• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羥基修飾MOFs的合成、表征和光催化機(jī)理

    2020-07-20 02:07:08李石雄黃鳳蘭莫巧玲廖蓓玲
    無機(jī)化學(xué)學(xué)報 2020年7期
    關(guān)鍵詞:河池梧州工程學(xué)院

    李石雄 黃鳳蘭 莫巧玲 廖蓓玲

    (1梧州學(xué)院化學(xué)工程與資源再利用學(xué)院,梧州 543002)

    (2河池學(xué)院化學(xué)與生物工程學(xué)院,河池 546300)

    0 Introduction

    Solving the environmental pollution and energy shortages will help develop the economy and promote technologicalinnovation.As a renewable energy source,the solar energy has attracted widespread attention.The photocatalytic oxidation technology is one of the directions[1-5].It can use solar energy to carry out a series of reactions,which has low energy consumption,simple equipment,mild reaction conditions,and no secondary pollution.It is an effective method to solve the environmental pollution and energy shortages.However,to achieve this technology,it is necessary to find and develop photocatalysts,which can be used in life.A large number of studies have been conducted on the inorganic semiconductor catalyst since its discovery[6-11].These studies had found that most of the pollutants can be effectively removed by photocatalytic techniques.But,the inorganic semiconductor photocatalysts have large forbidden band width,and small utilization efficiency for light,which limit their applications in life[12].Although the loading or doping precious metals on inorganic semiconductors can improve photocatalytic performance[13-15],but their structural are instability,difficulty in modification,and small specific surface area also affect their applications.It is extremely urgent to develop new,efficient and practical photocatalysts.

    Metal-organic frameworks(MOFs)are coordination polymers with framework structure,they are formed by self-assembly of organic ligands with metals or metal ions[16].They have large specific surface area,abundant photocatalytic active sites,and easy regulation of structure[17-20].They have been deeply studied in the adsorption and separation of gas or pollutants[21-26],solid fluorescence[27-30],magnetism[31-33],drug loading[34],and heterogeneous catalysts[35-44].Since MOFs have a high specific surface area,which make them easy to adsorb and enrich organic or inorganic pollutant.In addition,many active sites in MOFs are prone to photocatalytic reactions.Therefore,MOFs show great potential application value in life.

    In this paper,terephthalic acid,2,5-dihydroxyterephthalic acid,and Cr(NO3)3·9H2O are used as raw materials to synthesize MIL-101(Cr)and MIL-101(Cr)-2OH by hydrothermal synthesis.Their structures are characterized by Fourier transform infrared(FT-IR),X-ray powder diffraction(PXRD),and X-ray photoelectron spectroscopy(XPS).The conventional organic pollutant methylene blue is used as the research object to analyze the effect of hydroxyl groups on the photocatalytic properties of the constructed MOFs.The regulatory mechanisms are systematically studied by UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS),ζpotential,and electrospray ionization mass spectrometry(ESI-MS).

    1 Experimental

    1.1 Instruments and reagents

    The functional group of MOFs was characterized by Fourier transform infrared spectrometer(5DX FTIR,Nicolet Company,USA).The structure of MOFs was analyzed by X-ray diffractometer(PXRD,Rigaku′s D/max 2500,Rigaku Corporation,Japan)with CuKαradiation(λ=0.156 04 nm),the tube voltage was 40 kV,the tube current was 150 mA,a graphite monochromator was used,and 2θwas 5°to 50°.The elemental composition and valence state of MOFs were analyzed by X-ray photoelectron spectroscopy(XPS,ESCALAB250,Thermo Scientific,USA)with a base pressure of 1.333 22×10?7Pa.The light absorption behavior of MOFs was analyzed by UV-visible spectrophotometer with BaSO4as a reference(UV-2550PC,Shimadzu Corporation,Japan).The specific surface area of MOFs was analyzed by a fully automatic specific surface area and pore analyzer(Auto chem II2920,Micromeritics,USA).The surface charge of MOFs was analyzed by aζpotential analyzer(JS94H,Shanghai Zhongchen Digital Technology Equipment Co.,Ltd.,China).The photocatalytic degradation products were analyzed by electrospray ionization mass spectrometry(LCQ/AD,Thermo-Finnegan,USA).The pH value of solution was measured by a pH meter(PHS-25CW-CN,Shanghai Precision Instrument Co.,Ltd.,China).The photocatalytic reaction was carried out by using xenon lamp(5-100L,Shanghai Yanzheng Experimental Instrument Co.,Ltd.China).The hydrothermal synthesis of MOFs was carried out using an electric thermostatic blast drying oven(DHG-9145A,Shanghai Heheng Instrument Equipment Co.,Ltd.,China).

    All reagents are purchased from Energy Chemical(Shanghai,China).They include P25,terephthalic acid(analytical grade),2,5-dihydroxyterephthalic acid(analytical grade),2-aminoterephthalic acid(analytical grade),Cr(NO3)3·9H2O(analytical grade),ZrCl4(analytical grade),anhydrous methanol and ethanol(analytical grade),formamide(analytical grade),acetone(analyti-cal grade),deionized water.

    1.2 Synthesis of MIL-101(Cr)

    The MIL-101(Cr)was synthesized by the method of reference[45].A mixture of terephthalic acid(0.166 1 g,1 mmol),Cr(NO3)3·9H2O(0.400 0 g,1 mmol)and sodium hydroxide(0.080 0 g,2 mmol)in a polytetrafluoroethylene reactor tank containing 15 mL of water.The mixture was stirred at room temperature for 15 min,then followed by the addition of 1 mL of hydrofluoric acid.The liner was then placed in a stainless steel sleeve and reacted at 180℃for 8 h.It was naturally cooled to room temperature after the reaction was completed.The reactor liner was opened,filtered,and collected the green solid.The green solid was ultrasonically washed three times with water,absolute ethanol,acetone,and anhydrous methanol,respectively.The green solid was dried in an oven at 80℃for 12 h.The yield of MIL-101(Cr)was about 55.1%(based on Cr).

    1.3 Synthesis of MIL-101(Cr)-2OH

    The synthesis method of MIL-101(Cr)-2OH was similar to the MIL-101(Cr).The 2,5-dihydroxyterephthalic acid(0.198 1 g,1 mmol),Cr(NO3)3·9H2O(0.400 0 g,1 mmol)and sodium hydroxide(0.080 0 g,2 mmol)were sequentially added to 15 mL of dimethylformamide.The mixture was placed in a 23 mL Teflon liner and stirred at room temperature for 15 min.The liner was then placed in a stainless steel sleeve and reacted at 180℃for 8 h.It was naturally cooled to room temperature after the reaction was completed.The reactor liner was opened,filtered,and collected the gray solid.The gray solid was ultrasonically washed three times with water,absolute ethanol,acetone,and anhydrous methanol,respectively.The gray solid was dried in an oven at 80℃for 12 h.The yield of MIL-101(Cr)-2OH was about 20.6%(based on Cr).

    1.4 Synthesis of UIO-66-NH2

    The reference photocatalyst UIO-66-NH2was synthesized by the method of the reference[46].ZrCl4(3.495 g,15 mmol)and 2-aminoterephthalic acid(2.715 g,15 mmol)were sequentially dissolved in 115 mL of DMF and dissolved by ultrasonication at room temperature for 5 min.The mixture were sealed in a stainless steel container after the mixed solution was uniformly dispersed,and heated in an oven at 120℃for 24 h.It was naturally cooled to room temperature after the reaction was completed.The liner was opened,the solvent was removed,and a pale yellow UIO-66-NH2was collected.The UIO-66-NH2was washed three times with 10 mL of DMF,methanol,acetone,and ethanol,respectively.The UIO-66-NH2was dried in a vacuum oven at 80℃for 12 h.The yield of UIO-66-NH2was about 85%(based on Zr).

    1.5 Photocatalysis experiment

    The photocatalytic properties of MIL-101(Cr)and MIL-101(Cr)-2OH were studied by using UIO-66-NH2and P25 as reference photocatalysts and methylene blue(MB)as organic pollutants.The photocatalytic reaction conditions were as follows:the dosage of photocatalysts was 0.010 0 g;the initial concentration of MB wasC0=5 mg·L?1;the pH value of the solution was 3~9;the amount of the solution was 50 mL;the photocatalytic reaction was carried out using an 800 W xenon lamp(A UV filter was added to the source to ensure removal the light of below 420 nm before the start of the photocatalytic reaction.At this time,the light irradiation intensity measured by the photometer was about 15 W·m?2).After the photocatalytic reaction was carried out for a certain period of time,the absorbance of MB in the solution was measured at 664 nm using an ultraviolet-visible spectrophotometer.The corresponding concentration of MB was calculated by the standard curvey=0.160 6x+0.000 7(R2=0.999 9).The photocatalytic degradation performance was evaluated by the change of MB concentration before and after the reaction.The degradation rate is calculated as follows:

    whereηis the degradation rate(%),andC0andCtare the concentration of MB before degradation and at a certain time of degradation,respectively(mg·L?1).

    2 Results and discussion

    2.1 Structural characterization of MIL-101(Cr)and MIL-101(Cr)-2OH

    Fig.1 Synthesis and color of MIL-101(Cr),and MIL-101(Cr)-2OH

    The MIL-101(Cr)and MIL-101(Cr)-2OH were successfully synthesized by hydrothermal method(Fig.1)when the terephthalic acid,2,5-dihydroxyterephthalic acid and Cr(NO3)3·9H2O were used as raw materials.It can be clearly seen from Fig.1 that the white powder of terephthalic acid(Fig.1a)reacted with the dark purple solid of Cr(NO3)3·9H2O(Fig.1b)react to form green powder MIL-101(Cr)(Fig.1d).However,the yellow powder of 2,5-dihydroxyterephthalic acid(Fig.1c)reacted with the dark purple solid of Cr(NO3)3·9H2O to form gray MIL-101(Cr)-2OH(Fig.1e).It can be seen that modifying the organic ligand can regulate the color change of MOFs.The structure of MIL-101(Cr)and MIL-101(Cr)-2OH are characterized by FT-IR,PXRD,XPS,and N2adsorption desorption isotherm.

    2.1.1 IR

    Fig.2 (a)IR of MIL-101(Cr)and(b)MIL-101(Cr)-2OH

    The FT-IR characterization can be used to analyze and determine the functional groups contained in the material.The IR spectrum of MIL-101(Cr)(Fig.2a)shows that it has a strong absorption peak at 3 615 cm?1,which can be attributed to the tensile frequency vibration of intermolecular hydrogen bonds.In general,theν(C=O)characteristic absorption peak in the organic carboxylic acid was at 1 691 cm?1.However,in MIL-101(Cr),thisν(C=O)peak had shifted to low frequency of 1 681 cm?1.This phenomenon indicates that the O atom in terephthalic acid has been coordinated to Cr(Ⅳ).

    When the-OH was introduced into MIL-101(Cr),the infrared characteristic peak of the-OH was also observed.In the IR spectrum of MIL-101(Cr)-2OH(Fig.2b),the IR absorption peak at 3 428 and 1 356 cm?1can be attributed to the characteristic absorption peak ofν(-OH);The absorption peaks at 1 658 and 1 204 cm?1can be attributed to the characteristic absorption peak ofν(C=O).These IR characteristic peaks indicated that 2,5-dihydroxyterephthalic acid had coordinated with Cr(Ⅳ)to form complex.

    2.1.2 XRD

    The above FT-IR characterization has shown that the organic ligand has coordinated to Cr(Ⅳ).However,the structure need to further analytical determination.The XRD can accurate analysis the structure of the material.In the XRD patterns of MIL-101(Cr)and MIL-101(Cr)-2OH(Fig.3),the main diffraction peaks are relatively strong and sharp.This phenomenon indicates that both MIL-101(Cr)and MIL-101(Cr)-2OH have a good crystal structure.It can be clearly seen from Fig.3 that the MIL-101(Cr)and MIL-101(Cr)-2OH had strong diffraction peaks at 5.83°,6.46°,7.08°,8.26°,8.96°,11.56°,12.27°,13.52°,19.94°,21.35°and 22.22°.The positions of these diffraction peaks are the same as those of the theoretical MIL-101(Cr)diffraction peak[45].This indicates that MIL-101(Cr)and MIL-101(Cr)-2OH have been successfully synthesized.

    Fig.3 PXRD patterns of MIL-101(Cr)and MIL-101(Cr)-2OH

    2.1.3 XPS

    Fig.4 XPS spectra of MIL-101(Cr):(a)Survey spectrum;(b)C1s;(c)O1s;(d)Cr3d

    Fig.5 XPS spectra of MIL-101(Cr)-2OH:(a)Survey spetrum;(b)C1s;(c)O1s;(d)Cr3d

    XPS can be used to characterize the elemental composition and elemental valence on the surface of the material.The XPS survey spectrum of MIL-101(Cr)(Fig.4a)shows that it mainly composed of C,O and Cr elements,which are consistent with those reported in the literature.The characteristic peaks of 284.73 and 288.52 eV are attributed to the C1sorbital in MIL-101(Cr)(Fig.4b);The characteristic peak of 531.84 eV is attributedtotheO1sorbitalinMIL-101(Cr)(Fig.4c);The characteristic peaks of 577.10 and 586.96 eV are attributed to the Cr3d5/2and Cr3d3/2orbitals of MIL-101(Cr)(Fig.4d),respectively.These characteristic peaks of MIL-101(Cr)are the same as those of the literature[45].

    The XPS pattern of MIL-101(Cr)-2OH was similar to that of MIL-101(Cr).The XPS survey spectrum of MIL-101(Cr)-2OH(Fig.5a)shows that it mainly composed of C,O and Cr elements.The characteristic peaks of 284.57 and 287.17 eV are attributed to the C1sorbital in MIL-101(Cr)-2OH(Fig.5b).The characteristic peak of 530.43 eV is attributed to the O1sorbital in MIL-101(Cr)-2OH(Fig.5c).The characteristic peaks of 576.91 and 586.32 eV are respectively attributed to the Cr3d5/2and Cr3d3/2orbitals of MIL-101(Cr)-2OH(Fig.5d).

    2.1.4 N2adsorption-desorption isotherm

    The N2adsorption-desorption experiments at 77 K can be used to analyze materials,specific surface size and pore size distribution.The N2adsorptiondesorption experimental results of MIL-101(Cr)and MIL-101(Cr)-2OH(Fig.6)indicate that they were typical typeⅠadsorption isotherms,which are consistent with the literature[47].It can be seen from Fig.6 that the specific surface area of MIL-101(Cr)was larger than MIL-101(Cr)-2OH,and it can reach 3 690 m2·g?1.Since the MIL-101(Cr)-2OH has two-OH functional groups,its specific surface area still can reach 2 515 m2·g?1.The results of N2adsorption-desorption experiments of MIL-101(Cr)and MIL-101(Cr)-2OH also indirectly indicate that they have been synthesized.

    Fig.6 N2adsorption-desorption isotherms for MIL-101(Cr)and MIL-101(Cr)-2OH

    2.2 UV-Vis DRS

    The UV-Vis DRS of photocatalysts can be used to analysis its light absorption.The UV-Vis DRS of MIL-101(Cr)and MIL-101(Cr)-2OH showed that they had strong light absorption in both the UV and visible regions when the BaSO4was used as a blank control experiment(Fig.7).The MIL-101(Cr)-2OH absorbed more than 50%of light in the visible light range of 400~800 nm,but,the MIL-101(Cr)absorbed light less than 50%in the visible light range of 400~575 nm.So,the MIL-101(Cr)-2OH has stronger visible light absorption than MIL-101(Cr).Therefore,their photocatalytic properties can be studied under visible light conditions.

    Fig.7 UV-Vis DRS of MIL-101(Cr)and MIL-101(Cr)-2OH

    2.3 Photocatalytic performance

    The UIO-66-NH2was constructed by Zr(Ⅳ)and 2-aminoterephthalic acid,which has been proven to be a very promising heterogeneous photocatalyst.It has stable structure,large specific surface area and visible light response.So,it has been extensively studied in hydrogen production and organic pollutants degradation[48-51].It can be used as a reference photocatalyst with P25.In this paper,the UIO-66-NH2and P25 are used as reference photocatalysts,and the MB is used as organic pollutants.The photocatalytic properties of MIL-101(Cr)and MIL-101(Cr)-2OH were studied in MB solution with pH=3~9.

    Fig.8 Photocatalysts adsorption of MB:(a)MIL-101(Cr);(b)MIL-101(Cr)-2OH;(c)UIO-66-NH2;(d)P25

    However,since these MOFs photocatalysts have a large surface area,they can also remove MB in the solution by adsorption.Therefore,their photocatalytic properties were further evaluated by using adsorption control experiments(Fig.8).The adsorption experiments of MIL-101(Cr),MIL-101(Cr)-2OH,UIO-66-NH2,and P25 showed that their adsorption reached equilibrium after 120 min.The results of the adsorption experiments showed that the amount of MB adsorbed by these photocatalysts at pH=9 was greater than that at pH=3.And the adsorption amount follows UIO-66-NH2>MIL-101(Cr)-2OH>MIL-101(Cr)>P25.The results of photocatalytic degradation of MB by MIL-101(Cr),MIL-101(Cr)-2OH,UIO-66-NH2,and P25 indicate that they all have good properties(Fig.9).It can be seen from the results of photocatalytic MB that the photocatalytic reaction wasmore favorable underacidic conditions(Fig.9).Among them,at pH=3,the MIL-101(Cr)-2OH photocatalytic could degraded 50 mL of 5 m·L?1MB solution in 90 min,while the MIL-101(Cr)and UIO-66-NH2need 120 min.The inorganic semiconductor photocatalyst P25 just can only degrade 48%of MB under the above conditions.These photocatalysts photocatalytically degrade MB with pseudo first order kinetics under visible light illumination.This pseudo first-order kinetics is calculated as ln(C0/Ct)=kt(kis the reaction rate constant,Ctis the concentration of MB at timetin the photocatalytic reaction,andC0is the initial concentration of MB).According to the pseudo first-order kinetic model,at pH=3,the rate constant of photocatalytic degradation MB by MIL-101(Cr)-2OH,MIL-101(Cr),UIO-66-NH2,and P25 were 0.088 10,0.055 71,0.031 89,and 0.004 09 min?1,respectively(Fig.10).So,the photocatalytic degradation MB rate of MIL-101(Cr)-2OH was 1.6,2.8,and 21.5 times of MIL-101(Cr),UIO-66-NH2and P25,respectively.It can be seen that the photocatalytic performance of hydroxyl modified MIL-101(Cr)-2OH has significantly improved.The performance of MIL-101(Cr)-2OH photocatalytic degradation of MB was better than that reported in the literature of MIL-101(Cr)-NH2[52].Therefore,the functional groups on the organic ligands in the MOFs can be simply modified to improve the photocatalytic performance.

    2.4 Recycling experiments

    In order to evaluate the stability of hydroxyl-modified MOF MIL-101(Cr)-2OH,the photocatalytic degradation MB cycle experiment was carried out at pH=7.The efficiency of photocatalytic degradation of one cycle can still reach 100%(Fig.11).The efficiency of photocatalytic degradation of five cycles can still reach 98.5%.The photocatalysts after five cycles were col-lected by centrifugation,and were characterized by XRD(Fig.12).It was found that the structure of MIL-101(Cr)-2OH remained unchanged after five cycles.It can be seen that the hydroxyl modified MOFs MIL-101(Cr)-2OH also has good stability.

    Fig.9 Photocatalytic degradation of MB by photocatalysts:(a)MIL-101(Cr);(b)MIL-101(Cr)-2OH;(c)UIO-66-NH2;(d)P25

    Fig.10 Kinetics of photocatalytic degradation of MB by photocatalyst:(a)MIL-101(Cr);(b)MIL-101(Cr)-2OH;(c)UIO-66-NH2;(d)P25

    Fig.11 Circulation experiment of photocatalytic degradation of MB by MIL-101(Cr)-2OH at pH=7

    2.5 Hydroxyl regulation mechanism

    Fig.12 XRD patterns of MIL-101(Cr)-2OH after 5 cycles

    The ability of photocatalysts to absorb light directly affects their photocatalytic efficiency.It is known from the synthesis of MIL-101(Cr)and MIL-101(Cr)-2OH that their structures are self-assembled by terephthalic acid,2,5-dihydroxyterephthalic acid and Cr(III),respectively.The UV-Vis DRS indicates that MIL-101(Cr)-2OH absorbed light more strongly than MIL-101(Cr).In addition to this,the rate of photocatalytic degradation MB by MIL-101(Cr)-2OH was 1.6 times that of MIL-101(Cr).Therefore,the MIL-101(Cr)-2OH,which is modified by hydroxyl groups can effectively improve the photocatalytic efficiency.This phenomenon can be attributed to the result of the transfer of electrons from the ligand to the metal(LMCT)[49,53].This is because the organic ligand of terephthalic acid and 2,5-dihydroxyterephthalic acid are composed of benzene ring,carboxyl groups,and hydroxyl groups,respectively.It is well known that there is a largeπbond on the benzene ring.Since the 2,5-dihydroxyterephthalic acid ligand has two hydroxyl groups,the hydroxyl group contains relatively high energy lone pair of electron pairs.Therefore,in MIL-101(Cr)-2OH,the isolated hydroxyl groups have relatively high energy lone pair of electrons,while Cr(Ⅲ)has lower energy empty orbit.The electrons on the hydroxyl group in 2,5-dihydroxyterephthalic acid can transfer part of the electrons to the benzene ring in the ligand byp-πconjugation,which leads to an increase in electronegativity on the benzene ring.Moreover,since the Cr(Ⅲ)in MIL-101(Cr)-2OH has a lower energy orbit,the electrons added to the benzene ring are transferred to the empty orbit of Cr(Ⅲ)(Fig.13).This result causes the charge transport spectrum to appear in the visible region and the complex can have distinct color change.

    Fig.13 Hydroxylation regulates the electronegativity of MIL-101(Cr)-2OH

    Theζpotential can be used to determine the stability of photocatalysts at a certain pH value and indirectly reflect the amount of charge on their surface.Theζpotentials of MIL-101(Cr)-2OH,MIL-101(Cr),UIO-66-NH2,and P25(Table 1)indicate MIL-101(Cr)-2OH had higherζpotential than MIL-101(Cr),UIO-66-NH2and P25 under the same conditions.This is because the MIL-101(Cr)-2OH had high specific surface area and contain carboxyl groups and hydroxyl groups.The carboxyl groups and hydroxyl groups are facilitate adsorption and enrichment of H+.Therefore,it can adsorb more H+on the surface than MIL-101(Cr),UIO-66-NH2,and P25 in solution with pH=3~9.Theζpotentials of MIL-101(Cr)-2OH,MIL-101(Cr),UIO-66-NH2,and P25 in pH=3 were 43.51,36.76,27.50,and 18.84 mV,respectively.The quantum efficiency of photocatalytic reactions was mainly related to the generation and capture process of photogenerated electrons.Therefore,an increase in the acidity of the surface of the photocatalyst,which will accelerates the transfer of photogenerated electrons from the conduction band to the surface.Therefore,under acidic conditions,the separation of photogenerated electrons and the suppression of electron-hole recombination are accelerated,which is advantageous for the photocatalytic reaction.Theζpotential of MIL-101(Cr)-2OH indirectly reveals that its rate of photocatalytic degradation of MB is faster than that of MIL-101(Cr),UIO-66-NH2,and P25.At the same time,it is also strongly proved that the introduction of hydroxyl groups into MOFs can effectively regulate the electronegativity of new MOFs.

    Table 1 ζ potential of MIL-101(Cr),MIL-101(Cr)-2OH,UIO-66-NH2,and P25

    2.6 Photocatalytic degradation mechanism

    At pH=3,the photocatalyst was removed by centrifugation after the MIL-101(Cr)-2OH photocatalyzed MB for 30 min,and the reaction solution was concen-trated in a sample vial.The concentrate solution was characterized by electrospray ionization mass spectrometry(ESI-MS).The ESI-MS spectrum results(Fig.14)show that there are four strong characteristic signals for[C16H18N3S]+,[C16H22N3SO]+,[C6H9N2SO8]+,[C4H6NO6]+.As can be seen from Fig.14 that the decomposition of the MB is performed in multiple steps(Fig.15).Firstly,the amide bond in the MB was broken to form an amino group,and the S obtained an O atom to from S=O bond;the methyl group,which attached to an N atom is oxidized to form a small molecular acid;subsequently,a small molecular acid of six C chains is formed by the electron attack the benzene ring;then,the six C chains are oxidized to 2-nitrosuccinic acid;finally,all organic molecules are completely mineralized to CO2and H2O.

    Fig.14 MB decomposition products characterizated by ESI-MS

    Fig.15 Mechanism of photocatalytic degradation MB by MIL-101(Cr)-2OH

    3 Conclusions

    In summary,the metalorganic frameworks(MOFs)photocatalysts,MIL-101(Cr)and MIL-101(Cr)-2OH,were synthesized and characterized by FT-IR,XRD and XPS.The effects of isolated hydroxyl groups in MOFs were systematically investigated by UV-Vis DRS,ζpotential and ESI-MS.The results show that the isolated electron-donating groups(-OH)can be introduced to modify the MOFs photocatalyst and improve its photocatalytic performance.The results of this study help to elucidate the mechanism of electron-donating groups regulate MOFs,and guide the synthesis of highly efficient photocatalysts.

    猜你喜歡
    河池梧州工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    中共梧州城工委
    西江月(2021年3期)2021-12-21 06:34:18
    A new loach species of Troglonectes (Teleostei:Nemacheilidae) from Guangxi,China
    福建工程學(xué)院
    梧州工人運(yùn)動的急先鋒
    西江月(2018年5期)2018-06-08 05:47:32
    福建工程學(xué)院
    八十多載后尋訪梧州
    文史春秋(2016年3期)2016-12-01 05:42:19
    夢梧州(外兩首)
    西江月(2016年2期)2016-11-26 12:27:13
    《河池學(xué)院學(xué)報》征稿簡則
    国产精品欧美亚洲77777| 久久影院123| 亚洲自偷自拍图片 自拍| 天堂俺去俺来也www色官网| 亚洲成人免费av在线播放| videosex国产| 视频区图区小说| 丰满迷人的少妇在线观看| www日本在线高清视频| 亚洲精品国产区一区二| 在线精品无人区一区二区三| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产日韩一区二区| 在线观看免费午夜福利视频| 国产成人精品久久二区二区免费| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 69av精品久久久久久 | 我要看黄色一级片免费的| 久久久久久久国产电影| 老司机影院毛片| 99热国产这里只有精品6| 久久综合国产亚洲精品| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 又紧又爽又黄一区二区| 在线观看一区二区三区激情| 精品一品国产午夜福利视频| 国产真人三级小视频在线观看| 老司机靠b影院| 免费在线观看影片大全网站| 国产一级毛片在线| 久久久久久久精品精品| 亚洲国产欧美在线一区| 欧美人与性动交α欧美精品济南到| 国产色视频综合| 操美女的视频在线观看| 国产男人的电影天堂91| 伦理电影免费视频| 制服人妻中文乱码| 精品少妇内射三级| 在线十欧美十亚洲十日本专区| 国产精品一二三区在线看| 波多野结衣av一区二区av| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 欧美日韩精品网址| 亚洲国产精品999| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 国产色视频综合| 国产成人av激情在线播放| 又紧又爽又黄一区二区| 亚洲久久久国产精品| 欧美精品一区二区免费开放| av国产精品久久久久影院| 妹子高潮喷水视频| 成人免费观看视频高清| 在线av久久热| 国产精品久久久久成人av| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 777米奇影视久久| 超碰成人久久| 午夜免费观看性视频| 国产精品 国内视频| 国产精品欧美亚洲77777| 九色亚洲精品在线播放| 一本一本久久a久久精品综合妖精| 免费高清在线观看视频在线观看| 免费一级毛片在线播放高清视频 | 亚洲中文av在线| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 成人国产一区最新在线观看| 午夜福利在线免费观看网站| 久久久国产一区二区| 欧美日韩av久久| 他把我摸到了高潮在线观看 | 精品第一国产精品| 成年av动漫网址| 国产精品.久久久| 视频区图区小说| 在线观看舔阴道视频| 新久久久久国产一级毛片| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 操出白浆在线播放| 一区二区三区乱码不卡18| 久久久国产欧美日韩av| 国产黄色免费在线视频| 国产精品一区二区免费欧美 | 99热网站在线观看| 国产精品1区2区在线观看. | 日本五十路高清| 99精国产麻豆久久婷婷| www.精华液| 亚洲精品第二区| 亚洲男人天堂网一区| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 12—13女人毛片做爰片一| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 动漫黄色视频在线观看| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 免费日韩欧美在线观看| 午夜福利,免费看| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 麻豆av在线久日| 欧美少妇被猛烈插入视频| 99热全是精品| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9 | 免费在线观看黄色视频的| 亚洲av国产av综合av卡| 亚洲国产成人一精品久久久| 一区福利在线观看| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 免费一级毛片在线播放高清视频 | 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看 | 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕| 肉色欧美久久久久久久蜜桃| 色精品久久人妻99蜜桃| 成人黄色视频免费在线看| 精品欧美一区二区三区在线| 亚洲中文日韩欧美视频| 美女视频免费永久观看网站| 精品人妻在线不人妻| 日韩视频一区二区在线观看| 久久九九热精品免费| √禁漫天堂资源中文www| 国产精品1区2区在线观看. | 如日韩欧美国产精品一区二区三区| 日本vs欧美在线观看视频| 精品国产乱子伦一区二区三区 | 国产精品.久久久| 又大又爽又粗| 久久性视频一级片| 自线自在国产av| 国产又爽黄色视频| 在线看a的网站| 91麻豆av在线| 99精品久久久久人妻精品| 丝袜美腿诱惑在线| 成年女人毛片免费观看观看9 | 欧美 日韩 精品 国产| 国产成人欧美| 天天影视国产精品| 久久久久精品人妻al黑| 99国产精品一区二区蜜桃av | 91麻豆精品激情在线观看国产 | 国产成人免费观看mmmm| 午夜久久久在线观看| 亚洲国产精品一区三区| 久久久久国产精品人妻一区二区| 精品人妻一区二区三区麻豆| 黄片大片在线免费观看| 欧美性长视频在线观看| www.av在线官网国产| 成年女人毛片免费观看观看9 | 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 搡老岳熟女国产| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 男人操女人黄网站| 热99国产精品久久久久久7| 久久亚洲国产成人精品v| bbb黄色大片| 下体分泌物呈黄色| 五月开心婷婷网| 91麻豆av在线| av在线播放精品| 国产亚洲精品第一综合不卡| tocl精华| 777久久人妻少妇嫩草av网站| 日本黄色日本黄色录像| 午夜久久久在线观看| 999精品在线视频| 成年美女黄网站色视频大全免费| 久久久久久久久免费视频了| 美女午夜性视频免费| 中文欧美无线码| 咕卡用的链子| 十八禁网站网址无遮挡| 国产精品免费大片| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 日韩精品免费视频一区二区三区| 国产精品成人在线| 热99国产精品久久久久久7| 亚洲av美国av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品自拍成人| 午夜91福利影院| h视频一区二区三区| 操出白浆在线播放| 丝袜脚勾引网站| 十八禁网站网址无遮挡| 高清在线国产一区| 男女午夜视频在线观看| 欧美精品一区二区免费开放| 国产精品免费视频内射| 免费观看人在逋| 欧美久久黑人一区二区| 男女午夜视频在线观看| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 久久中文字幕一级| 中文字幕av电影在线播放| avwww免费| 操出白浆在线播放| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 亚洲va日本ⅴa欧美va伊人久久 | 精品第一国产精品| 人妻 亚洲 视频| 国产一区二区在线观看av| 韩国精品一区二区三区| 欧美日韩成人在线一区二区| 欧美日韩av久久| 国产精品一区二区在线观看99| 中文字幕最新亚洲高清| 午夜免费观看性视频| 国产一区二区在线观看av| 亚洲三区欧美一区| av网站免费在线观看视频| 国产成人a∨麻豆精品| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 99热全是精品| 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 天天添夜夜摸| 欧美变态另类bdsm刘玥| 狠狠婷婷综合久久久久久88av| av网站在线播放免费| 一级黄色大片毛片| videosex国产| 老司机福利观看| 超碰97精品在线观看| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在| 考比视频在线观看| 69精品国产乱码久久久| 国产在视频线精品| 他把我摸到了高潮在线观看 | 国产麻豆69| 岛国在线观看网站| 国产又色又爽无遮挡免| 视频在线观看一区二区三区| 亚洲情色 制服丝袜| 在线观看人妻少妇| 国产成人影院久久av| 窝窝影院91人妻| 丝袜喷水一区| 丝袜人妻中文字幕| 色视频在线一区二区三区| 老汉色∧v一级毛片| 在线永久观看黄色视频| 后天国语完整版免费观看| 亚洲精品av麻豆狂野| 999精品在线视频| 亚洲性夜色夜夜综合| 男女高潮啪啪啪动态图| av不卡在线播放| 18禁观看日本| 成年美女黄网站色视频大全免费| 国产精品秋霞免费鲁丝片| 免费在线观看视频国产中文字幕亚洲 | 一个人免费在线观看的高清视频 | 在线 av 中文字幕| 宅男免费午夜| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 十八禁网站免费在线| 精品国产一区二区久久| 精品久久久精品久久久| 免费少妇av软件| a在线观看视频网站| 中文字幕色久视频| 国产成人精品无人区| 欧美日韩亚洲国产一区二区在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区av网在线观看 | 国产亚洲精品一区二区www | 91精品国产国语对白视频| 人人妻,人人澡人人爽秒播| 美女脱内裤让男人舔精品视频| 人妻久久中文字幕网| 成年人午夜在线观看视频| 国产主播在线观看一区二区| 国产黄色免费在线视频| 日日爽夜夜爽网站| 亚洲精品国产av蜜桃| 国产av精品麻豆| 一级片'在线观看视频| 亚洲少妇的诱惑av| 女人精品久久久久毛片| videos熟女内射| 国产成人av教育| 亚洲国产欧美日韩在线播放| 成年人黄色毛片网站| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 手机成人av网站| 香蕉丝袜av| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 精品国内亚洲2022精品成人 | 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 亚洲精品在线美女| 欧美日韩视频精品一区| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 午夜两性在线视频| 久久九九热精品免费| 日韩一区二区三区影片| 大香蕉久久成人网| 不卡一级毛片| 久9热在线精品视频| 黄网站色视频无遮挡免费观看| 亚洲精品自拍成人| 亚洲中文字幕日韩| 成年人黄色毛片网站| 亚洲三区欧美一区| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 两性夫妻黄色片| 国产精品一二三区在线看| 18在线观看网站| 久久久久国产精品人妻一区二区| 这个男人来自地球电影免费观看| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 亚洲国产精品成人久久小说| 69av精品久久久久久 | 一区二区日韩欧美中文字幕| 欧美少妇被猛烈插入视频| 精品人妻在线不人妻| 夫妻午夜视频| 另类亚洲欧美激情| 国产精品一区二区免费欧美 | 在线观看舔阴道视频| 免费高清在线观看日韩| 一本久久精品| 亚洲av日韩在线播放| 超碰成人久久| 亚洲黑人精品在线| 亚洲精品第二区| 国产黄色免费在线视频| 999久久久精品免费观看国产| 91国产中文字幕| 激情视频va一区二区三区| 欧美日韩成人在线一区二区| 美女视频免费永久观看网站| bbb黄色大片| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频 | 精品欧美一区二区三区在线| 在线观看免费视频网站a站| www.精华液| 考比视频在线观看| 久久综合国产亚洲精品| 亚洲精品粉嫩美女一区| 精品国产乱码久久久久久小说| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线| 老熟女久久久| 日韩中文字幕视频在线看片| 一区二区日韩欧美中文字幕| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 亚洲 欧美一区二区三区| 国产一区二区三区综合在线观看| 国产免费视频播放在线视频| 亚洲九九香蕉| 成年人午夜在线观看视频| 美女大奶头黄色视频| 少妇 在线观看| a在线观看视频网站| 妹子高潮喷水视频| 欧美精品啪啪一区二区三区 | 欧美乱码精品一区二区三区| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 18在线观看网站| 妹子高潮喷水视频| 99久久国产精品久久久| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| 亚洲精品中文字幕一二三四区 | 亚洲免费av在线视频| 国产日韩欧美视频二区| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 成年av动漫网址| 久久性视频一级片| 一边摸一边抽搐一进一出视频| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 久久综合国产亚洲精品| 两个人免费观看高清视频| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 人成视频在线观看免费观看| 精品久久久精品久久久| 90打野战视频偷拍视频| 色视频在线一区二区三区| 成年人免费黄色播放视频| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区 | 久久亚洲国产成人精品v| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 超碰成人久久| a在线观看视频网站| 12—13女人毛片做爰片一| 日韩一卡2卡3卡4卡2021年| 日韩视频在线欧美| 欧美久久黑人一区二区| 国产精品一区二区在线观看99| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜美足系列| 日本a在线网址| 少妇 在线观看| 免费观看a级毛片全部| 韩国精品一区二区三区| 亚洲国产欧美一区二区综合| 日韩一区二区三区影片| 亚洲欧美成人综合另类久久久| 无遮挡黄片免费观看| 午夜成年电影在线免费观看| 亚洲久久久国产精品| 99久久99久久久精品蜜桃| 在线看a的网站| 国产日韩欧美视频二区| 国产精品秋霞免费鲁丝片| 国产xxxxx性猛交| 久久影院123| 女人久久www免费人成看片| 中文字幕精品免费在线观看视频| 国产黄色免费在线视频| 成人国产一区最新在线观看| 国产男女内射视频| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 欧美亚洲日本最大视频资源| 一本—道久久a久久精品蜜桃钙片| 80岁老熟妇乱子伦牲交| 久久 成人 亚洲| 男女之事视频高清在线观看| 国产精品一二三区在线看| 亚洲国产av新网站| 日韩欧美一区视频在线观看| 啦啦啦中文免费视频观看日本| 国内毛片毛片毛片毛片毛片| 日韩一区二区三区影片| 少妇人妻久久综合中文| 久久久欧美国产精品| av国产精品久久久久影院| 免费观看av网站的网址| 久久久精品区二区三区| 国产区一区二久久| kizo精华| 一区二区三区四区激情视频| 满18在线观看网站| 亚洲国产欧美日韩在线播放| 精品欧美一区二区三区在线| 日本精品一区二区三区蜜桃| 国产成+人综合+亚洲专区| 又大又爽又粗| 97在线人人人人妻| av天堂久久9| 免费高清在线观看日韩| 侵犯人妻中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 免费观看人在逋| 亚洲中文字幕日韩| 最新在线观看一区二区三区| 亚洲,欧美精品.| 99九九在线精品视频| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 男女国产视频网站| 久久女婷五月综合色啪小说| 久久国产精品影院| 性少妇av在线| 国产精品香港三级国产av潘金莲| 国产片内射在线| 久久天堂一区二区三区四区| 正在播放国产对白刺激| 成年动漫av网址| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| 欧美精品啪啪一区二区三区 | av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 精品久久蜜臀av无| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 成人影院久久| 高清视频免费观看一区二区| 日日夜夜操网爽| 99精国产麻豆久久婷婷| 99国产精品一区二区三区| 欧美精品一区二区大全| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | 中文字幕色久视频| 热99久久久久精品小说推荐| 天堂8中文在线网| 女性生殖器流出的白浆| 久久精品国产综合久久久| 最近最新中文字幕大全免费视频| 亚洲欧美日韩另类电影网站| 99精品久久久久人妻精品| av天堂在线播放| 老司机福利观看| 亚洲第一青青草原| 韩国高清视频一区二区三区| 午夜精品久久久久久毛片777| 新久久久久国产一级毛片| 国产男女内射视频| 黄片小视频在线播放| 国产1区2区3区精品| 成年美女黄网站色视频大全免费| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 国产精品一区二区在线不卡| 五月开心婷婷网| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av | 日本撒尿小便嘘嘘汇集6| av在线老鸭窝| 国产激情久久老熟女| 国产伦理片在线播放av一区| 真人做人爱边吃奶动态| 日本a在线网址| 亚洲成人免费电影在线观看| 女警被强在线播放| 亚洲av成人不卡在线观看播放网 | 欧美精品高潮呻吟av久久| 亚洲avbb在线观看| 国产伦理片在线播放av一区| 免费一级毛片在线播放高清视频 | 久久久久久久精品精品| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 嫩草影视91久久| 老司机影院毛片| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看| 在线观看www视频免费| 人人妻人人澡人人看| 日本欧美视频一区| 免费av中文字幕在线| 午夜福利,免费看| 中文欧美无线码| 99国产极品粉嫩在线观看| 美女扒开内裤让男人捅视频| 他把我摸到了高潮在线观看 | 99久久综合免费| 久久人妻福利社区极品人妻图片| 亚洲伊人久久精品综合| 欧美av亚洲av综合av国产av| 日本猛色少妇xxxxx猛交久久| 亚洲成av片中文字幕在线观看| 亚洲精品粉嫩美女一区| 我要看黄色一级片免费的| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 免费观看a级毛片全部| 在线观看人妻少妇| 夫妻午夜视频| 久久久水蜜桃国产精品网| 一本大道久久a久久精品| 久久免费观看电影| 热re99久久精品国产66热6| 老司机午夜十八禁免费视频| 日韩电影二区| 久久综合国产亚洲精品|