroscopy using the DV 2000 Perkin Elber ICP-AAS.Magnetic susceptibility measurements were carried out by using a Sherwood Scientific MK1 Model Gouy Magnetic Susceptibility Balance at room temperature.NMR spectra were recorded on a Bruker 400 MHz spectrometer in DMSO-d6with TMS as the internal standard.IR spectra were recorded on pure solid samples with a Thermo-Scientific,Nicolet iS10-ATR.The electronic spectra of the ligands and complexes were recorded on a PG Instruments T80+UV/Vis Spectrophotometer.4-Hydroxybenzohydrazide(Scheme 1)was synthesized by the refluxing of ethyl 4-hydroxybenzoate with hydrazine hydrate for 4 h in ethanol.

    1.2 Preparation of 3-(4-acetylphenoxy)-N,N,N-trimethylpropane-1-ammonium perchlorate(A)and 5-(4-acetylphenoxy)-N,N,N-trimethylpentane-1-ammonium perchlorate(B)

    Scheme 1 Schematic diagram showing synthesis of 4-hydroxybenzohydrazide and(4-acetylphenoxy)-N,N,N-trimethylalkyl-1-ammonium perchlorate compounds

    K2CO3(1.52 g,0.011 mol)and catalytic amount of KI were added to a solution of 1.36 g(0.01 mol)of 4-hydroxyacetophenone in 20 mL of acetone,followed by stirring for 15 minutes.(3-Bromopropyl)trimethylammonium bromide(0.01 mol,2.87 g)or(5-bromopentyl)trimethylammonium bromide(1.36 g,0.01 mol)was added as a solid and the resulting mixture was stirred under reflux for 24 hours.After evaporating the solvent with evaporator,the remaining solid was dissolved with minimum amount of cold water and an equal amount of NaClO4was added and kept in refrigerator for one night.The resulting white solid precipitate was filtered off.The product was purified by crystallization from methanol.The purity of the compound was checked with thin layer chromatography.

    For A:Yield:81%.m.p.150~152 ℃ .UV-Vis(DMF,nm)205.5,216.0,272.0(sh),299.FTIR(ATR,cm?1):2 956(C-H)aliph,1674(C=O),1 246(C-O).1H NMR(DMSO-d6):δ2.19(p,2H,CH2),2.31(s,3H,CH3),3.18(s,9H,N+-CH3),3.45(t,2H,N-CH2),4.09(t,2H,O-CH2),7.75(2H,d,ArH),7.98,(2H,d,ArH).13C NMR(DMSO-d6):δ186.7(C=O),172.3(C=O),162.7(C-O),149.1,147.6 and 142.9(C=N),137.1,131.8,128.4,119.4 and 114.4(Ar-C),64.5(O-CH2),10.4(CH3).Elemental Anal.Calcd.for C14H22ClNO6(%):C,50.08;H,6.60;N,4.17.Found(%):C,50.01;H,6.53;N,4.15.

    For B:Yield:79%.m.p.129~131 ℃.UV-Vis(DMF,nm):205.5,271.0,291(sh),304.0.FTIR(ATR,cm?1):2 956(C-H)aliph,1 669(C=O),1 261(C-O).1H NMR(DMSO-d6):δ1.14(2H,p,CH2),1.77(4H,m,CH2),2.45(3H,s,CH3),3.15(9H,s,N-CH3),3.28(2H,t,N-CH2),4.06(2H,t,O-CH2),7.01(2H,d,ArH)7.90(2H,d,ArH).13C NMR(DMSO-d6):197.0(C=O),163.1(C-O),131.2,130.5 and 114.9(Ar-C),68.1(O-CH2),65.8(N-CH2),52.8(N-CH3),28.6(CH3),27.1,23.0 and 22.5(CH2).LC-MS:m/z364.15 for[M]+.Elemental Anal.Calcd.for C16H26ClNO6(%):C,52.82;H,7.20;N,3.85.Found(%):C,52.75;H,7.23;N,3.87.

    1.3 Synthesis of the hydrazone Schiff base ligands

    A or B(1 mmol)was added as a solid to a solution of 4-hydroxybenzohydrazide(1 mmol)dissolved in 10 mL of ethanol with two drops of glacial acetic acid.The reaction mixture was refluxed for further 24 h.The precipitated compound was collected by filtration,washed with diethyl ether and then dried in vacuum.The product was recrystallized by water-ethanol(2∶1,V/V).

    For(E)-3-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl)phenoxy)-N,N,N-trimethylpropan-1-ammonium perchlorate(H2L1):Yield:69%.m.p.276℃.UV-Vis(DMF,nm):272,306.IR(ATR,cm?1):3 162(OH),2 978(C-Haliph),1 655(C=O)amide,1 609(C=N),1 397(C-N),1 274(C-O),1 101(ClO4?).1H NMR(DMSO-d6):δ2.22(p,2H,CH2),2.33(s,3H,CH3),3.12(s,9H,N+-CH3),3.50(t,2H,N-CH2),4.12(t,2H,O-CH2),6.86(d,2H,J=8.5,ArH),7.02(d,2H,J=8.6,ArH),7.79(d,4H,J=8.6,ArH),10.09(s,1H,OH),10.48(s,1H,NH).13C NMR(DMSO-d6):δ169.4(C=O),160.7(C=N),160.8 and 159.6(ArC-O),130.3,129.2,128.3,124.9,115.2 and 114.4(Ar-C),67.2(CH2-O),63.4(N-CH2),52.7(N+-CH3),23.0(CH3),14.4(CH2).Elemental Anal.Calcd.for C21H28ClN3O7(%):C:53.67,H:6.01,N:8.94.Found(%):C:53.89,H:6.08,N:9.01.

    For(E)-3-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl)phenoxy)-N,N,N-trimethylpentane-1-ammonium perchlorate(H2L2):Yield:72%.m.p.222℃.UV-Vis(DMF,nm):271,309.FTIR(ATR,cm?1):3 391(OH),2 934 and 2 872(C-Haliph),1 650(C=O)amide,1 611(C=N),1 381(C-N),1 257(C-O),1 085(ClO4?).1H NMR(DMSO-d6):δ1.48(p,2H,CH2),1.78(m,4H,CH2),2.32(s,3H,CH3),3.06(s,9H,N+-CH3),3.33(t,2H,N-CH2),4.06(t,2H,O-CH2),6.86(d,2H,J=8.5,ArH),6.99(d,2H,J=8.6,ArH),7.78(d,4H,J=8.6,ArH),10.08(s,1H,OH),10.45(s,1H,NH).13C NMR(DMSO-d6):166.4(C=O),160.(C=N),160.4 and 160.8(ArCO),131.0,129.2,125.0,124.4,115.2 and 114.6(Ar-C),67.6(CH2-O),65.6(N-CH2),52.6(N+-CH3),28.5(CH3),22.8,22.3 and 14.6(CH2).Elemental Anal.Calcd.for C23H32ClN3O7(%):C:55.47,H:6.48,N:8.44.Found(%):C:55.85,H:6.57,N:8.60.

    1.4 Synthesis of Cu (Ⅱ)complexes

    Copper (Ⅱ)acetate dihydrate(0.20 g,1 mmol)was added as a solid to a solution of H2L1or H2L2(2 mmol)dissolved in MeOH-water(10 mL).Trimethylamine(2 mmol)was added by dropwise to this solution and the reaction mixture was refluxed for 24 h.The precipitated complexes were filtered off and washed with cold water and finally recrystallized by acetonitrile-ethanol(1∶1,V/V).

    For[Cu(HL1)2]:Dark brown;Yield:72%;m.p.278 ℃.μeff=1.73μB;UV-Vis(DMF,nm):272.0,308.0,362.0(sh),380.0,400.0(sh).FT-IR(ATR,cm?1):3 368b(O-H),2 928 and 2 821w(C-Haliphatic),1 595m(C=N-N=C),1 370m(C-N),1 243s(C-O),1 090(ClO4?).MS-ES+:m/z999.179 for[M]+.Elemental Anal.Calcd.for C42H54Cl2CuN6O14(%):C:50.38,H:5.44,N:8.39,Cu:6.35.Found(%):C:50.04,H:5.76,N:8.62,Cu:6.10.

    For[Cu(HL2)2]:Dark brown;Yield:71%;m.p.277 ℃.μeff=1.70μB;UV-Vis(DMF,nm)274.0,312.0,366.0(sh),384.0 and 402.0(sh).FT-IR(ATR,cm?1):3 423b(O-H),2 951 and 2 874w(C-Haliphatic),1 597m(C=N-N=C),1 366m(C-N),1 247s(C-O),1 100s(ClO4).MSES+:(m/z)1 057.034 for[M]+.Elemental Anal.Calcd.for C46H62Cl2CuN6O14(%):C:52.25,H:5.91,N:7.95,Cu:6.01.Found(%):C:52.48,H:6.04,N:7.78,Cu:6.49.

    1.5 DNA binding

    1.5.1 Electronic absorption titrations

    All the binding experiments of these compounds with CT-DNA were conducted in a buffer containing 5 mmol·L?1Tris(tris(hydroxymethyl)aminomethane)and 50 mmol·L?1NaCl,and adjusted to pH=7.3 with HCl[30,35].The determination of UV-Vis absorption spectra was carried out by adding the increasing amounts of DNA(from 0 to 100 μmol·L?1)to each of these compounds with a fixed concentration(50 μmol·L?1)dissolved in a solvent mixture of 1%(V/V)DMF and 99%(V/V)Tris-HCl buffer.The spectra were measured in a wavelength range of 200~500 nm.

    1.6 DNA cleavage

    The cleavage of supercoiled pBR322 DNA was determined by agarose gel electrophoresis[35].The gel electrophoresis experiments were performed by incubation of the samples containing 7μL pBR322 plasmid DNA(50 ng· μL?1)and different concentrations of compounds(50,100,150,200 and 250 μmol·L?1)dissolved in DMF in 100 mmol·L?1Tris-HCl buffer(pH 8.0)at 37℃for 2 h in the presence and absence of H2O2(5 μL,5 mmol·L?1).After incubation,the samples were loaded with 4μL loading dye(0.25%bromophenol blue,0.25%xylene cyanol,30%glycerol,10 mmol EDTA)on a 1%agarose gel containing 1 μg·mL?1of EtBr.The gels were run at 100 V for 3 h in TBE buffer and photographed under UV light.To determine binding site and the presence of reactive oxygen species generated during strand scission,reactive oxygen intermediate scavengers(100 μmol·L?1),that is,DMSO,KI,NaN3and catalase or groove binders were added alternately to the reaction mixture.

    2 Results and discussion

    2.1 Synthesis

    The reactions of 4-hydroxyacetophenone with(5-bromopropyl)trimethylammonium bromide and(5-bromopentyl)trimethylammonium bromide in the presence of dry K2CO3,KI and stoichiometric amount of NaClO4gave 3-(4-acetylphenoxy)-N,N,N-trimethylpropane-1-ammonium perchlorate(A)and 5-(4-acetylphenoxy)-N,N,N-trimethylpentane-1-ammonium perchlorate(B),respectively(Scheme 1).The hydrazone Schiff base ligands(H2L1and H2L2)were synthesized by the condensation reaction of compounds A and B with 4-hydroxybenzoic hydrazide in ethanol.The reactions proceeded smoothly producing the corresponding aroylhydrazones in good yields(Scheme 2).They are soluble in common organic solvent but insoluble in water.The structures of the ligands were elucidated by elemental analyses,FTIR,electronic absorption,and1H and13C NMR.The complexes were synthesized by reaction of the hydrazone ligands with copper (Ⅱ)acetate in the molar ratio of 2:1.All the complexes are highly soluble in MeOH,DMF and DMSO.Attempts to isolate crystals suitable for single X-ray diffraction were unsuccessful.Therefore,the new Cu (Ⅱ)complexes were characterized by elemental analysis,mass,IR and UV-visible spectroscopy.The analytical data obtained for the hydrazone Schiff base and the copper (Ⅱ)complexes are well agreement with the proposed molecular formula.

    Scheme 2 Synthetic route for the hydrazone Schiff base ligands

    2.2 Infrared spectra

    The IR spectra of the compounds in a region of 400~4 000 cm?1were analyzed.The IR spectra of compounds A and B gave absorption bands in the region of 1 674~1 669 cm?1corresponding to carbonyl stretching and strong and broad bands at~1 070 cm?1corresponding to the characteristic chlorate ion stretching.The IR spectra of the hydrozone Schiff base ligands H2L1and H2L2showed a new broad O-H stretching vibration at 3 368 and 3 426 cm?1,respectively.The characteristic amide Ⅰ band was observed at 1 655 and 1 650 cm?1while the other characteristic band due to azomethine group appeared at 1 611 and 1 607 cm?1for H2L1and H2L2,respectively.The bands observed in the region of 1 246~1 274 cm?1in all compounds can be assigned toν(C-O)stretching vibration.The strong stretching vibrations observed in the region of 1 674~1 669 cm?1in the IR spectra of free hydrazone ligands disappeared when the hydrazone ligands coordinated to the copper (Ⅱ)ion[15,31].On the other hand,the infrared spectra of the copper complexes exhibited a new band at 1 595 and 1 597 cm?1for[Cu(HL1)2]and[Cu(HL2)2],respectively,due to the asymmetric stretching vibration of the newly formed-N=C<bond,which is probably as a result of the enolization of ligands on coordination[31,36-37].By comparing IR spectra of the copper (Ⅱ)complexes with those of the free ligands,the data give evidence of coordination of the hydrazone ligands to the copper ion via enolate ion and azomethine nitrogen atoms[21,38].The proposed structures of the copper (Ⅱ)complexes were given in the Fig.1.The other peaks observed in the IR spectra of the compounds synthesized in this work are given in experimental section.

    Fig.1 Suggested structures of the copper (Ⅱ)complexes

    2.3 NMR spectroscopy

    Additional structural information can be deduced from1H NMR and13C NMR spectra for the hydrazine Schiff base ligands.The NMR spectra of the compounds were recorded at room temperature in DMSO-d6.In the1H NMR spectrum of the compounds,the chemical shifts appeared in the region of 3.06~3.18,3.28~3.50 and 4.06~4.12 are attributed to-N+(CH3)3protons,-CH2N protons and-CH2OPh protons,respec-tively.The1H NMR spectra of the compounds exhibited a singlet and a multiple peak in the region of 2.31~2.45 and 1.14~1.17 for the methyl((C=O)-CH3)and the other methylene(CH2)protons,respectively.The chemical shift for the hydroxyl proton(-OH)and-NH proton appeared in the region of 10.08~10.09 and 10.40~10.45,which also indicates the formations of the hydrazone Schiff base ligands.These data are in agreement with that previously reported for similar compounds[38-41].

    In the13C NMR spectra of A and B,the chemical shifts at 197.0 and 163.1 are due to carbonyl carbon(C=O)and aromatic C-O,respectively.It is remarkable that these signals of carbonyl carbons(C=O)were replaced by azomethine carbon(C=N)in the hydrazone Schiff base ligands at~160 when the compounds A and B were reacted with 4-hydroxybenzohydrazide.The signals in the region of 131.2~114.9 are ascribed to the carbon atoms of aromatic ring.The signals at 68.1,65.8 and 52.8 are assignable to-O-CH2,-N+-CH2and-N+-(CH3)3carbons,respectively.The chemical shifts corresponding to the aliphatic carbon atoms were observed in the region of 27.1~22.5.In addition,the chemical shifts at 169.4 and 166.4 are attributed to the carbonyl carbon(C=O)of the hydrazide side of H2L1and H2L2ligands,respectively.1H and13C NMR spectra of the copper (Ⅱ)complexes could not be obtained due to their paramagnetic nature.

    2.4 Electronic absorption spectra and mass spectra

    The electronic absorption bands in the spectra of the ligands and copper (Ⅱ)complexes recorded in dimethylformamide solution are presented in experimental sections.The intense bands in the region of 270~272 nm and 306~309 nm are due toπ→π*andn→π*transitions of the hydrazone ligands,respectively.The shoulders observed in the region of 310~304 nm and 272~274 nm of the copper complexes are attributed ton→πandπ→π*transitions.Then→πtransition,which appeared at 328 nm in the spectrum of the uncoordinated ligands was slightly shifted to a higher wavelength upon coordination.This is an indication of the enolization followed by the deprotonation of the ligand during coordination.The broad bands observed at 380 and 388 nm and the shoulders at 400 and 402 nm are attributed to the intra-ligand and ligand-to-metalcharge transfer(LMCT)transitions,respectively.As expected for the one unpaired electron(S=1/2)system(Cu (Ⅱ)d9),the observed magnetic moment values for[Cu(HL1)2]and [Cu(HL2)2]complexes are 1.73μBand 1.70μB,respectively.

    The mass spectra of the copper (Ⅱ)complexes were recorded and represented in Fig.S9 and S10(Supporting information).The mass spectra showed that the molecular peaks observed at[M]+=999.179 and[M]+=1 057.034,are consistent with the molecular weight of complexes[Cu(HL1)2]and[Cu(HL2)2],respectively.

    2.5 DNA binding studies

    DNA binding is the critical step in the design and construction of new and more efficient drugs targeted to DNA.A compound can bind to the DNA via covalent or non-covalent interactions.Non-covalent binding contains intercalation between the base pairs,binding to major or minor grooves or electrostatic interaction[42-43].

    The probable binding ability of the hydrazone ligands and their Cu (Ⅱ)complexes towards CT-DNA were studied by UV-Vis spectroscopy in a range of 250~500 nm.The typical absorption titration curves of the compounds at constant concentration(20 μmol·L?1)in the presence of different concentrations of CTDNA are shown in Fig.2.In the presence of DNA,the absorption bands of the ligands were affected,resulting with considerable hyperchromism with a minor red shift at 270 and 271 nm for H2L1and H2L2,respectively.Similarly,with increase in concentration of CTDNA,the absorption spectra of the Cu (Ⅱ)complexes also exhibited hyperchromism with the minor bathochromic shift(1~2 nm)within the bands at 274 and 272 nm for[Cu(HL1)2]and[Cu(HL2)2],respectively,indicating that all compounds bind with DNA.On the other hand,the bands between 306 and 312 nm for the ligands and their Cu (Ⅱ)complexes show only hypochromism without any shift in wavelength,so that isobestic points are formed in the region of 301~304 nm.These changes are typical of the compounds interacting with DNA via non-covalent interaction[44].Hyperchromism results from the secondary damage of DNA double helix structure[45-46].The hyperchromic effect may also due to the electrostatic interaction between positively(CH3)3N+group of the synthesized compounds and the negatively charged phosphate group of DNA-helix[47-48].

    Fig.2 Absorption titration curves of the ligands and their Cu (Ⅱ)complexes in the presence of increasing concentration of CT-DNA

    In order to compare quantitatively the DNA binding strength of the ligands and their Cu (Ⅱ)complexes,the intrinsic binding constantsKbof the compounds were determined with Eq.(1)by monitoring the changes in absorbance at~270 nm for the ligands,384 nm for[Cu(HL1)2]and 380 nm for[Cu(HL2)2]with increasing concentration of CT-DNA:

    wherecDNAis the concentration of DNA in base pairs,εa,εfandεbcorrespond toAobsd/cM,the extinction coefficient of the complexes and the extinction coefficient of the complex in the fully bound form,respectively,andKbis the intrinsic binding constant.The ratio of the slope to intercept in the plot ofcDNA/(εa?εf)versus cDNAgave the value ofKb.The binding constants obtained for H2L1,H2L2,[Cu(HL1)2]and[Cu(HL2)2]are 3.33×104L·mol?1,1.50×104L·mol?1,1.10×105L·mol?1and 6.25×104L·mol?1,respectively.TheseKbvalues suggest that the H2L1ligand its Cu (Ⅱ)complex have greater binding affinities for calf thymus DNA than the H2L2ligand and its Cu (Ⅱ)complex.

    2.7 DNA cleavage studies

    Agarose gel electrophoresis has been used for the supercoiled pBR322 DNA cleavage studies of the hydrazone ligands and their copper (Ⅱ)complexes under physiological conditions in the presence or absence of H2O2as an oxidant agent.The DNA cleavage effectiveness was evaluated by determining the ability of these compounds to convert the plasmid DNA from the original supercoiled form(FormⅠ)to the open circular form(FormⅡ)and the linear form(FormⅢ)[49-50].

    2.7.1 Hydrolytic cleavage

    Fig.3 Agarose gel electrophoresis of hydrolytic cleavage of pBR322 DNA mediated by different concentrations of the ligands and their Cu (Ⅱ)complexes after 4 h of incubation

    The cleavage activities of the compounds were investigated with different concentrations of the compound in the absence of a co-reagent.With increasing concentration both ligands and their Cu (Ⅱ)complexes have been found to exhibit effective DNA cleavage activity converting the plasmid supercoiled DNA into its cleavage forms(FormⅡ andⅢ)as shown in Fig.3.The ligands cleavaged the supercoiled DNA to nicked and linear DNA at the same time and the increasing intensities of FormsⅡandⅢwere found with the increase of ligand concentration,and the gel pattern indicated the double-strand DNA cleavage.In the case of H2L1,at the concentration of 50 μmol·L?1,the plasmid DNA was slightly cleaved and the percentage of nicked and linear increased with increasing ligand concentration,and finally the supercoiled DNA was almost disappeared when the concentration reached to 250 μmol·L?1(Fig.3(a)).On the other hand,the copper (Ⅱ) complexes of the ligands effectively cleaved supercoiled DNA to open and linear form in high concentrations,surprisingly,compared with the ligands.The complexes slightly cleaved the supercoiled DNA only to nicked form at concentrations of 50 and 100 μmol·L?1.On the other hand,when the concentration of the complex reached to 150 μmol·L?1,linear form was also observed besides nicked form.These data clearly demonstrate that the DNA cleavage activity of the copper (Ⅱ)complexes are better than those of their corresponding ligands.

    2.7.2 Oxidative cleavage

    The oxidative cleavage of the compounds was also investigated in the presence of H2O2as a co-reactant.The hydrazone H2L2ligand converts the supercoiled DNA to nicked and linear DNA,and all three forms of DNA were observed even at the concentration of 50μmol·L?1(Fig.4(a)and(b)).On the other hand,at 50μmol·L?1,the hydrazone H2L1ligand slightly cleavaged SC DNA into NC and LC forms and the increasing intensities of FormⅡwas found with increase in concen-tration of the H2L1ligand.At 250 μmol·L?1,it was observed that the SC DNA was substantially converted into FormⅡNC and LC forms.

    Fig.4 Agarose gel electrophoresis of oxidative cleavage of pBR322 DNA mediated by different concentrations of the ligands and their Cu (Ⅱ)complexes after incubation for 3 h

    In comparison with those of in the absence of a coreagent,it is observed that the copper (Ⅱ)complexes enhanced the nuclease activities in the presence of H2O2,which strongly depended on the concentration of the complex.The Cu (Ⅱ)complexes slightly cleaved the supercoiled DNA to FormⅡat concentrations of 50 and 100 μmol·L?1(Fig.4(c)and(d)).On the other hand,linear form also began to appear besides nicked form at the concentration of 150 μmol·L?1.However,the supercoiled form was completely converted into degraded form catalyzed by[Cu(HL1)2]at a concentration of 250μmol·L?1((Fig.4(c)).From these data it can be concluded that the copper (Ⅱ)complexes show better nuclease activity than the ligands in the presence of H2O2.

    2.7.3 Mechanism of DNA cleavage

    In order to determine whether reactive oxygen species is responsible for the DNA scission process for the compounds,DNA-cleavage reactions mediated by the ligands and their Cu (Ⅱ)complexes were carried out with different inhibiting agents including diffusible hydroxyl radical scavenger(DMSO),superoxide scavenger(KI),singlet oxygen scavenger(NaN3)and hydrogen peroxide scavenger(catalase)both in the presence and absence of an oxidant agent.As can be seen in Fig.5 and 6,the cleavage activities of all compounds were not inhibited markedly in the presence of the radical scavengers used in this work,evidencing that these species are not involved in the cleavage process.All compounds exhibited similar cleavage activities both in the presence and absence of H2O2,making clear that H2O2does not have the critical role in the cleavage reaction catalyzed by all compounds.It may be deduced from these results that DNA is probably cleaved by a hydrolytic pathway since the nuclease activity of the complex is not inhibited in presence of radical scavengers either in presence and absence of hydrogen peroxide.

    Fig.5 Oxidative cleavage of pBR322 DNA in the presence of different scavengers and groove bindings(methyl green(MG)and 4,6-diamidino-2-phenylindole(DAPI))after 3 h incubation of the ligands and Cu (Ⅱ)complexes

    Fig.6 Hydrolytic cleavage of pBR322 DNA in the presence of different scavengers and groove bindings(methyl green(MG)and 4,6-diamidino-2-phenylindole(DAPI))after 4 h incubation of the ligands and Cu (Ⅱ)complexes

    To investigate whether the compounds interact with plasmid pBR 322 DNA by groove binding,the cleavage reactions were also carried out in the presence of 4,6-diamidino-2-phenylindole(DAPI)and methyl green,which are known to bind to DNA at minor groove and major groove,respectively,since the UV-visible absorption titration results indicate that the compounds bind to DNA via groove binding mode[51].No apparent inhibition of DNA damage was observed in the presence of DAPI(Fig.5 and 6;lane 2 and 3)neither in the presence nor absence of H2O2indicating that the compounds do not bind to DNA via minor binding.On the other hand,addition of methyl green into the cleavage system relatively inhibited the DNA cleavage for all compounds(Fig.5 and 6,lane 1 and 2)evidencing the major groove preference of both hydrazone ligands and their Cu (Ⅱ)complexes.

    3 Conclusions

    Herein,two new hydrazone Schiff base ligand bearing quaternary alkyl ammonium salts and their Cu (Ⅱ)complexes have been successfully synthesized and characterized.The new hydrazone Schiff base compounds behave as monobasic bidentate ligands coordinating through azomethine nitrogen and enolic oxygen.All the final compounds have been screened for DNA binding and DNA cleavage.Thein vitroDNA binding studies of both ligands and Cu (Ⅱ)complexes reveal the groove binding,possibly major groove binding mode,which is also supported by the result of the agarose gel electrophorese of DNA scission in the presence of groove binders.The compounds cleave the circular supercoiled DNA to nicked DNA and linear DNA form both in the presence and absence of H2O2,which has strong dependence on the concentration of compounds.Various radical scavengers do not effectively inhibit the DNA cleavage mediated by the titled compounds either in the presence or absence of H2O2,suggesting that the diffusible radicals are not produced during the DNA cleavage by the compounds according to the mechanistic studies.These observations seem to suggest that both hydrazone ligands and their copper (Ⅱ)complexes cleavage the DNA by a hydrolytic pathway.The results also indicate that the chemical nuclease activities of the titled copper (Ⅱ)complexes are higher than those of their corresponding ligands,probably due to their higher DNA binding affinities.

    Acknowledgements:This paper has been granted by the Mu?la S?tk? Ko?man University Research Projects Coordination Office through Project(Grant No.15/168).We thank to Mugla S?tk? Ko?man University for financial support of this study.

    Disclosure statement:No potential conflict of interest was reported by the authors.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    鍵合核酸酶銨鹽
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    腸炎沙門(mén)菌胞外分泌蛋白的核酸酶活性測(cè)定
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    MEMES壓力傳感器技術(shù)組成分析
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    集成電路陶瓷封裝內(nèi)部氣氛及PIND控制
    溴代8-氧雜螺[4,5]季銨鹽的合成
    織物抗菌劑有機(jī)硅季銨鹽POASC和PFASC的制備及應(yīng)用
    絲綢(2015年11期)2015-02-28 14:56:49
    材料理論硬度與鍵合性質(zhì)的關(guān)系研究
    第四代微電子封裝技術(shù)—TVS技術(shù)及其發(fā)展
    国产真实乱freesex| 草草在线视频免费看| 亚洲精品色激情综合| 69人妻影院| 一进一出抽搐动态| 午夜免费男女啪啪视频观看 | 亚洲黑人精品在线| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 又粗又爽又猛毛片免费看| 88av欧美| av女优亚洲男人天堂| 两个人看的免费小视频| 国产一区二区三区视频了| 精品国产美女av久久久久小说| 18禁美女被吸乳视频| 两人在一起打扑克的视频| 看片在线看免费视频| 欧美三级亚洲精品| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 亚洲五月婷婷丁香| 国产 一区 欧美 日韩| 精品日产1卡2卡| 中文字幕人妻熟人妻熟丝袜美 | 亚洲成人免费电影在线观看| 国产亚洲精品久久久久久毛片| 91久久精品电影网| 色噜噜av男人的天堂激情| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 国产激情偷乱视频一区二区| 欧美日韩瑟瑟在线播放| 国产精品电影一区二区三区| 真人做人爱边吃奶动态| 欧美高清成人免费视频www| 中文字幕高清在线视频| 一本综合久久免费| 国产黄片美女视频| 国内精品美女久久久久久| 国产高潮美女av| 国产真实伦视频高清在线观看 | 国产精品野战在线观看| 国产亚洲精品一区二区www| av福利片在线观看| 一进一出抽搐gif免费好疼| 亚洲 国产 在线| 国产一区二区在线观看日韩 | 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 深夜精品福利| 国产美女午夜福利| 亚洲国产日韩欧美精品在线观看 | 欧美国产日韩亚洲一区| 欧美日韩黄片免| 88av欧美| 亚洲人成伊人成综合网2020| 757午夜福利合集在线观看| 五月伊人婷婷丁香| 十八禁人妻一区二区| 国产 一区 欧美 日韩| 免费av不卡在线播放| 少妇丰满av| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 国产精品国产高清国产av| 国产不卡一卡二| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 极品教师在线免费播放| 亚洲精品乱码久久久v下载方式 | 久久草成人影院| 天天一区二区日本电影三级| 亚洲激情在线av| 性色avwww在线观看| 两个人看的免费小视频| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 国产v大片淫在线免费观看| 欧美精品啪啪一区二区三区| 亚洲av美国av| 免费在线观看亚洲国产| h日本视频在线播放| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看 | 观看免费一级毛片| 亚洲av成人不卡在线观看播放网| 免费看美女性在线毛片视频| av黄色大香蕉| 日韩精品青青久久久久久| 乱人视频在线观看| 少妇的丰满在线观看| 色老头精品视频在线观看| 久久婷婷人人爽人人干人人爱| 99riav亚洲国产免费| 欧美一级a爱片免费观看看| 一进一出抽搐gif免费好疼| 淫秽高清视频在线观看| 国产精品久久久久久久久免 | 久久久久久人人人人人| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 在线天堂最新版资源| 一二三四社区在线视频社区8| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 黄色片一级片一级黄色片| 国产午夜精品论理片| 国产一区二区在线观看日韩 | 久久久久国产精品人妻aⅴ院| 国产高清激情床上av| 黄片大片在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人看人人澡| 欧美成狂野欧美在线观看| 精品人妻1区二区| 国产私拍福利视频在线观看| 成年女人永久免费观看视频| 精品久久久久久久末码| 日本黄色片子视频| 最近最新中文字幕大全电影3| 一区二区三区国产精品乱码| 老司机在亚洲福利影院| 国产爱豆传媒在线观看| 日韩 欧美 亚洲 中文字幕| 老汉色av国产亚洲站长工具| 久久久久久久精品吃奶| 国产97色在线日韩免费| 小蜜桃在线观看免费完整版高清| 日韩精品中文字幕看吧| 国内精品美女久久久久久| ponron亚洲| 99国产极品粉嫩在线观看| 日本精品一区二区三区蜜桃| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 国产色婷婷99| 欧美激情久久久久久爽电影| 久久久久久人人人人人| 香蕉av资源在线| 亚洲狠狠婷婷综合久久图片| 毛片女人毛片| 亚洲国产中文字幕在线视频| 小蜜桃在线观看免费完整版高清| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 精品久久久久久久末码| 9191精品国产免费久久| 亚洲av美国av| 欧美成人免费av一区二区三区| 国产老妇女一区| 亚洲精品美女久久久久99蜜臀| 免费在线观看成人毛片| 亚洲 欧美 日韩 在线 免费| а√天堂www在线а√下载| 丰满人妻熟妇乱又伦精品不卡| 两个人的视频大全免费| 久久亚洲真实| 欧美日本视频| 欧美黄色片欧美黄色片| 久久草成人影院| 欧美日韩综合久久久久久 | 成人国产一区最新在线观看| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 99久国产av精品| 成年女人看的毛片在线观看| 久久久久久久精品吃奶| 成人精品一区二区免费| 热99在线观看视频| 夜夜夜夜夜久久久久| 在线观看66精品国产| 国产亚洲欧美在线一区二区| 国产在视频线在精品| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放| 国产成人a区在线观看| 日本五十路高清| 免费看十八禁软件| 熟妇人妻久久中文字幕3abv| 亚洲精品国产精品久久久不卡| 欧美一级毛片孕妇| 成年女人看的毛片在线观看| 色播亚洲综合网| 国产精品电影一区二区三区| 久久久久久久久大av| 三级毛片av免费| 婷婷精品国产亚洲av| 国产精品日韩av在线免费观看| 国产v大片淫在线免费观看| 精品国产超薄肉色丝袜足j| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 久久亚洲精品不卡| 女人被狂操c到高潮| 亚洲人成网站在线播放欧美日韩| 18禁在线播放成人免费| 看免费av毛片| 免费av毛片视频| 在线看三级毛片| 国产视频一区二区在线看| 午夜福利免费观看在线| 欧美一级a爱片免费观看看| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看 | 中文字幕高清在线视频| 岛国视频午夜一区免费看| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 老熟妇乱子伦视频在线观看| 国内毛片毛片毛片毛片毛片| 美女被艹到高潮喷水动态| 热99在线观看视频| 欧美黄色淫秽网站| 亚洲精品亚洲一区二区| 精品欧美国产一区二区三| 一个人看视频在线观看www免费 | 日本 欧美在线| 亚洲专区中文字幕在线| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 国产精品久久视频播放| 国产熟女xx| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 国产精华一区二区三区| 三级男女做爰猛烈吃奶摸视频| 中文字幕熟女人妻在线| 国产欧美日韩精品一区二区| 精品国产美女av久久久久小说| 色视频www国产| 国产99白浆流出| 欧美激情在线99| 看黄色毛片网站| 国产精品久久久久久精品电影| 国产亚洲欧美98| 国产免费一级a男人的天堂| 国产精品久久久久久人妻精品电影| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3| 丁香欧美五月| 亚洲一区高清亚洲精品| 亚洲av成人不卡在线观看播放网| 麻豆成人午夜福利视频| 国产99白浆流出| 免费搜索国产男女视频| 国产精品99久久久久久久久| 亚洲av电影在线进入| 久久久久久久亚洲中文字幕 | 露出奶头的视频| 久久久久久久亚洲中文字幕 | 中亚洲国语对白在线视频| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 少妇丰满av| 国产视频内射| 久久久久亚洲av毛片大全| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 久久久国产精品麻豆| 精品久久久久久久久久免费视频| 免费av毛片视频| 99久久综合精品五月天人人| 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 91字幕亚洲| 欧美乱妇无乱码| av天堂中文字幕网| 最近最新免费中文字幕在线| 激情在线观看视频在线高清| 欧美激情在线99| 好看av亚洲va欧美ⅴa在| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| av欧美777| 1024手机看黄色片| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| 亚洲av第一区精品v没综合| 看免费av毛片| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久| or卡值多少钱| 在线播放无遮挡| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 一区二区三区免费毛片| 亚洲avbb在线观看| 网址你懂的国产日韩在线| 国产伦精品一区二区三区视频9 | 国产中年淑女户外野战色| av专区在线播放| 一级a爱片免费观看的视频| 日韩欧美精品免费久久 | 久久精品国产亚洲av涩爱 | 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 久久人妻av系列| 婷婷精品国产亚洲av在线| 欧美在线一区亚洲| 一级毛片女人18水好多| 久久国产乱子伦精品免费另类| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| av在线蜜桃| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 国产成人系列免费观看| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 性欧美人与动物交配| 国产av在哪里看| 三级毛片av免费| ponron亚洲| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 亚洲av免费高清在线观看| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 手机成人av网站| 久久6这里有精品| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 国产免费男女视频| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 在线观看66精品国产| 最近最新免费中文字幕在线| 国产视频一区二区在线看| 国模一区二区三区四区视频| 午夜两性在线视频| tocl精华| 亚洲专区中文字幕在线| 国产日本99.免费观看| 久久久久亚洲av毛片大全| x7x7x7水蜜桃| 国产真实伦视频高清在线观看 | bbb黄色大片| 12—13女人毛片做爰片一| 国产精品嫩草影院av在线观看 | 国产色爽女视频免费观看| 美女黄网站色视频| 国产 一区 欧美 日韩| 久久中文看片网| xxx96com| 99在线人妻在线中文字幕| 脱女人内裤的视频| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 欧美一区二区亚洲| 国产午夜精品论理片| 国产精品女同一区二区软件 | 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| a级一级毛片免费在线观看| 中文字幕人妻丝袜一区二区| 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 十八禁网站免费在线| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 国产高清有码在线观看视频| 欧美中文综合在线视频| 2021天堂中文幕一二区在线观| 男人和女人高潮做爰伦理| 国产精品99久久99久久久不卡| 我要搜黄色片| 少妇的逼水好多| 男女床上黄色一级片免费看| 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 制服人妻中文乱码| 身体一侧抽搐| 日本 欧美在线| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 中亚洲国语对白在线视频| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| 99热这里只有精品一区| 亚洲精品在线观看二区| 男人和女人高潮做爰伦理| 一个人看的www免费观看视频| 国产精品女同一区二区软件 | 免费搜索国产男女视频| 91九色精品人成在线观看| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 2021天堂中文幕一二区在线观| 久久午夜亚洲精品久久| 一个人看的www免费观看视频| 超碰av人人做人人爽久久 | 男女午夜视频在线观看| 成熟少妇高潮喷水视频| 高清日韩中文字幕在线| 丁香六月欧美| 日本免费a在线| 手机成人av网站| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 日日干狠狠操夜夜爽| 免费av不卡在线播放| 久久性视频一级片| 国产三级中文精品| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 免费一级毛片在线播放高清视频| 国产伦人伦偷精品视频| 女同久久另类99精品国产91| 在线观看免费午夜福利视频| 在线视频色国产色| 国产在视频线在精品| 免费高清视频大片| 欧美日韩国产亚洲二区| 中亚洲国语对白在线视频| 亚洲 欧美 日韩 在线 免费| 在线免费观看不下载黄p国产 | 久久久久亚洲av毛片大全| 亚洲第一欧美日韩一区二区三区| 亚洲激情在线av| 成人一区二区视频在线观看| 制服丝袜大香蕉在线| 国产精品98久久久久久宅男小说| 1024手机看黄色片| 午夜福利18| svipshipincom国产片| 国产精品国产高清国产av| 亚洲五月天丁香| 999久久久精品免费观看国产| 国产麻豆成人av免费视频| 久久人人精品亚洲av| 91麻豆av在线| 97超视频在线观看视频| 色综合婷婷激情| 亚洲欧美一区二区三区黑人| 99视频精品全部免费 在线| 国产欧美日韩一区二区精品| 国产三级在线视频| 在线播放国产精品三级| 国产精品三级大全| 国产精品乱码一区二三区的特点| 桃红色精品国产亚洲av| 欧美一区二区精品小视频在线| 成人鲁丝片一二三区免费| 九九久久精品国产亚洲av麻豆| 人妻丰满熟妇av一区二区三区| 舔av片在线| h日本视频在线播放| 国产欧美日韩一区二区精品| 欧美av亚洲av综合av国产av| 观看免费一级毛片| 最近视频中文字幕2019在线8| 欧美精品啪啪一区二区三区| 欧美成人a在线观看| 1000部很黄的大片| 少妇的丰满在线观看| 高清日韩中文字幕在线| 国产在线精品亚洲第一网站| 99热只有精品国产| 两个人看的免费小视频| 88av欧美| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 男女那种视频在线观看| www.色视频.com| 精品人妻一区二区三区麻豆 | 色吧在线观看| 亚洲天堂国产精品一区在线| 国产精品一及| 天堂影院成人在线观看| 午夜免费观看网址| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美区成人在线视频| 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 性色avwww在线观看| 熟女电影av网| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久| 亚洲成av人片免费观看| 亚洲一区二区三区色噜噜| 日韩亚洲欧美综合| 每晚都被弄得嗷嗷叫到高潮| 黄色片一级片一级黄色片| 国产不卡一卡二| 中文字幕久久专区| 岛国在线免费视频观看| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 岛国视频午夜一区免费看| 亚洲无线观看免费| 男插女下体视频免费在线播放| 精品人妻1区二区| 尤物成人国产欧美一区二区三区| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 99久久精品国产亚洲精品| 国产精品久久久久久精品电影| 中文字幕高清在线视频| 中国美女看黄片| 午夜福利在线在线| 欧美大码av| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 欧美中文日本在线观看视频| www.999成人在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久午夜亚洲精品久久| 亚洲精品成人久久久久久| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放| 国产高清视频在线播放一区| 精品久久久久久成人av| 19禁男女啪啪无遮挡网站| 欧美不卡视频在线免费观看| 国产麻豆成人av免费视频| 99久久精品热视频| 国产亚洲精品av在线| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 看免费av毛片| 国产精品久久久久久人妻精品电影| 在线观看av片永久免费下载| 国产av一区在线观看免费| 听说在线观看完整版免费高清| 亚洲av免费在线观看| 成人永久免费在线观看视频| 久久久色成人| avwww免费| 看黄色毛片网站| 日韩高清综合在线| 日韩欧美精品v在线| 午夜精品一区二区三区免费看| 日日干狠狠操夜夜爽| 午夜福利高清视频| 99久久成人亚洲精品观看| 极品教师在线免费播放| 欧美日韩黄片免| 老司机福利观看| 琪琪午夜伦伦电影理论片6080| 一级黄色大片毛片| 成人鲁丝片一二三区免费| 久久久成人免费电影| 国内精品久久久久精免费| 国产精品精品国产色婷婷| 成年人黄色毛片网站| 国产精品乱码一区二三区的特点| 欧美黑人巨大hd| 国产99白浆流出| 国产精品美女特级片免费视频播放器| 亚洲乱码一区二区免费版| 成熟少妇高潮喷水视频| 欧美午夜高清在线| 真人做人爱边吃奶动态| 成人午夜高清在线视频| 亚洲中文字幕一区二区三区有码在线看| aaaaa片日本免费| av国产免费在线观看| 亚洲av成人精品一区久久| 女生性感内裤真人,穿戴方法视频| 国产探花极品一区二区| 亚洲成av人片免费观看| 国产三级在线视频| 国产av一区在线观看免费| 琪琪午夜伦伦电影理论片6080| 久久精品国产亚洲av涩爱 | 男人舔女人下体高潮全视频| 亚洲在线自拍视频| 女生性感内裤真人,穿戴方法视频| 一本综合久久免费| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 日韩有码中文字幕| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 日韩欧美在线二视频| 亚洲av免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品成人久久久久久| 黄色丝袜av网址大全| 国产亚洲欧美在线一区二区|