王雪萍 李醫(yī)明 王釗 賈琦 陳凱先
[摘要]糖尿病是一種以升高血糖為主要特點(diǎn)的慢性疾病,長期高血糖會(huì)引發(fā)多種并發(fā)癥。原花青素是一類廣泛存在于植物中的多酚化合物,在降血糖、改善胰島素抵抗、保護(hù)胰島β細(xì)胞方面具有良好的作用,對(duì)于2型糖尿病的預(yù)防及治療顯示出較好的效果。該文對(duì)原花青素類成分調(diào)控2型糖尿病在促進(jìn)葡萄糖吸收、保護(hù)胰島β細(xì)胞、改善腸道微環(huán)境、調(diào)節(jié)糖尿病并發(fā)癥等方面的研究進(jìn)展進(jìn)行綜述,為該類成分進(jìn)一步研究提供參考。
[關(guān)鍵詞]原花青素; 2型糖尿??; 作用機(jī)制
[Abstract]Diabetes mellitus, a chronic disease, is characterized by high blood glucose that could induce various complications Procyanidin, a kind of polyphenol compounds existing in many plants, have shown to be effective in preventing and treating type 2 diabetes mellitus as they may lower blood glucose, moderate insulin resistance and protect islet β cells This review focused on the research advances on the preventive and therapeutic application of procyanidin in promoting glucose absorption, protecting islet β cells, modulating intestinal microbiota and regulating diabetic complications of type 2 diabetes mellitus, which should provide useful reference for subsequent studies.
[Key words]procyanidin; type 2 diabetes mellitus; mechanism
糖尿病是一種因胰島素分泌不足和/或胰島素作用障礙所致的以高血糖為主要特征的代謝紊亂綜合征,長期慢性高血糖導(dǎo)致多種組織損害、器官功能障礙,使患者生活質(zhì)量降低、壽命縮短、病死率增高。根據(jù)發(fā)病機(jī)制的不同,糖尿病分為以胰島素分泌不足為主的1型糖尿病及以胰島素抵抗為主要特征的2型糖尿病,其中糖尿病患者以2型為主,占比超過90%[1]。目前臨床上治療2型糖尿病的藥物,存在低血糖反應(yīng)、變態(tài)反應(yīng)、消化道不適等一系列的不良反應(yīng)[2],研發(fā)安全有效的降糖藥物是當(dāng)前藥物研發(fā)的重要任務(wù),而天然藥物是新藥發(fā)現(xiàn)與研究的重要來源。
原花青素是一類以黃烷3醇為單體的聚合多酚類物質(zhì),常根據(jù)參與聚合的單體數(shù)目進(jìn)行分類 (原花青素分類見表1及圖1),其廣泛存在于各種植物的核、皮或種子中,如葡萄籽、藍(lán)莓、肉桂、桑椹、野蘋果等植物中均含有較為豐富的原花青素類成分[3]。研究表明原花青素具有降血糖、降血脂、抗氧化、抗炎等藥理活性,其降血糖的效果越來越受到人們的關(guān)注。雖然已有文獻(xiàn)對(duì)原花青素降糖降脂作用進(jìn)行了綜述[45],但未見原花青素降糖機(jī)制方面的系統(tǒng)綜述。本文對(duì)原花青素改善2型糖尿的作用機(jī)制進(jìn)行較為系統(tǒng)的綜述,為后續(xù)深入研究原花青素用于2型糖尿病的防治提供參考。
1促進(jìn)外周細(xì)胞葡萄糖吸收
高血糖是糖尿病的一個(gè)典型特點(diǎn),機(jī)體細(xì)胞對(duì)于葡萄糖的吸收利用主要存在于肝臟、肌肉、脂肪等外周組織中,促進(jìn)外周細(xì)胞葡萄糖的吸收是降低血糖的一個(gè)重要途徑。藥理實(shí)驗(yàn)表明,原花青素可以促進(jìn)葡萄糖的吸收,其作用機(jī)制包括以下幾點(diǎn)。
11促進(jìn)細(xì)胞膜外葡萄糖轉(zhuǎn)運(yùn)葡萄糖吸收入血后,依賴葡萄糖轉(zhuǎn)運(yùn)體(GLUTs)進(jìn)入細(xì)胞。葡萄糖轉(zhuǎn)運(yùn)體包括13個(gè)亞型,GLUT2主要在腎小管細(xì)胞、肝臟細(xì)胞及胰島β細(xì)胞中表達(dá),GLUT4主要表達(dá)于胰島素敏感的骨骼肌、脂肪細(xì)胞和心肌中。AMPK,Akt磷酸化促進(jìn)葡萄糖轉(zhuǎn)運(yùn)體由胞質(zhì)轉(zhuǎn)移到胞膜,從而促進(jìn)葡萄糖吸收。在胰島素敏感的外周組織中,原花青素增加糖轉(zhuǎn)運(yùn)水平。在高脂誘導(dǎo)的肥胖型糖尿病小鼠中,可可酒原花青素提取物提高骨骼肌、棕色脂肪組織及白色脂肪組織中GLUT4表達(dá)和AMPKα磷酸化[6]。在KKAy糖尿病小鼠中,黑豆皮原花青素提取物提高肝臟及骨骼肌AMPK活性[7]。STZ誘導(dǎo)的糖尿病模型小鼠中,檳榔果中原花青素提取物增加肝臟AMPK活性[8]。在過表達(dá)人胰島素受體的中國倉鼠卵巢細(xì)胞(CHOIR)中,葡萄籽原花青素提取物(GSPE)增加了Akt磷酸化水平[9];在3T3L1脂肪細(xì)胞中,海岸松樹皮原花青素提取物提高Akt磷酸化水平[10]。此外,可可類黃酮表兒茶素通過增加HepG2細(xì)胞胰島素受體(IR)、胰島素受體底物1(IRS1)、胰島素受體底物2(IRS2)磷酸化水平,激活PI3K/Akt,AMPK信號(hào)通路,增加GLUT2轉(zhuǎn)運(yùn)水平。但是部分研究顯示,原花青素降低葡萄糖轉(zhuǎn)運(yùn)體mRNA的表達(dá)。在胰島素誘導(dǎo)的胰島素抵抗的3T3L1脂肪細(xì)胞中,GSPE下調(diào)Pparg2,GLUT4 及IRS1 mRNA水平,但不影響其促進(jìn)葡萄糖吸收作用[11]。這提示原花青素可以通過改善胰島素信號(hào)通路或激活A(yù)MPK,Akt引起GLUT4或/和GLUT2轉(zhuǎn)移到細(xì)胞膜,調(diào)節(jié)葡萄糖吸收[12]。
12促進(jìn)糖原合成及糖酵解,抑制糖異生過程糖原合成是血糖代謝的一個(gè)重要途徑,肝臟和骨骼肌是合成糖原的主要場(chǎng)所,對(duì)調(diào)節(jié)血糖代謝有著至關(guān)重要的作用。糖原是葡萄糖在體內(nèi)儲(chǔ)存的主要形式,胰島素可調(diào)節(jié)其合成與分解。有報(bào)道指出,胰島素抵抗患者體內(nèi)的糖原含量會(huì)顯著降低[13]。PI3K/Akt信號(hào)通路是調(diào)節(jié)糖原合成的一個(gè)重要通路[14]??煽啥乖ㄇ嗨啬軌蚍且葝u素依賴性的刺激人原代骨骼肌細(xì)胞糖原合成、葡萄糖吸收;這種作用在低聚原花青素和多聚原花青素中都有體現(xiàn),而且多聚原花青素效果更加顯著[15]。在3T3L1脂肪細(xì)胞中,GSPE具有一定促進(jìn)糖原合成的能力[16]。endprint
糖酵解途徑是體內(nèi)葡萄糖代謝最主要的途徑之一,也是糖、脂肪和氨基酸代謝相聯(lián)系的途徑。肝臟糖異生紊亂導(dǎo)致肝糖輸出增多是機(jī)體肝臟胰島素抵抗發(fā)生的重要誘因[17]。在STZ誘導(dǎo)的糖尿病小鼠中,蓮蓬低聚原花青素提高肝臟丙酮酸激酶(PK)、磷酸果糖激酶(PFK) mRNA的表達(dá)促進(jìn)糖酵解過程[18]。蘋果原花青素給予ob/ob小鼠8周,在丙酮酸耐受實(shí)驗(yàn)中,15,30 min蘋果原花青素給藥組顯著降低血糖,抑制糖異生[19]。此外,GSPE促進(jìn)糖原合成作用弱于胰島素,但將葡萄糖合成脂質(zhì)方面強(qiáng)于胰島素,大多數(shù)葡萄糖直接合成甘油,但并不影響甘油三酯的總量[16]。
13調(diào)節(jié)與葡萄糖代謝相關(guān)酶的活性原花青素調(diào)節(jié)與葡萄糖輸入或輸出相關(guān)酶的活性。原花青素能夠提高葡萄糖激酶、己糖激酶、糖原合成酶活性,降低葡萄糖6磷酸酶(G6Pase)、磷酸烯醇丙酮酸羧激酶(PEPCK)、果糖1,6二磷酸酶活性,減少葡萄糖生成[2023]。
原花青素下調(diào)與糖酵解通路相關(guān)的酶。糖酵解過程的關(guān)鍵酶葡萄糖激酶(GK),PK,PFK的活性直接影響著糖酵解過程[2425]。GSPE 25 mg·kg-1給藥45 d,在大鼠胰島上檢測(cè)葡萄糖激酶基因表達(dá)水平顯著降低[26]。另外,原花青素對(duì)丙酮酸激酶同工酶M1/M2(PKM2)、甘油醛3磷酸脫氫酶、ATP5B均有調(diào)節(jié)作用[27]。原花青素通過下調(diào)胰腺組織中與糖酵解通路相關(guān)酶的mRNA的表達(dá)或影響酶的活性降低葡萄糖的含量,從而改善2型糖尿病。
2保護(hù)胰島β細(xì)胞
在2型糖尿病中,機(jī)體處于胰島素抵抗?fàn)顟B(tài),為了維持正常血糖水平,機(jī)體自我調(diào)節(jié)機(jī)制使胰島β細(xì)胞分泌更多的胰島素,加重胰島β細(xì)胞功能受損狀態(tài),從而產(chǎn)生高胰島素血癥。研究表明,原花青素對(duì)胰島素分泌和產(chǎn)生具有一定作用,也可影響β細(xì)胞的凋亡和增殖。
21調(diào)節(jié)胰島素的合成和分泌正常情況下,葡萄糖的轉(zhuǎn)運(yùn)和利用主要在胰島素等激素的刺激下,通過胰島素轉(zhuǎn)導(dǎo)途徑,引起一系列激酶的激活、葡萄糖轉(zhuǎn)運(yùn)體易位等,最終促進(jìn)靶組織吸收葡萄糖。胰島素信號(hào)轉(zhuǎn)導(dǎo)途徑任一環(huán)節(jié)異常都會(huì)導(dǎo)致胰島素抵抗。原花青素能增強(qiáng)機(jī)體對(duì)胰島素的敏感性,調(diào)節(jié)胰島素合成和分泌。在db/db糖尿病小鼠中,200 mg·kg-1柴桂原花青素提取物給藥4周,小鼠血清及胰腺中胰島素含量增加,葡萄糖耐受及胰島素敏感性增加[28]。棕櫚酸誘導(dǎo)的胰島β細(xì)胞損傷模型中,原花青素三聚體提高葡萄糖刺激的胰島素分泌水平[2930]。蛋白組學(xué)研究顯示,原花青素通過調(diào)節(jié)羧肽酶蛋白(將前胰島素轉(zhuǎn)化為胰島素)水平從而控制胰島素合成[26]。但是,部分研究結(jié)果顯示,高脂飲食誘導(dǎo)的糖尿病鼠中,給予GSPE,胰島素基因表達(dá)有降低的趨勢(shì)[27,31]。此外,原花青素促進(jìn)胰島β細(xì)胞增殖,其原因可能與胰島素含量較高有關(guān)[25]。INS1E(β細(xì)胞系)經(jīng)GSPE處理后,在高糖刺激下,GSPE增加β細(xì)胞對(duì)葡萄糖的吸收;改善葡萄糖誘導(dǎo)線粒體超極化的損傷、三磷酸腺苷合成的降低、改變細(xì)胞膜電位;改變GLUT2、葡萄糖激酶、UCP2基因表達(dá)及肝臟胰島素降解酶的表達(dá),進(jìn)而改變胰島素的降解;即原花青素在病理?xiàng)l件下通過調(diào)節(jié)胰島素合成、分泌和降解來改變?chǔ)录?xì)胞作用[32]。
原花青素調(diào)節(jié)胰島素的分泌另外一個(gè)機(jī)制與miRNA改變相關(guān)。健康大鼠GSPE 25 mg·kg-1給藥45 d,miR1249,miR483及miR30c1*下調(diào),miR3544上調(diào)[33]。這些miRNA控制與胰島素分泌過程相關(guān)的離子轉(zhuǎn)運(yùn)、刺激條件下激素和有機(jī)物質(zhì)應(yīng)答相關(guān)基因的表達(dá),進(jìn)而影響胰島素的分泌[4]。
22改善胰島β細(xì)胞功能及緩解炎癥狀態(tài)葡萄籽原花青素提取物能夠降低高血糖、提高β細(xì)胞功能、保護(hù)胰島β細(xì)胞[34]。其機(jī)制可能為:①通過調(diào)節(jié)β細(xì)胞的增殖[26]和凋亡[35]來調(diào)節(jié)細(xì)胞的功能。在人胰腺癌MIA PaCa2細(xì)胞中,給予10~100 mg·L-1的GSPE長期孵育,給藥組減少胰島β細(xì)胞增殖,增加β細(xì)胞凋亡,其原因可能是下調(diào)抗凋亡蛋白Bcl2和線粒體膜去極化[31]。在高脂誘導(dǎo)的2型糖尿病晚期鼠模型中,500 mg·kg-1給予GSPE 16周,β細(xì)胞功能及胰島素表達(dá)增加,其原因是改善內(nèi)質(zhì)網(wǎng)應(yīng)激和減少胰島β細(xì)胞凋亡[36]。②INS1E細(xì)胞經(jīng)油酸誘導(dǎo)3 d,GSPE處理后,上調(diào)CPT1a(增加β氧化),下調(diào)與脂質(zhì)合成相關(guān)基因(FASn,SREBF1),減少β細(xì)胞中脂質(zhì)堆積[31]。③改善炎癥狀態(tài)。Yin等[37]研究葡萄籽原花青素B2對(duì)db/db鼠胰腺的作用,發(fā)現(xiàn)與炎癥相關(guān)的MFGE8,IL1β及NLRP3水平降低,且得出MFGE8可能是原花青素B2緩解db/db鼠胰腺炎癥狀態(tài),從而發(fā)揮保護(hù)db/db鼠胰島細(xì)胞作用的一個(gè)重要靶點(diǎn)的結(jié)論。
3改善腸道微環(huán)境
目前研究已揭示了腸道菌群與宿主代謝之間的復(fù)雜聯(lián)系,腸道菌群可以通過影響葡萄糖和脂質(zhì)代謝發(fā)揮對(duì)能量平衡的調(diào)節(jié)[38]。原花青素可以通過調(diào)節(jié)腸道菌群平衡及腸道微環(huán)境維持機(jī)體穩(wěn)態(tài)。
31調(diào)節(jié)腸道菌群平衡研究表明,原花青素增加腸道中有益菌含量及種類,降低有害菌含量,優(yōu)化腸道菌群多樣性及優(yōu)勢(shì)性。宋雪琳等[39]發(fā)現(xiàn)GSPE能夠有效降低營養(yǎng)肥胖型大鼠腸道菌群中厚壁菌門Firmicutes的量,增加擬桿菌門Bacteroidetes的量,降低F/B比值,改善肥胖模型大鼠腸道菌群結(jié)構(gòu)。RTPCR定量研究也發(fā)現(xiàn),GSPE可以促進(jìn)有益的擬桿菌增殖,抑制有害的柔嫩梭菌增殖,對(duì)優(yōu)勢(shì)菌群具有顯著的調(diào)節(jié)作用。傅穎等[40]給予高脂飼料喂養(yǎng)的SD大鼠不同劑量原花青素,發(fā)現(xiàn)各劑量組腸道優(yōu)勢(shì)菌群多樣性明顯增加,隨著原花青素的干預(yù)劑量加大,中、高劑量組腸道菌群多樣性明顯減少,腸道優(yōu)勢(shì)菌群結(jié)構(gòu)明顯恢復(fù)。另外,原花青素能促進(jìn)人類糞便培養(yǎng)液中雙歧桿菌等益生菌的生長,增加短鏈脂肪酸的含量,抑制大腸桿菌、鼠李糖乳桿菌、鼠傷感沙門氏菌等有害菌的生長,減少厚壁菌門和擬桿菌門的比例[4143];酚類物質(zhì)可通過破壞特定菌細(xì)胞膜的正常功能、改變微生物代謝酶構(gòu)成和活性等途徑來影響腸道菌群結(jié)構(gòu),但尚不清楚引起這些變化的由于酚類物質(zhì)本身還是酚類物質(zhì)的代謝產(chǎn)物[44]。endprint
32改善腸壁通透性及腸道蛋白功能慢性炎癥和氧化應(yīng)激反應(yīng)都可能引起胰島β細(xì)胞的凋亡,而胰島素抵抗將最終引起2型糖尿病的發(fā)生[45]。研究顯示,由高脂膳食誘導(dǎo)的大鼠2型糖尿病,其腸道中的細(xì)菌可蔓延到能引起炎癥反應(yīng)的腸壁周圍的脂肪組織和血液中,提升細(xì)菌對(duì)于黏膜的黏附作用,從而導(dǎo)致炎癥的發(fā)生[46]。原花青素對(duì)腸道環(huán)境的改善具有積極作用。在高脂飼料喂養(yǎng)Wistar大鼠建立的營養(yǎng)肥胖模型中,肖俊松等[47]發(fā)現(xiàn)GSPE可以顯著恢復(fù)腸壁通透性。高脂膳食可誘導(dǎo)腸壁通透性異常升高,而腸壁通透性增加導(dǎo)致腸道內(nèi)大量有毒物質(zhì)經(jīng)過靜脈進(jìn)入肝臟進(jìn)而導(dǎo)致肝臟解毒負(fù)擔(dān),GSPE可減輕肝臟負(fù)擔(dān)。
二肽基肽酶4 (DPP4)為一種糖膜蛋白,能使胰高血糖素樣肽(GLP1)和抑胃肽(GIP) 快速降解,DPP4通過影響這2種肽類激素促進(jìn)胰島β細(xì)胞分泌胰島素的功能,進(jìn)而影響2型糖尿病患者血糖水平。原花青素可通過抑制腸道中DPP4的活性及/或基因的表達(dá),來調(diào)節(jié)血糖水平。Gonzálezabuín等[48]發(fā)現(xiàn)GSPE長期處理人源Caco2細(xì)胞,DPP4的活性及基因的表達(dá)降低;在健康大鼠中,GSPE 25 mg·kg-1給藥45 d,其腸道中DPP4的活性及基因表達(dá)相對(duì)未給予GSPE大鼠明顯降低;飲食誘導(dǎo)的肥胖型大鼠中,經(jīng)GSPE干預(yù)DPP4基因表達(dá)下調(diào);可可黃酮通過抑制小腸上皮細(xì)胞中α淀粉酶、α葡萄糖苷酶、DPP4活性,抑制SGLT1及GLUT2糖轉(zhuǎn)運(yùn)體向胞漿轉(zhuǎn)運(yùn),提高GLP1分泌影響碳水化合物的吸收[49]。
4調(diào)節(jié)與糖尿病相關(guān)的并發(fā)癥
慢性高血糖可能會(huì)引起糖尿病腎病、糖尿病微血管病變等多種并發(fā)癥的發(fā)生。目前研究結(jié)果表明糖尿病并發(fā)癥發(fā)生與氧化應(yīng)激、多元醇通路、蛋白質(zhì)非酶糖激化、蛋白激酶C等相關(guān)[50]。在這些通路中可能存在控制糖尿病并發(fā)癥發(fā)生的潛在靶點(diǎn),以發(fā)病機(jī)制為靶點(diǎn)的治療可能會(huì)給控制糖尿病慢性并發(fā)癥發(fā)生及發(fā)展帶來新的希望。
41調(diào)節(jié)血脂在脂肪組織、肝臟、肌肉組織中脂質(zhì)過度積累將會(huì)導(dǎo)致肥胖,而肥胖也是引起2型糖尿病、心血管疾病等的一個(gè)危險(xiǎn)因素。由高脂飲食誘導(dǎo)的糖尿病大鼠模型中,短期GSPE處理降低血清中甘油三酯、低密度脂蛋白含量,降低肝臟中SREBP1,MTP,DGAT2的表達(dá)[51]。
原花青素調(diào)節(jié)脂質(zhì)的機(jī)制可能是:①降低肝臟PPARα、脂肪組織PPARγ水平,使ACO,CPT1,ABCA1等上調(diào),提高脂肪酸氧化和降低膽固醇的形成;使FAS,SREBP1/2,DGAT2等下調(diào),降低脂質(zhì)合成和TAG儲(chǔ)存[5255]。GSPE干預(yù)db/db鼠8周,可降低血尿素氮、血肌酐、尿白蛋白的水平,抑制腎小管上皮細(xì)胞內(nèi)脂滴形成及脂肪酸合成,促進(jìn)脂肪酸β氧化[56]。GSPE處理3T3L1脂肪細(xì)胞,調(diào)節(jié)PPARγ及miR4835p,抑制脂質(zhì)生成[57]。②降低激素敏感性脂肪酶(HSL)等酶活性,減少脂解[5859]。在3T3L1細(xì)胞中,GSPE在其誘導(dǎo)分化的第4天,可明顯降低HSL的mRNA表達(dá)[59]。但是,也有研究顯示不同的結(jié)果。高脂誘導(dǎo)的倉鼠經(jīng)GSPE處理,與合成代謝相關(guān)基因(ACC1,GPAT)、分解代謝相關(guān)基因(PPARα,ATGL,HSL)的mRNA水平提高,其糖脂/脂肪酸循環(huán)受到影響[60]。
42改善氧化應(yīng)激及炎癥狀態(tài)肥胖條件下,脂肪酸和葡萄糖代謝增加將導(dǎo)致線粒體氧化應(yīng)激,同時(shí)激活部分炎癥信號(hào)通路[6162]。在胰島素抵抗的動(dòng)物模型上,原花青素降低與產(chǎn)生毒性物質(zhì)相關(guān)酶的活性,如Cu,ZnSOD,谷胱甘肽過氧化物酶(GPx),過氧化氫酶 [6364];降低NFκB,COX2,CRP,IL6,TNFα等細(xì)胞因子在肝臟、脂肪及肌肉組織中基因表達(dá)[6568],促進(jìn)脂肪組織脂聯(lián)素含量的增加,緩解炎癥狀態(tài)[69]。糖尿病小鼠胰島β細(xì)胞上顯示出相似作用[70]。研究人員通過研究黑豆皮花青素對(duì)2型糖尿病大鼠氧化應(yīng)激信號(hào)傳導(dǎo)通路DAGPKC的影響,發(fā)現(xiàn)黑豆皮花青素可明顯降低糖尿病大鼠血糖,對(duì)糖基化終產(chǎn)物(AGEs)的形成具有明顯的抑制作用,腎小球PKC活性和腎小球總DAG的含量比糖尿病模型組明顯下降,改善2型糖尿病大鼠的抗氧化能力[71] 。肖俊松等[47]發(fā)現(xiàn)GSPE可顯著降低高脂誘導(dǎo)的肥胖大鼠血清中丙二醛水平,升高超氧化物歧化酶和過氧化氫酶水平,改善肥胖大鼠氧化應(yīng)激狀態(tài);降低白介素1的水平,改善炎癥狀態(tài)。
5結(jié)語和展望
2型糖尿病是一種長期慢性疾病,病理過程涉及多個(gè)器官病變。研究發(fā)現(xiàn)原花青素具有多組分、多靶點(diǎn)、多功能作用,其在不同組織中的作用概括見表2。原花青素類成分可能通過促進(jìn)葡萄糖吸收,減輕高糖毒性;抑制脂質(zhì)分解,減輕脂毒性;調(diào)節(jié)胰島素的合成和分泌;調(diào)節(jié)β細(xì)胞的增殖和凋亡等方面調(diào)控糖尿病。因此,原花青素類成分對(duì)2型糖尿病的防治具有較大優(yōu)勢(shì)。
美國食品和藥品監(jiān)督管理局(FDA)批準(zhǔn)的第一個(gè)植物藥——綠茶中的提取物Veregen,此植物藥的主要成分為表沒食子兒茶素沒食子酸酯(EGCG)及其他兒茶素衍生物。原花青素類成分與EGCG在結(jié)構(gòu)上有諸多相似之處,且毒副作用較小,這提示原花青素類成分在保健品及藥品方面具有潛在的價(jià)值。但是,目前原花青素類成分的研究仍存在一些問題,如:①原花青素具有多個(gè)酚羥基,導(dǎo)致其不穩(wěn)定,容易被氧化成其他成分;②目前對(duì)于單體原花青素發(fā)揮降糖活性的機(jī)制研究尚不徹底;③如何改善原花青素多聚體生物利用度低的問題尚不明確。因此,原花青素類成分對(duì)于改善2型糖尿病的研究還有很長的一段路要走。
[參考文獻(xiàn)]
[1]American Diabetes Association Diagnosis and classification of diabetes mellitus [J]. Diabetes Care, 2013, 36(Suppl 1):S67.
[2]王艷梅,王根杰,張樹林,等. 臨床常用降糖藥物的不良反應(yīng)及防治策略[J]. 中國醫(yī)院藥學(xué)雜志, 2015, 35(24):2233.endprint
[3]張小軍,夏春鏜,吳建銘原花青素的資源研究[J]. 中藥材, 2009, 32(7):1154.
[4]Gonzalezabuin N, Pinent M, Casanovamarti A, et al Procyanidins and their healthy protective effects against type 2 diabetes [J]. Curr Med Chem, 2015, 22(1):39.
[5]Bladé C, Arola L, Salvadó M J Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms[J]. Mol Nutr Food Res, 2010,54: 37.
[6]Yamashita Y, Okabe M, Natsume M, et al Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in highfat dietfed C57BL/6 mice[J]. Arch Biochem Biophys, 2012, 527(2):95.
[7]Kurimoto Y, Shibayama Y, Inoue S, et al Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMPactivated protein kinase in diabetic mice [J]. J Agric Food Chem, 2013, 61(23):5558.
[8]Huang P L, Chi C W, Liu T Y Areca nut procyanidins ameliorate streptozocininduced hyperglycemia by regulating gluconeogenesis [J]. Food Chem Toxicol, 2013, 55(3):137.
[9]Montagut G, Onnockx S, Vaqué M, et al Oligomers of grapeseed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin[J]. J Nutr Biochem, 2010, 21(6):476.
[10]Lee H H, Kim K J, Lee O H, et al Effect of pycnogenol on glucose transport in mature 3T3L1 adipocytes [J]. Phytother Res, 2010, 24(8):1242.
[11]Montagut G, Bladé C, Blay M, et al Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance [J]. J Nutr Biochem, 2010, 21(10):961.
[12]Corderoherrera I, Martín M á, Goya L, et al Cocoa flavonoids attenuate high glucoseinduced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells [J]. Food Chem Toxicol, 2014, 64(2):10.
[13]Krssak M, Brehm A, Bernroider E, et al Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes [J]. Diabetes, 2004, 53(12):3048.
[14]Youl C J, Jongsun P Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulinmediated intracellular signaling cascade [J]. Int J Mol Sci, 2008, 9(11):2217.
[15]Bowser S M, Moore W T, Mcmillan R P, et al Highmolecularweight cocoa procyanidins possess enhanced insulinenhancing and insulin mimetic activities in human primary skeletal muscle cells compared to smaller procyanidins [J]. J Nutr Biochem, 2017, 39:48.
[16]Pinent M, Bladé M C, Salvadó M J, et al Metabolic fate of glucose on 3T3L1 adipocytes treated with grape seedderived procyanidin extract (GSPE) Comparison with the effects of insulin[J]. J Agric Food Chem, 2005, 53(15):5932.endprint
[17]黃衛(wèi)東,劉毅,辛超,等. Irisin對(duì)2型糖尿病小鼠血糖的影響及機(jī)制[J]. 心臟雜志, 2014(4):408.
[18]Li X, Sui Y, Wu Q, et al Attenuated mTOR signaling and enhanced glucose homeostasis by dietary supplementation with lotus seedpod oligomeric procyanidins in streptozotocin (STZ)induced diabetic mice[J]. J Agric Food Chem, 2017,65(19):3801.
[19]Ogura K, Ogura M, Shoji T, et al Oral administration of apple procyanidins ameliorates insulin resistance via suppression of proinflammatory cytokines expression in liver of diabetic ob/ob mice[J]. J Agric Food Chem, 2016, 64(46):8857.
[20]Zhang H J, Ji B P, Chen G, et al A combination of grape seedderived procyanidins and gypenosides alleviates insulin resistance in mice and HepG2 cells [J]. J Food Sci, 2009, 74(1):H1.
[21]Sundaram R, Naresh R, Shanthi P, et al Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats [J]. Phytomedicine, 2013, 20(7):577.
[22]FernandezLarrea J, Montagut G, Bladé M C, et al GSPE has the same effects as insulin on the mRNA levels of the main genes of glucose disposal in the liver of STZdiabetic animals [J]. Diab Vasc Dis Res, 2007(1): S186.
[23]Gandhi G R, Ignacimuthu S, Paulraj M G Solanum torvum Swartz fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats [J]. Food Chem Toxicol, 2011, 49(11):2725.
[24]Lenzen S A fresh view of glycolysis and glucokinase regulation: history and current status [J]. J Biol Chem, 2014, 289(18):12189.
[25]Arden C, Petrie J L, Tudhope S J, et al Elevated glucose represses liver glucokinase and induces its regulatory protein to safeguard hepatic phosphate homeostasis [J]. Diabetes, 2011, 60(12):3110.
[26]CastellAuví A, Cedó L, Pallarès V, et al Procyanidins modify insulinemia by affecting insulin production and degradation [J]. J Nutr Biochem, 2012, 23(12):1565.
[27]Cedó L, CastellAuví A, Pallarès V, et al Pancreatic islet proteome profile in Zucker fatty rats chronically treated with a grape seed procyanidin extract [J]. Food Chem, 2012, 135(3):1948.
[28]Chen L, Sun P, Wang T, et alDiverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice [J]. J Agric Food Chem, 2012, 60(36):9144.
[29]Sun P, Wang T, Chen L, et al Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic βcells in vitro [J]. Acta Pharm Sin, 2016, 37(8):1083.endprint
[30]Wang T, Sun P, Chen L, et al Cinnamtannin D1 protects pancreatic βcells from palmitic acidinduced apoptosis by attenuating oxidative stress [J]. J Agric Food Chem, 2014, 62(22):5038.
[31]Castellauví A, Cedó L, Pallarès V, et al Grape seed procyanidins improve βcell functionality under lipotoxic conditions due to their lipidlowering effect [J]. J Nutr Biochem, 2013, 24(6):948.
[32]Hutton J C Insulin secretory granule biogenesis and the proinsulinprocessing endopeptidases [J]. Diabetologia, 1994, 37(2):S48.
[33]CastellAuví A, Cedó L, Movassat J, et al Procyanidins modulate microRNA expression in pancreatic islets [J]. J Nutr Biochem, 2013, 61(2):355.
[34]Zunino S Type 2 diabetes and glycemic response to grapes or grape products [J]. J Nutr, 2009, 139(9):1794S.
[35]Mantena S K, Baliga M S, Katiyar S K Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells [J]. Carcinogenesis, 2006, 27(8):1682.
[36]Ding Y, Zhang Z, Dai X, et al Grape seed proanthocyanidins ameliorate pancreatic betacell dysfunction and death in lowdose streptozotocinand highcarbohydrate/highfat dietinduced diabetic rats partially by regulating endoplasmic reticulum stress [J]. Nutr Metab, 2013, 10(1):51.
[37]Yin W, Li B, Li X, et al Antiinflammatory effects of grape seed procyanidin B2 on a diabetic pancreas [J]. Food Funct, 2015, 6(9):3065.
[38]Ley R E, Peterson D A, Gordon A J I Ecological and evolutionary forces shaping microbial diversity in the human intestine [J]. Cell, 2006, 124(4):837.
[39]宋雪琳,李雅梅,肖俊松,等. 葡萄籽原花青素對(duì)營養(yǎng)肥胖模型大鼠腸道菌群的影響[J]. 食品科學(xué)技術(shù)學(xué)報(bào), 2015, 33(5):39.
[40]傅穎,梅松,劉冬英,等. 原花青素經(jīng)腸道微生態(tài)途徑對(duì)脂質(zhì)代謝的調(diào)節(jié)[J]. 中國生物制品學(xué)雜志, 2013, 26(2):225.
[41]Parkar S G, Trower T M, Stevenson D E Fecal microbial metabolism of polyphenols and its effects on human gut microbiota [J]. Anaerobe, 2013, 23:12.
[42]Lee H C, Jenner A M, Low C S, et al Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota [J]. Res Microbiol, 2006, 157(9):876.
[43]Parkar S G, Stevenson D E, Skinner M A The potential influence of fruit polyphenols on colonic microflora and human gut health [J]. Int J Food Microbiol, 2008, 124(3):295.
[44]龔凌霄,曹文燕,王靜,等. 全谷物調(diào)節(jié)代謝性疾病機(jī)制研究的新視角——腸道微生物[J]. 食品工業(yè)科技, 2017, 38(2):364.
[45]Donath M Y, Bnischnetzler M, Ellingsgaard H, et al Islet inflammation impairs the pancreatic betacell in type 2 diabetes [J]. Physiology, 2009, 24(6):325.endprint
[46]Amar J, Serino M, Lange C, et al Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept [J]. Diabetologia, 2011, 54(12):3055.
[47]肖俊松,王瑩,宋雪琳,等. 原花青素對(duì)營養(yǎng)肥胖模型大鼠氧化應(yīng)激的影響[J]. 食品科學(xué), 2014, 35(3):183.
[48]Gonzálezabuín N, Martínezmicaelo N, Blay M, et al Grape seedderived procyanidins decrease dipeptidylpeptidase 4 activity and expression [J]. J Agric Food Chem, 2012, 60(36):9055.
[49]Strat K M, Smithson A T, Tessem J S, et al Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders [J]. J Nutr Biochem, 2016, 35:1.
[50]鄭玲,劉秋爽,金晶,等. 糖尿病并發(fā)癥治療靶點(diǎn)的研究進(jìn)展[J]. 海峽藥學(xué), 2014, 26(1):13.
[51]Quesada H, Bas J M D, Pajuelo D, et al Grape seed proanthocyanidins correct dyslipidemia associated with a highfat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver [J]. Int J Obes, 2009, 33(9):1007.
[52]Serra A Procyanidins target mesenteric adipose tissue in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat [J].Food Chem, 2013, 141(1):160.
[53]Lee Y A, Cho E J, Yokozawa T Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes [J]. J Agric Food Chem, 2008, 56(17):7781.
[54]Shimada T, Tokuhara D, Tsubata M, et al Flavangenol (pine bark extract) and its major component procyanidin B1 enhance fatty acid oxidation in fatloaded models [J]. Eur J Pharmacol, 2012, 677(677):147.
[55]Baselgaescudero L, Bladé C, Ribaslatre A, et al Grape seed proanthocyanidins repress the hepatic lipid regulators miR33 and miR122 in rats [J]. Mol Nutr Food Res, 2012, 56(11):1636.
[56]杜春陽,姚芳,任韞卓,等. 葡萄籽原花青素對(duì)db/db小鼠腎組織脂質(zhì)沉積的影響[J]. 中國細(xì)胞生物學(xué)學(xué)報(bào), 2017, 39(3):288.
[57]Zhang J, Huang Y Z, Shao H Y, et al Grape seed procyanidin B2 inhibits adipogenesis of 3T3L1 cells by targeting peroxisome proliferatoractivated receptorγ with miR4835p involved mechanism [J]. Biomed Pharmacother, 2017, 86:292.
[58]Caimari A, Bas J M D, Crescenti A, et al Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters [J]. Int J Obes, 2013, 37(4):576.
[59]Pinent M, Bladé M C, Salvadó M J, et al Grapeseed derived procyanidins interfere with adipogenesis of 3T3L1 cells at the onset of differentiation [J]. Int J Obes, 2005, 29(8):934.
[60]Caimari A, Crescenti A, Puiggròs F, et al The intake of a highfat diet and grape seed procyanidins induces gene expression changes in peripheral blood mononuclear cells of hamsters: capturing alterations in lipid and cholesterol metabolisms [J]. Genes Nutr, 2015, 10(1):438.endprint
[61]Kolb H, MandrupPoulsen T An immune origin of type 2 diabetes[J]. Diabetologia, 2005, 48(6):1038.
[62]Houstis N, Rosen E D, Lander E S Reactive oxygen species have a causal role in multiple forms of insulin resistance [J]. Nature, 2006, 440(7086):944.
[63]Pajuelo D, Fernándeziglesias A, Díaz S, et al Improvement of mitochondrial function in muscle of genetically obese rats after chronic supplementation with proanthocyanidins [J]. J Agric Food Chem, 2011, 59(15):8491.
[64]Castrillejo V M, Romero M M, Esteve M, et al Antioxidant effects of a grapeseed procyanidin extract and oleoylestrone in obese Zucker rats [J]. Nutrition, 2011, 27(11/12):1172.
[65]Yokozawa T, Kim H J, Cho E J Gravinol ameliorates highfructoseinduced metabolic syndrome through regulation of lipid metabolism and proinflammatory state in rats [J]. J Agric Food Chem, 2008, 56(13):5026.
[66]Terra X, Montagut G, Bustos M, et al Grapeseed procyanidins prevent lowgrade inflammation by modulating cytokine expression in rats fed a highfat diet [J]. J Nutr Biochem, 2009, 20(3):210.
[67]Kanamoto Y, Yamashita Y, Nanba F, et al A black soybean seed coat extract prevents obesity and glucose intolerance by upregulating uncoupling proteins and downregulating inflammatory cytokines in highfat dietfed mice [J]. J Agric Food Chem, 2011, 59(16):8985.
[68]Chacón M R, CeperueloMallafré V, MaymóMasip E, et al Grapeseed procyanidins modulate inflammation on human differentiated adipocytes in vitro [J]. Cytokine, 2009, 47(2):137.
[69]Terra X, Pallarés V, Ardèvol A, et al Modulatory effect of grapeseed procyanidins on local and systemic inflammation in dietinduced obesity rats [J]. J Nutr Biochem, 2011, 22(4):380.
[70]Li R, Liang T, Xu L, et al Protective effect of cinnamon polyphenols against STZdiabetic mice fed highsugar, highfat diet and its underlying mechanism [J]. Food Chem Toxicol, 2013, 51(1):419.
[71]趙艷威,孫靜,李玲,等. 黑豆皮花青素對(duì)2型糖尿病大鼠氧化應(yīng)激信號(hào)傳導(dǎo)通路DAGPKC的影響[J]. 中藥藥理與臨床, 2012(6):27
[責(zé)任編輯張寧寧]endprint