• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3,5-二(2′,5′-苯二羧酸)苯甲酸構(gòu)筑的金屬有機配合物的熒光識別及磁性

    2020-07-20 02:07:00高玲玲牛曉燕杜意恩胡拖平
    無機化學學報 2020年7期
    關(guān)鍵詞:二羧酸化學系中北大學

    高玲玲 牛曉燕 杜意恩*, 胡拖平*,

    (1晉中學院化學化工學院,晉中 030619)

    (2中北大學理學院化學系,太原 030051)

    0 Introduction

    More and more heavy metal ions discharged result in serious pollution to the water resources and cause a threat to human health[1].Therefore,it is very necessary to design a new material for detecting heavy metal ions in aqueous solution.

    Over the past decades,metal-organic complexes(MOCs)as a new type of functional crystalline materials have been extensively investigated in luminescence sensing and molecular magnets,presenting the advantages of high sensitivity,low cost,light weight and strong magnetic[2-3].

    The structural diversity of MOCs is always influenced by many factors,such as the organic ligands,central metal ions,synthetic method,solvent,pH value and reaction temperature[4-6].Among all of them,the organic ligands and central metal ions play decisive role in constructing MOCs with the various configurations and directed functions[7-10].Recent studies have found that the symmetric polycarboxylic acid with multiple coordination sites and strong coordination ability is used widely in the constructive ofcomplicated MOCs[11-12].Many fluorescence MOCs based on the symmetric polycarboxylic acid ligand have been designed to detect heavy metal ions and toxic anion,such as Fe3+,Al3+,Cr2O72?,CrO42?,MnO4?.Yet,most of them are performed in organic solvents instead of aqueous solution,which is not desirable in practical application[13].Therefore,it is very meaningful to synthetize water stable MOCs,which serves as fluorescence probes for the detection for heavy metal ions in aqueous solution.

    According to the above analysis,a rigid symmetric V-pattern polycarboxylic acid of 3,5-di(2′,5′-dicarboxylphenyl)benozoic acid(H5L)was introduced to build the title MOCs based on the following reasons:(?。ゝive carboxylate groups of H5L ligand have multiple coordination modes,which will construct various structures of MOCs;(ⅱ) H5L ligand has abundantπ-electron,which is beneficial to synthesize fluorescence materials;(ⅲ)the rigid of H5L ligand helps to enhance the stability of MOCs.

    Here,through a“mixed-ligand”strategy,three new MOCs,{[Pb2(HL)(phen)]·2H2O}n(1),{[Ni(H3L)(4,4′-bipy)1.5(H2O)4]·6H2O}n(2)and{[Ni2(HL)(1,4-bibb)(H2O)]· (CH3CN)·H2O}n(3)(phen=1,10-phenanthroline,4,4′-bipy=4,4′-bipyridine,1,4-bibb=1,4-bis(benzimidazole)benzene),were constructed by the reaction of H5L and Pb (Ⅱ)/Ni (Ⅱ) ions under solvothermal method(Scheme 1).Furthermore,the fluorescence of 1 and the variable-temperature magnetic susceptibility of 3 were studied in detail.

    Scheme 1 Structures of the organic ligands

    1 Experimental

    1.1 Materials and physical measurements

    All the chemicals were of reagent grade and used without further purification.Elemental analyses(C,N,and H)were confirmed by elemental analyzer with a Vario MACRO cube.The infrared spectra were detected in a range from 4 000 to 400 cm?1by a FTIR-8400s spectrometer.The X-ray powder diffraction patterns were recorded using Rigaku D/Max-2500 PC diffractometer with a 2θrange of 5°~50°(MoKα,λ=0.071 073 nm).The TG analyses were obtained using a METTLER TGA analyzer under a N2atmosphere.Magnetic susceptibility data were investigated using a Quantum Design MPMS XL-7 SQUID instrument in a range of 2~300 K.

    1.2 Syntheses of the complexes

    1.2.1 Synthesis of{[Pb2(HL)(phen)]·2H2O}n(1)

    H5L(0.01 mmol,4.5 mg),phen(0.01 mmol,1.98 mg),Pb(NO3)2(0.06 mmol,19.9 mg)and H2O(1 mL)were placed in a glass tube,sealed and heated to 130℃for 72 h.After the glass tube was cooled to 25℃,the colorless block crystals were obtained(Yield:52%,based on Pb).Anal.Calcd.for C35H22N2O12Pb2(%):C,39.00;H,2.04;N,2.60.Found(%):C,39.37;H,2.35;N,2.01.IR(KBr pellet,cm?1):549(s),725(s),845(vs),900(s),1 108(w),1 240(w),1 382(m)1 514(vs),1 670(vs),1 735(s),2 339(vs),3 646(w)(Fig.S1).

    1.2.2 Synthesis of{[Ni3/2(H2L)(4,4′-bipy)1.5(H2O)4]·6H2O}n(2)

    H5L(0.02 mmol,9 mg),4,4′-bipy(0.02 mmol,3.12 mg),Ni(NO3)2·6H2O(0.06 mmol,18.4 mg)and H2O(10 mL)were transferred into a 25 mL Teflonlined stainless-steel vessel and heated to 140℃for 96 h.After the Teflon-lined stainless-steel vessel was cooled to 25℃,the blue block crystals were gained(Yield:37%,based on Ni).Anal.Calcd.for C76H82N6Ni3O38(%):C,48.93;H,4.40;N,4.51.Found(%):C,48.98;H,4.23;N 4.49.IR(KBr pellet,cm?1):673(vs),819(s),1 185(w),1 364(w),1 457(w),1 503(vs),1 659(vs),1 735(s),2 350(s),3 551(m)(Fig.S1).

    1.2.3 Synthesis of{[Ni2(HL)(1,4-bibb)(H2O)]·(CH3CN)·H2O}n(3)

    A mixture of H5L(0.01 mmol,4.5 mg),1,4-bibb(0.005 mmol,1.55 mg)and Ni(NO3)2·4H2O(0.015 mmol,4.36 mg),and CH3CN/H2O(1 mL,1∶3,V/V)was transferred into a pressure-resistant glass tube,sealed and heated at 130℃for 83.33 h.Green block crystals were collected after being cooled to 25℃(Yield:53%,based on Ni).Anal.Calcd.for C65H48Ni2N9O14(%):C,60.16;H,3.71;N,9.72.Found(%):C,60.98;H,3.18;N,9.31.IR(KBr pellet,cm?1):549(vs),611(vs),743(vs),858(vs),989(vs),1 097(vs),1 329(s),1 415(vs),1 523(vs),1 648(vs),1 863(w),2 344(w),3 103(w),3 426(m)(Fig.S1).

    1.3 Single crystal X-ray diffraction

    X-ray single-crystal diffraction data of MOCs 1,2 and 3 were performed on a Bruker ApexⅡCCD diffractometer(MoKα,λ=0.071 073 nm)at 298,200 and 100 K,respectively.The structures of three complexes were solved by OLEX-2 and refined by full-matrix least-squares procedure based onF2by the SHELXL-2015[14].All non-hydrogen atoms were refined anisotropically.All hydrogen atoms were calculated and added at ideal positions.The relevant crystallographic data,selected bond lengths and bond angles are listed in Table 1 and Table S2.

    Table 1 Crystallographic data of 1~3

    Continued Table 1

    CCDC:1879614,1;1899101,2;1899100,3.

    2 Results and discussion

    2.1 Descriptions of crystal structures

    2.1.1 Crystal structure of{[Pb2(HL)(phen)]·2H2O}n(1)Complex 1 crystallizes in the monoclinic system withP21/nspace group.There are two Pb (Ⅱ)ions,one partly deprotonated HL4?ligand,a phen molecule in the asymmetric unit of 1(Fig.1).The Pb1 (Ⅱ)ion is sevencoordinated by seven O-atoms(Pb1-O1 0.280 43(134)nm,Pb1-O2 0.237 99(138)nm,Pb1-O3A 0.271 35(116)nm,Pb1-O4A 0.241 89(120)nm,Pb1-O6B 0.300 75(133)nm,Pb1-O9C 0.252 6(14)nm,Pb1-O10C 0.255 52(122)nm)from four different HL4?ligand,presenting a distorted{PbO7}pentagonal bipyramid geometry.The Pb2 (Ⅱ)ion is bridged by five oxygen atoms from two HL4?ligands(Pb2-O3 0.285 70(122)nm,Pb2-O4 0.298 25(120)nm,Pb2-O5 0.247 76(132)nm,Pb2-O8 0.237 30(128)nm,Pb2-O9C 0.286 58(138)nm)and two nitrogen atoms from a phen molecule(Pb2-N1 0.259 09(143)nm,Pb2-N2 0.259 94(145)nm),presenting a distorted octahedral geometry.The angles of O-Pb-N and O-Pb-O are from 46.946(373)°to 102.720(409)°.

    Fig.1 Coordination environment of Pb (Ⅱ)in 1

    The carboxylate groups of H5L in 1 are partially deprotonated and adopt chelating(η2)and chelatingbridging(μ2-η2∶η1)coordination modes(Scheme 2a).The four carboxylate groups of H5L ligand connect Pb ions to form 1D chains based on[Pb2(μ2-COO)2(μ1-COO)4]SBUs(Ni…Ni 0.426 99(9)nm)(Fig.2a,2b),which are further expanded into a 3D structure by hydrogen bonds(C26…O5 0.287 34(126)nm,C8…O8 0.278 04 nm)andπ…πinteractions(centroid…centroid 0.338 93 nm)(Fig.2c,2d).

    Scheme 2 Coordination configurations of partially deprotonated H5L ligand

    2.1.2 Crystal structure of{[Ni3/2(H2L)(4,4′-bipy)1.5(H2O)4]·6H2O}n(2)

    Fig.2 (a)[Pb2(μ2-COO)2(μ1-COO)4]SBUs of 1;(b)1D chain of 1;(c)3D framework of 1 viewed along b axis;(d)π…π interaction between molecules of complex 1

    Complex 2 crystallizes in the triclinic system withPspace group.The asymmetric unit of 2 is shown in Fig.3,which contains two independent Ni (Ⅱ)ions,one H2L3?ligand,one and a half of 4,4′-bipy linkers,four coordination water molecules and six lattice water molecules.

    Fig.3 Coordination environment of Ni (Ⅱ)in 2

    The Ni1 (Ⅱ)ion is bridged by four O-atoms from a H2L3?ligand(Ni1-O1 0.211 67(34)nm,Ni1-O8 0.206 04(31)nm)and two coordinated water molecules(Ni1-O12 0.207 95(32)nm,Ni1-O13 0.206 13(30)nm),and two N-atoms from two 4,4′-bipy linkers(Ni1-N1 0.212 56(43)nm,Ni1-N2 0.207 33(32)nm),forming a slightly distorted[NiN2O4]octahedral geometry.The angles of O-Ni-N and O-Ni-O are from 82.943(110)°to 174.913(177)°.Ni2 (Ⅱ) ion is surrounded by four O-atoms(Ni2-O3 0.209 32(28)nm,Ni2-O3A 0.209 32(28)nm,Ni2-O4 0.205 19(32)nm,Ni2-O4A 0.205 19(32)nm)from two H2L3?ligands and two water molecules,two N-atoms(Ni2-N3B 0.212 60(35)nm,Ni2-N3C 0.212 60(35)nm)from two 4,4′-bipy linkers,showing a[NiN2O4]octahedron geometry.The carboxylate groups of H5L in 2 are partially deprotonated and adopt bridging(η1)coordination modes(Scheme 2b).Two kinds of H2L3?ligands bridge three Ni (Ⅱ) ions to form a[Ni3(H2L3?)2]supramolecular structure(Ni…Ni 1.122 64(9)nm)(Fig.4a).At the same time,the 4,4′-bipy connects with two Ni (Ⅱ) ions to yield 1D zigzag[Nin(4,4′-bipy)]polymeric chain(Fig.4b),where the distances of Ni-Ni are from 1.120 37(9)to 1.126 45(11)nm.A 2D layer structure with 1D square channels(1.034 75(58)nm×2.158 51(65)nm)is obtained by sharing the central Ni (Ⅱ)ions(Fig.4c),which is further extended to a 3D network framework through hydrogen bond interactions.(O4…O7 0.191 35(12)nm,C21…O11 0.225 53(44)nm,O12…O14 0.193 50(41)nm,C10…O17 0.199 24(75)nm,O15…O16 0.192 45(73)nm)(Fig.5a).Topologically[15],both H2L3?ligands and Ni ions can be regarded as 4-connected nodes,and the whole 3D structure is simplified as a 2-nodal 4,4-connected topology with the Schl?fli symbol{4.62}2{42.62.82}(Fig.5a,5b).

    Fig.4 Structure of 2:(a)0D structure based on H5L and Ni ions;(b)1D zigzag chain formed by 4,4′-bipy and Ni ions;(c)2D structure

    Fig.5 (a)Three-dimensional structure of 2 by hydrogen bond interactions;(b)Schematic view of the 4,4-connected net of 2

    2.1.3 Crystal structure of{[Ni2(HL)(1,4-bibb)(H2O)]·(CH3CN)·H2O}n(3)

    The structural analysis indicated that 3 crystallizes in the monoclinic system withP2/cspace group.The asymmetric unit contains two independent Ni (Ⅱ)ions,half of HL4?ligands,a 1,4-bibb molecule,two coordination water molecules,a lattice acetonitrile molecule and a lattice water molecule.As shown in Fig.6,Ni1 (Ⅱ)ion presents a slightly distorted[NiN2O4]octahedral geometry and is coordinated by two N-atoms from two 1,4-bibb linkers(Ni1-N3 0.206 45(46)nm,Ni1-N3A 0.206 45(46)nm),four O-atoms from two HL4?ligands(Ni1-O1 0.206 44(38)nm,Ni1-O1A 0.206 44(38)nm)and two coordinated water molecules(Ni1-O6 0.212 26(47)nm,Ni1-O6A 0.212 26(47)nm),respectively.Ni2 (Ⅱ)is surrounded by two N-atoms from two 1,4-bibb linkers(Ni2-N1 0.203 09(48)nm,Ni2-N1B 0.203 09(48)nm),four O-atoms from two different HL4?ligands(Ni2-O3 0.228 92(35)nm,Ni2-O3B 0.228 92(35)nm,Ni2-O4 0.201 53(42)nm,Ni2-O4B 0.201 53(42)nm),showing a distorted octahedral geometry.

    Fig.6 Coordination environment of Ni (Ⅱ)in 3

    Fig.7 (a)Two-dimensional layer structure of 3 along b axis;(b)1D[Nin(1,4-bibb)]polymeric chain obtained by 1,4-bibb linker and Ni (Ⅱ)ion;(c),(d)3D framework of 3 along a and c axes

    In the assembly of 3,H5L ligands are partly deprotonated and connect Ni ions by adopting chelating(η2)and bridging(μ2-η1∶η1)mode(Scheme 2c).The carboxylate groups of H5L ligand connect Ni (Ⅱ)ions to generate an infinite 2D layer structure with 1D hexagon channels of 0.860 56(72)nm×2.099 63(92)nm(Fig.7a,7b),which is further expanded by a 1D[Nin(1,4-bibb)]polymeric chain formed by Ni (Ⅱ)ions and 1,4-bibb into a 3D network structure(Fig.7c,7d).Topologically,the 3D structure of 3 is simplified as a 3-nodal 4,4,4-connected topology with the Schl?fli symbol of{62.84}{64.82}2,in which the HL4?,1,4-bibb and Ni (Ⅱ) ion can be considered as 4-c nodes,4-c nodes and 4-c nodes,respectively(Fig.8).

    Fig.8 Topology of 3

    2.2 IR analysis,thermal analyses and X-ray powder diffraction analyses

    The IR measurements of 1~3 have been carried out to confirm their structure(Fig.S1).The thermal stabilities of 1~3 were investigated(Fig.S2),and it is found that 1~3 have high thermal stability.Complex 1 had no weight loss between 30 and 447℃,and then the structure of 1 began to decompose.For 2,the weight loss of 10.4%(Calcd.9.7%)below 120℃is due to the release of four coordinated water molecules and six lattice water molecules.When the temperature exceeded 440℃,the framework of 2 began to collapse.In the temperature range of 30~200 ℃ ,complex 3 showed a weight loss of 7.3%(Calcd.6.4%),which is attributed to the release of two coordinated water molecules,a lattice acetonitrile and a lattice water molecule.Furthermore,the experimental PXRD patterns of 1~3 were characterized,which are good consistent with simulated ones,presenting the good phase purity of MOCs(Fig.S3).

    2.3 Luminescent properties

    The solid state luminescence emission spectra of complex 1,H5L and phen were investigated at room temperature(Fig.9).The maximum emission peaks of H5L and phen were at 370 and 374 nm(λex=270 nm),respectively.The emission peak of 1 was at 381 nm and had a slightly red-shift(Δλ=11 nm),which may be assigned to the metal perturbed emission of ligand[16].

    Fig.9 Solid-state fluorescence emissions spectra of the ligands and complex 1 at room temperature

    Because complex 1 has good fluorescent performance in the solid state and can remain stable in aqueous solution,we further explored the luminescent sensing properties of 1 to different metal ions in aqueous solution.Complex 1(2 mg)was dispersed in 2 mL different nitrate salts aqueous solutions(0.01 mol·L?1).As shown in Fig.10,the fluorescence intensities of 1 depended on different metal ions.When 1 was dispersed in Ca(NO3)2aqueous solutions,its fluorescence intensity was basically unchanged.When dispersed in aqueous solutions containing Zn2+,Ag+,Ba2+,Mg2+,Pb2+,K+,Cd2+and Al3+,the fluorescence intensities of 1 were reduced to varying degrees.Especially,when 1 was dispersed in Fe3+aqueous solutions,the fluorescence intensity of 1 was almost completely quenched and the quenching rate of Fe3+to 1 was 98.1%,which means that 1 can serve as a fluorescence probe for sensing Fe3+.Meanwhile,the anti-interference experiment was also carried out to study the effect of mixed cations on fluorescence intensity of 1.Equal amounts of Fe3+and other cations were added into the suspension of 1@H2O(2 mL),respectively.The results show that the quenching effect of Fe3+is not affected by other cations(Fig.S4).

    Fig.10 Photoluminescence intensities of 1 dispersed in different cations aqueous solutions

    To better test the luminescent sensing sensitivity of complex 1 for Fe3+ions,titration experiments were carried out by gradually increasing the concentration of Fe3+to 1@H2O suspension.As shown in Fig.11a,the luminescent intensity of 1 gradually decreased with an increasing of Fe3+concentration.The luminescence intensity of 1 was completely quenched when the concentration of Fe3+came up to 1.07 mmol·L?1.The fluorescence quenching efficiency of Fe3+was well-fitted by using the exponential equations:I0/I=0.675 28exp(cM/0.277 15)+0.928 21,wherecMis the concentration(mmol·L?1)of Fe3+;I0andIstand for luminescent intensities of 1@H2O suspension in the presence and absence of Fe3+,respectively.The Stern-Volmer plots for Fe3+were almost linear at lower concentration range of Fe3+,and followed the Stern-Volmer equation ofI0/I=1+KsvcM(Fig.11,Inset).The quenching constant(Ksv)of 1 for Fe3+was calculated to be 7.24×104L·mol?1based on the linear part.The detection limit(DL)of 1 for Fe3+was calculated to be 1.65×10?5mol·L?1by 3σ/Ksv,whereσis the standard deviations for blank solutions(Table S3).

    To further study the sensitivity of 1 for different anions,2 mg samples of 1 were immersed in 2 mL KmX aqueous solution (0.01 mol·L?1,X=Br?,Cl?,I?,CH3COO?,HPO42?,CO32?,HCO3?,C2O42?,SCN?and Cr2O72?).As exhibited in Fig.12,the luminescence of Cr2O72?anions for 1@H2O suspension presented an obviously quenching effect,and the quenching efficiency was as high as 95.5%.

    The Stern-Volmer plot for Cr2O72?showed a linear behavior at low concentration and bends upwards at high concentration(Fig.13).According to the linear part of the S-V plot,theKsvvalue of Cr2O72?was calculated to be 2.17×103L·mol?1.Based on the data of blank tests and titration tests,the DL of 1 for CrO2?27calculated to be 7.52×10?4mol·L?1(Table S4).The low DL shows that 1 can serve as a fluorescent sensitive probe for Fe3+/Cr2O72?in aqueous system[17].

    Fig.11 (a)Luminescent emission spectra of 1 dispersed in aqueous solution upon incremental addition of Fe3+;(b)Plot of I0/I vs concentration of Fe3+

    Fig.12 Photoluminescence intensities of complex 1 dispersed in different anion

    Fig.13 (a)Luminescent emission spectra of 1 dispersed in aqueous solution upon incremental addition of Cr2O72?;(b)Plot of I/I vs concentration of CrO2?027

    The sensing mechanisms of 1 for Fe3+and Cr2O72?can be illuminated by the following experiments.Firstly,the PXRD patterns of 1 after being immersed in Fe3+and Cr2O72?solutions are almost consistent with the original(Fig.S5),which indicates that the structural collapse of 1 is not the cause of fluorescence quenching.Secondly,inductively coupled plasma(ICP)tests were measured for samples after luminescence test,which indicates that no Pb2+ions were detected in the suspension(Table S5,S6).Lastly,as can be seen from Fig.S6,the absorption spectra of Fe3+and Cr2O72?overlapped the excitation spectra of 1 to a greater extent,which shows that the competitive absorption between the analytes and complex 1 is the main cause for fluorescence quenching[18-20].In addition,the weak interaction between the framework of complex and metal ion is also an important factor.

    2.4 Magnetic properties

    The variable-temperature magnetic susceptibility of 3 was measured in a range of 2~300 K under a static field of 1 000 Oe(Fig.14).For 3,theχMTvalue was 2.1 cm3·K·mol?1at ambient temperature,which was larger than the value for two isolated Ni (Ⅱ) ions of 2.0 cm3·K·mol?1(g=2,s=1),indicating the orbital contribution in octahedron Ni (Ⅱ)[21-22].With the decreasing of temperature,theχMTvalue increased continuously to the maximum value of 2.24 cm3·K·mol?1at about 18 K,and then decreased sharply to 1.51 cm3·K·mol?1at 2 K.The plot of the reciprocal magnetic susceptibility vsTfollowed the Curie-Weiss Law(χM=C/(T?θ))from 25 to 300 K,yieldingC=2.16 cm3·K·mol?1,θ=?1.44 K for 3.The reducingχMTvalue and the negativeθvalue show that MOC 3 has the antiferromagnetic coupling interactions between the adjacent Ni (Ⅱ)ions.

    Fig.14 χMT and χMvs T plots of 3

    3 Conclusions

    In summary,three new MOCs have been synthesized by mixed-ligand strategy under solvothermal method.Structural analysis indicates that the structural difference of the title MOCs is mainly attributed to the coordination modes of the carboxylate groups and the use of different auxiliary ligands.MOC 1 has good water stability,sensitive and selective sensing for Fe3+and Cr2O72?in aqueous solutions,which is ascribed to the competitive adsorption between the analytes and the framework of 1.While MOC 3 shows the antiferromagnetic coupling interactions between the adjacent Ni (Ⅱ)ions.

    Acknowledgments:The authors gratefully acknowledge the financial support of this work by the fund for the Jinzhong University“1331 Project”Key Innovation Team(Grant No.jzxycxtd2019005)and the National Natural Science Foundation of China(Grant No.21676258)and the support of innovative research team of inorganic-organic hybrid functional materials in North University of China.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    二羧酸化學系中北大學
    《中北大學學報(社會科學版)》征稿啟事
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
    科學導報(2021年91期)2021-01-11 07:02:14
    《中北大學學報(自然科學版)》征稿簡則
    首都師范大學化學系自充電功能材料研究取得重要進展
    有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    聚丙烯成核劑雙環(huán)[2.2.1]-庚烷-2,3-二羧酸鈉的合成
    化工進展(2015年6期)2015-11-13 00:27:25
    兩個基于2,2’-聯(lián)吡啶-3,3’-二羧酸的稀土配合物的晶體結(jié)構(gòu)和熒光性質(zhì)
    吡啶-3,5-二羧酸鎳(Ⅱ)配合物的合成、結(jié)構(gòu)、性質(zhì)及密度泛函研究
    久久久欧美国产精品| 久久久久性生活片| 国产亚洲欧美98| 久久久久精品国产欧美久久久| 99热精品在线国产| 你懂的网址亚洲精品在线观看 | 久久久欧美国产精品| 麻豆久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 亚洲av电影不卡..在线观看| 中文资源天堂在线| 1000部很黄的大片| 成年女人永久免费观看视频| 国产淫片久久久久久久久| 丝袜喷水一区| 色哟哟哟哟哟哟| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 久久精品国产亚洲网站| 内射极品少妇av片p| 日本黄大片高清| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 国产乱人偷精品视频| 国产精品99久久久久久久久| av中文乱码字幕在线| 国产精品一及| 岛国在线免费视频观看| 免费av毛片视频| 嫩草影院新地址| 成人鲁丝片一二三区免费| 级片在线观看| 日本黄大片高清| 免费看a级黄色片| 亚洲精品国产成人久久av| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 最近中文字幕高清免费大全6| 99热6这里只有精品| 乱码一卡2卡4卡精品| 亚洲色图av天堂| 日韩人妻高清精品专区| 嫩草影院精品99| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 久久久久久久久久成人| 男女下面进入的视频免费午夜| 亚洲内射少妇av| 99久国产av精品国产电影| 美女高潮的动态| 尾随美女入室| 日韩av不卡免费在线播放| 色哟哟·www| 欧美激情在线99| 精品日产1卡2卡| 国产精品电影一区二区三区| 精品人妻偷拍中文字幕| 久久久成人免费电影| videossex国产| 一级黄片播放器| 国产精品野战在线观看| 看十八女毛片水多多多| www.色视频.com| 一级毛片电影观看 | 免费观看在线日韩| 日本与韩国留学比较| 久久久成人免费电影| 免费高清视频大片| 美女内射精品一级片tv| 亚洲不卡免费看| 伦精品一区二区三区| 永久网站在线| 噜噜噜噜噜久久久久久91| 最近视频中文字幕2019在线8| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av天美| 国语自产精品视频在线第100页| ponron亚洲| 有码 亚洲区| 女人十人毛片免费观看3o分钟| 色av中文字幕| 婷婷精品国产亚洲av| 国产三级中文精品| 免费观看人在逋| 1024手机看黄色片| 久久亚洲国产成人精品v| 亚洲电影在线观看av| 久久人人爽人人爽人人片va| 日韩高清综合在线| 中文字幕久久专区| 你懂的网址亚洲精品在线观看 | 国产黄片美女视频| 日日撸夜夜添| 色播亚洲综合网| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 国产精品三级大全| 久久午夜福利片| 老女人水多毛片| 中国美白少妇内射xxxbb| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| 春色校园在线视频观看| 欧美潮喷喷水| 国产女主播在线喷水免费视频网站 | 久久精品人妻少妇| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 可以在线观看毛片的网站| 久久久久久九九精品二区国产| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 青春草视频在线免费观看| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 午夜久久久久精精品| 永久网站在线| 欧美精品国产亚洲| 少妇人妻精品综合一区二区 | 久久久久久久亚洲中文字幕| 成人亚洲欧美一区二区av| 黑人高潮一二区| 97热精品久久久久久| 精品久久久久久久久久免费视频| 你懂的网址亚洲精品在线观看 | 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 内射极品少妇av片p| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 久久久久精品国产欧美久久久| 观看免费一级毛片| 亚洲成av人片在线播放无| 两个人的视频大全免费| 少妇的逼好多水| 少妇人妻精品综合一区二区 | 久久99热6这里只有精品| 欧美最黄视频在线播放免费| 蜜臀久久99精品久久宅男| 国产国拍精品亚洲av在线观看| 在线看三级毛片| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 色哟哟·www| 蜜桃亚洲精品一区二区三区| 日韩,欧美,国产一区二区三区 | av福利片在线观看| 日韩强制内射视频| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| av国产免费在线观看| 欧美xxxx黑人xx丫x性爽| 如何舔出高潮| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 欧美一区二区国产精品久久精品| 人妻久久中文字幕网| 欧美日韩国产亚洲二区| 99热只有精品国产| 日本欧美国产在线视频| 欧美绝顶高潮抽搐喷水| 国产午夜精品久久久久久一区二区三区 | 一区二区三区免费毛片| 91在线观看av| 久久99热这里只有精品18| 少妇猛男粗大的猛烈进出视频 | 亚洲av免费高清在线观看| 看片在线看免费视频| 你懂的网址亚洲精品在线观看 | 亚洲成人av在线免费| 亚洲熟妇中文字幕五十中出| 亚洲最大成人手机在线| 99热精品在线国产| 久久这里只有精品中国| 97热精品久久久久久| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 哪里可以看免费的av片| 九九爱精品视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 老熟妇乱子伦视频在线观看| 一区福利在线观看| 欧美色欧美亚洲另类二区| 精品福利观看| 一a级毛片在线观看| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 99国产极品粉嫩在线观看| 色综合站精品国产| 欧美国产日韩亚洲一区| 99久久九九国产精品国产免费| 精品午夜福利在线看| 国产视频内射| 亚洲最大成人中文| 国国产精品蜜臀av免费| 国产亚洲欧美98| 插逼视频在线观看| 精品午夜福利在线看| 欧美中文日本在线观看视频| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 久久草成人影院| 国产精品99久久久久久久久| 欧美一区二区国产精品久久精品| 免费看日本二区| 亚洲一区二区三区色噜噜| 偷拍熟女少妇极品色| 欧美极品一区二区三区四区| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 两个人视频免费观看高清| 亚洲在线自拍视频| 国产三级中文精品| 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区 | av在线亚洲专区| 色吧在线观看| 最近在线观看免费完整版| 天天一区二区日本电影三级| 91av网一区二区| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 女的被弄到高潮叫床怎么办| 最好的美女福利视频网| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 国产一区亚洲一区在线观看| 亚洲国产色片| 在线a可以看的网站| 欧美bdsm另类| 男人狂女人下面高潮的视频| 真人做人爱边吃奶动态| 亚洲精品亚洲一区二区| 午夜免费激情av| 天堂网av新在线| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 黄色配什么色好看| 久久精品综合一区二区三区| 亚洲av不卡在线观看| 国产老妇女一区| 亚洲熟妇熟女久久| 又爽又黄a免费视频| 国产高清不卡午夜福利| 一个人观看的视频www高清免费观看| 日韩欧美在线乱码| 久久这里只有精品中国| 成人亚洲精品av一区二区| 国产高潮美女av| 嫩草影院精品99| 天堂网av新在线| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 成人无遮挡网站| 别揉我奶头 嗯啊视频| 99视频精品全部免费 在线| 日本爱情动作片www.在线观看 | 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 午夜视频国产福利| 日日撸夜夜添| 久久久久性生活片| 波多野结衣高清无吗| 欧美性感艳星| 午夜日韩欧美国产| 久久久久久久久久黄片| 麻豆乱淫一区二区| 久久热精品热| 日本免费a在线| 直男gayav资源| 精品一区二区三区人妻视频| 免费观看人在逋| 1024手机看黄色片| 亚洲av五月六月丁香网| 日韩成人av中文字幕在线观看 | 免费看光身美女| 久久久久久伊人网av| 亚洲av不卡在线观看| 亚洲国产精品合色在线| 我要搜黄色片| 国产伦精品一区二区三区四那| 又粗又爽又猛毛片免费看| 亚洲四区av| 国产在线男女| 九九热线精品视视频播放| 中文在线观看免费www的网站| ponron亚洲| 亚洲最大成人手机在线| 免费观看精品视频网站| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 国产av在哪里看| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 成人综合一区亚洲| eeuss影院久久| 久久久久性生活片| av福利片在线观看| 欧美在线一区亚洲| 日韩国内少妇激情av| 美女黄网站色视频| 精品人妻一区二区三区麻豆 | 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产| 97超碰精品成人国产| 十八禁网站免费在线| 国产精品永久免费网站| 国产爱豆传媒在线观看| 国产精品一区www在线观看| 国产伦一二天堂av在线观看| 日韩欧美免费精品| 人人妻人人看人人澡| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| av在线亚洲专区| 中文字幕熟女人妻在线| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 久久人人爽人人片av| 久久久久久九九精品二区国产| 国产高清视频在线观看网站| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 天堂网av新在线| 久久精品国产自在天天线| 晚上一个人看的免费电影| 波野结衣二区三区在线| 亚洲av第一区精品v没综合| 级片在线观看| 国产精品,欧美在线| 韩国av在线不卡| 午夜福利在线在线| 一本一本综合久久| 日本免费一区二区三区高清不卡| 欧美激情在线99| 人妻制服诱惑在线中文字幕| 国产精品免费一区二区三区在线| 精品久久久噜噜| 日本精品一区二区三区蜜桃| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 久久精品91蜜桃| 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 夜夜爽天天搞| 欧美不卡视频在线免费观看| av在线天堂中文字幕| av在线亚洲专区| av在线天堂中文字幕| 国内精品久久久久精免费| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 亚洲第一电影网av| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 亚洲国产色片| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 亚洲国产色片| h日本视频在线播放| 久久韩国三级中文字幕| 欧美日本视频| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| 久久久久久大精品| 亚洲国产精品国产精品| 97超视频在线观看视频| 精品无人区乱码1区二区| 国产精品久久久久久久电影| 国产精华一区二区三区| 在线a可以看的网站| 俺也久久电影网| 免费av观看视频| 听说在线观看完整版免费高清| 伦精品一区二区三区| 精品久久久久久久久av| 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕| 亚洲无线观看免费| 国产女主播在线喷水免费视频网站 | 国产 一区 欧美 日韩| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 成人漫画全彩无遮挡| 免费看光身美女| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验 | 欧美+日韩+精品| 成人午夜高清在线视频| a级一级毛片免费在线观看| 久久人人爽人人爽人人片va| 久久亚洲国产成人精品v| 99热网站在线观看| 成年女人毛片免费观看观看9| 成人毛片a级毛片在线播放| 女人十人毛片免费观看3o分钟| 日本黄色视频三级网站网址| 国产一区二区亚洲精品在线观看| 成人亚洲精品av一区二区| av在线蜜桃| av在线播放精品| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 亚洲精品影视一区二区三区av| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 久久韩国三级中文字幕| 久久久久免费精品人妻一区二区| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品 | 亚洲性久久影院| 国产精品一区二区三区四区久久| 非洲黑人性xxxx精品又粗又长| 两个人的视频大全免费| 一级毛片久久久久久久久女| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 天堂网av新在线| 日本精品一区二区三区蜜桃| 桃色一区二区三区在线观看| 日日啪夜夜撸| 国产淫片久久久久久久久| 在线播放无遮挡| 欧美性猛交黑人性爽| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 少妇猛男粗大的猛烈进出视频 | 国产真实伦视频高清在线观看| 免费av毛片视频| 国产精品不卡视频一区二区| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 久久久久国产网址| 嫩草影院精品99| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| videossex国产| 人人妻人人澡人人爽人人夜夜 | 欧美日韩国产亚洲二区| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 1024手机看黄色片| 国产精品国产高清国产av| 久久6这里有精品| 国产免费男女视频| 国产成人福利小说| 亚洲人成网站高清观看| 久久精品人妻少妇| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| 男女边吃奶边做爰视频| 欧美高清性xxxxhd video| 亚洲欧美日韩无卡精品| 中国国产av一级| 日韩大尺度精品在线看网址| 亚洲乱码一区二区免费版| 99热全是精品| 黄色配什么色好看| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 免费观看在线日韩| 精品久久久久久久末码| 欧美另类亚洲清纯唯美| 精品人妻视频免费看| 男插女下体视频免费在线播放| 国产黄片美女视频| 久久久久久国产a免费观看| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| av女优亚洲男人天堂| h日本视频在线播放| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 美女xxoo啪啪120秒动态图| 精品不卡国产一区二区三区| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 在线国产一区二区在线| 亚洲精品久久国产高清桃花| 成人亚洲欧美一区二区av| 午夜激情福利司机影院| 一进一出好大好爽视频| 在线免费观看不下载黄p国产| 搡女人真爽免费视频火全软件 | 三级国产精品欧美在线观看| 欧美中文日本在线观看视频| 我的女老师完整版在线观看| 国产午夜精品论理片| a级毛片免费高清观看在线播放| 看十八女毛片水多多多| 欧美xxxx黑人xx丫x性爽| 波多野结衣高清无吗| 精品无人区乱码1区二区| 少妇被粗大猛烈的视频| 大又大粗又爽又黄少妇毛片口| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| .国产精品久久| 超碰av人人做人人爽久久| 搡老熟女国产l中国老女人| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| 成人性生交大片免费视频hd| 亚洲美女视频黄频| 午夜福利成人在线免费观看| 欧美精品国产亚洲| 欧美不卡视频在线免费观看| 天美传媒精品一区二区| 国产精品国产高清国产av| 日韩 亚洲 欧美在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美国产日韩亚洲一区| 中国国产av一级| 精品熟女少妇av免费看| 日本欧美国产在线视频| 久久精品国产自在天天线| 免费一级毛片在线播放高清视频| 91久久精品国产一区二区三区| 小说图片视频综合网站| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 午夜激情欧美在线| 免费av毛片视频| 内地一区二区视频在线| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 国产 一区精品| 欧美潮喷喷水| 在线观看午夜福利视频| 亚洲一区二区三区色噜噜| 中文字幕免费在线视频6| av国产免费在线观看| 啦啦啦韩国在线观看视频| 色播亚洲综合网| 成人特级黄色片久久久久久久| 蜜桃亚洲精品一区二区三区| 国产 一区精品| 蜜桃久久精品国产亚洲av| 嫩草影院精品99| 淫妇啪啪啪对白视频| 色播亚洲综合网| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 床上黄色一级片| 成人亚洲欧美一区二区av| 午夜福利视频1000在线观看| 91av网一区二区| 级片在线观看| 国产精品三级大全| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 久久久欧美国产精品| 久久九九热精品免费| 永久网站在线| 午夜精品国产一区二区电影 | 人妻夜夜爽99麻豆av| 精品午夜福利视频在线观看一区| 久久久久久大精品| 亚洲欧美精品自产自拍| 亚洲不卡免费看| 观看美女的网站| 日韩人妻高清精品专区| 国产色爽女视频免费观看| 两个人视频免费观看高清| 神马国产精品三级电影在线观看| 黄色欧美视频在线观看| 一区二区三区免费毛片|