• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M odeling Photovoltaic Perform ances of BTBPD-PC61BM System via Density Functional Theory Calculations

    2017-07-05 13:06:26CiinZhoZhihuTngXiohuGuoHonggungGeJinqiMWenlingWng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期
    關(guān)鍵詞:源泉副總經(jīng)理戰(zhàn)略規(guī)劃

    Ci-in ZhoZhi-hu TngXio-hu GuoHong-gung GeJin-qiMWen-ling Wng

    a.Shaanxi Key Laboratory of Catalysis,School of Chem ical and Environmental Science,Shaanxi University of Technology,Hanzhong 723001,China

    b.Key Laboratory forMacromolecular Science of ShaanxiProvince,School ofChem istry and Chem ical Engineering,ShaanxiNormal University,Xi’an 710062,China

    M odeling Photovoltaic Perform ances of BTBPD-PC61BM System via Density Functional Theory Calculations

    Cai-bin Zhaoa?,Zhi-hua Tanga,Xiao-hua Guoa,Hong-guang Gea?,Jian-qiMaa,Wen-liang Wangb

    a.Shaanxi Key Laboratory of Catalysis,School of Chem ical and Environmental Science,Shaanxi University of Technology,Hanzhong 723001,China

    b.Key Laboratory forMacromolecular Science of ShaanxiProvince,School ofChem istry and Chem ical Engineering,ShaanxiNormal University,Xi’an 710062,China

    Designing and fabricating high-performance photovoltaic devices have rem ained a m ajor challenge in organic solar cell technologies.In this work,the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coup led w ith the M arcus charge transfer m odel in order to seek novel photovoltaic system s.M oreover,the hole-transfer properties of BTBPD thin-fi lm were also studied by an amorphouscellw ith 100BTBPDmolecules.Results revealed that the BTBPDPC61BM system possessed a m idd le-sized open-circuit voltage of 0.70 V,large short-circuit current density of 16.874 m A/cm2,large fi ll factor of 0.846,and high power conversion efficiency of 10%.W ith the Marcusmodel,the charge-dissociation rate constant was predicted to be as fast as 3.079×1013s?1in the BTBPD-PC61BM interface,which was as 3?5 orders ofm agnitude large as the decay(radiative and non-radiative)rate constant(108?1010s?1), indicating very high charge-dissociation effi ciency(~100%)in the BTBPD-PC61BM system. Furthermore,by themolecular dynam ics simulation,the holemobility for BTBPD thin-fi lm was predicted to be as high as 3.970×10?3cm2V?1s?1,which can be attributed to its tight packing in solid state.

    BTBPD,PC61BM,Photovoltaic performances,Density functional theory

    I.INTRODUCTION

    In the past 100 years,w ith the overconsum ption for fossil energies(coal,petroleum,and natural gas),environmentalpollution problem shave received w idespread attention,and actively exp loring for the clean and renewable energy has being become a hot and focus issue [1,2].Asone of themost prom ising long-term solutions for the clean and renewable energy,free-metal photovoltaic technology has attracted intense interests in recent years due to its num erous advantages com pared to the commercial inorganic photovoltaic technology,such as low manufacturing cost,flexibility,ease of solvent processing,and large-area capability[3?6].Previous studies indicated that the high-performance donorm aterials should meet the follow ing requirements:(i)narrow optical band gap,(ii)low-lying highest occupied m olecular orbital(HOMO)level,and(iii)high hole carrier m obility[7?9].Unfortunately,electron-donating materials that simultaneously satisfy those three demands are still scarce up to date.

    Recently,Caiet al.synthesized a novel small molecule material(BTBPD)w ith the donor-acceptordonor(D-A-D)character,and found that the thin-fi lm field effect transistor fabricated w ith BTBPD had high hole mobility under natural ambient conditions[10]. M ore interestingly,BTBPD also exhibited the prom inent capture to solar radiation,and its strongest absorption peak was found to red-shift to 696 nm in solid state.In a word,all properties suggest that BTBPD should be an excellent electron donor candidate.In this work,taking BTBPD as donor and[6,6]-phenyl-C61-butyric acid methyl ester(PC61BM)as acceptor, we carried out a systematic theoretical study on the photovoltaic properties for BTBPD-PC61BM system by means of quantum chem istry and molecular dynam ics calculationscoup led w ith the incoherent chargehopping model in order to seek novel high-perform ance photovoltaic system s.In this work,our m ain ob jectives are to theoretically exp lore the app licability of BTBPD as an electron-donating material and estimate the photovoltaic performancesof BTBPD-PC61BM system.Theoretical calculations clearly show that BTBPD,as expected,is an excellent electron donormaterial,and the power conversion effi ciency(PCE)of BTBPD-PC61BM system theoretically reaches up to 10%.

    II.COMPUTATIONAL METHODS

    To sim p lify calculations,the long-alkyl chain(2-ethylhexyl)in BTBPD was rep laced w ith the CH3,because it has been confi rmed that the substituted alkyl in organic com pounds has hardly any effect on their electronic structure and optical properties,and m erely prom otes solubility[11?13].A ll stable species were fully optim ized w ithout any symmetry constraints by means of density functional theory(DFT)calculations w ith the B3LYP hybrid functional[14]and the6-31G(d) basis set,w ith subsequent frequency calculations to confi rm that they were true m inima of potential energy surface.Based on the optim ized geom etries,the UV-Vis spectrum for BTBPD was simu lated w ith the time-dependent density functional theory(TD-DFT) [15,16]and the B3LYP/6-31G(d)scheme.In order to determ ine them ost reasonable geometry of BTBPDPC61BM com p lex,the detailed potential-surface scan was carried out between PC61BM and BTBPD w ith the CAM-B3LYP-D3(BJ)/6-31G(d)method[17,18]. As seen in FIG.S1(supp lementary m aterials),the BTBPD-PC61BM com p lex was found to be the m ost stable when the centroids distance of PC61BM and BTBPD is at 8.0?A,which is in good agreement w ith the recent studies[19,20].Then,in subsequent calculations,the centroids distance of PC61BM and BTBPD was invariably fixed at 8.0?A.In addition,in thiswork the influence ofmolecular orientation was also considered.As is shown in FIG.S2(supp lem entary m aterials),themolecular orientation affects a little on the BTBPD-PC61BM com plex.Based on optim ized structures for PC61BM,BTBPD,and BTBPD-PC61BM com p lex,total density of states(TDOS)and partial density of states(PDOS)were visualized w ith the Multiw fn 3.3.6 software developed by Luet al.[21,22].A ll quantum chem istry calculations were carried out w ith the Gaussian 09 software[23].

    III.RESULTS AND DISCUSSION

    A.Photovoltaic perform ances of BTBPD-PC61BM system

    1.Electronic properties and open circuit-voltage

    FIG.1 M olecular structures of BTBPD and PC61BM.

    BTBPD and PC61BM molecular structures are depicted in FIG.1.The geom etric optim ization revealed that BTBPD m olecule has a near p lanar conform ation(FIG.S3 in supplementary materials),and the dihedral angle(α)between its adjacent units is close to 20?,which indicates its goodπ-conjugated character.FIG.2 shows the TDOS and PDOS of PC61BM, BTBPD,and BTBPD-PC61BM com plex.W ith the DOS,it is very easy to directly observe the contribution from each substituent to the frontier molecular orbital (FMO).As seen,in PC61BM molecule all density of HOMOs and LUMOs was found to concentrate on the C60sphere in theenergy range from?10.0 eV to 2.0 eV, and the contribution from the substituent(methyl-4-phenylbutanoate)is very small,m eaning the substituent only enhances the C60solubility,and hasa little influence on its electronic properties,which agreeswell w ith the previous experimental studies[24,25].Moreover,it can be noticed that CH3contributes very small to the HOMO and LUMO in BTBPD m olecule,verifying it is rational to rep lace 2-ethylhexylw ith CH3in the current work.Interestingly,the benzo[b]thiophene (BT)and bipyrrolylidene-2,2′(1H,1′H)-dione(BPD)in BTBPD molecule contribute very much to both the HOMO and the LUMO,denoting the HOMO and LUMO of BTBPD delocalize over them olecular skeleton,rather than centralize at a certain molecular fragment,which benefi ts the rapid charge-transfer between two molecules.As for BTBPD-PC61BM com p lex,the HOMO and the LUMO exhibit an obvious separation characteristic,and the HOMO com p letely locates on the BTBPD,while the LUMO mainly centuries on the PC61BM,which suggests the easy formation of BTBPD·+-PC61BM·?charge-separated state.According to the previous study,the open circuit-voltage for organic solar cells(OSCs),Voc,can be estimated w ith [26]:

    FIG.2 Total density of states and partial density of states of(a)PC61BM,(b)BTBPD,and(c)PC61BM-BTBPD com p lex.

    FIG.3 Predicted PCE for BTBPD-PC61BM cell w ith the Scharber diagram.

    whereEHOMO(D)andELUMO(A)are the HOMO level of donor and the LUMO levelof PC61BM,eis the electron charge,and the value of 0.3 is an em pirical factor.Then,based on the experiment HOMO(?5.0 eV [10])for BTBPD and LUMO(?4.0 eV[27,28])for PC61BM,theVocwasestim ated to be as large as0.70 V for BTBPD-PC61BM system.M ore interestingly,the PCE of BTBPD-PC61BM system was predicted to be over 10%(FIG.3)by means of the Scharber diagram, indicating the BTBPD-PC61BM system is a prom ising OSC candidate.

    2.Charge binding energy and optical absorption properties

    As is well-known,the charge binding energy(Eb) is one of the most parameters in photovoltaic devices, which is directly related to the charge separation.UsuallyEbis taken as the difference between the transport gap(Et)and the optical band gap(Eopt).The former is the diff erence between the adiabatic ionization potential(EAIP)and electron affi nity(EAEA)of donor in the solid state,while the latter is taken as the fi rst-singlet em ission energy(Em).Then,theEbcan be calculated as the follow ing expression[29]:

    As seen in Eq.(2),to calculateEb,theEAIPandEAEAofdonor in solid state fi rstly should be calculated.Here,theEAIP/EAEAof solid BTBPD was estim ated via the scheme reported by Schwennet al.[30],which hasbeen verified to be an excellent selection that estimates the electronic properties of organic m aterials in the solid state.Table I shows calculatedEAIPandEAEAvalues for BTBPD in gas phase and solid statew ith two different DFT methods.It can be noted thatEbestimated by two m ethods is as large as 1.596 and 1.733 eV in gas phase,which ismuch larger com pared w ith those measured values of 0.2?1.0 eV in many organic materials[31],which can be attributed to the solid stacking eff ect.Com paring the results in gas phase to the ones in solid state,it can be noticed that in gas phaseEAIPis larger,whileEAEAis smaller,which is sim ilar to the measured and theoretical results in acenes[32].According to the calculatedEAIP,EAEA,andEmfor the solid BTBPD,theEbwas estim ated to be about 0.594 eV. The precious study showed that the exciton is unstablewhenEb

    TABLE I CalculatedEAIP,EAEA,andEbvalues in the gas and solid state for BTBPD w ith two diff erent DFT methods.

    As is known to all,the good harvest for solar radiation isessential for effi cient dye sensitizers,which determ ines the short-circuit current densityJscof DSC de-vices to some extent.To exp lore reliab le DFT m ethods estim ating op tical absorption properties for BTBPD,a set of popular DFT methods were tested.As seen in Table II,com pared w ith the experimental value,the B3LYP hybrid functional can estim ate accurately the excited energy of BTBPD,and the derivation between the theoretical and experimental values is only about 3.0 nm(about 0.008 eV).Moreover,it can be noticed that the strongest absorp tion in UV-Vis spectrum for the BTBPD molecule can be assigned to theπ-π?type, and dom inated com pletely by the electron transition of HOMO→LUMO(~100%).In addition,as observed in FIG.4,the TD-B3LYP/6-31G(d)method can reproduce well the UV-Vis spectrum of BTBPD m olecule in solid state,which confi rm s again themethod reliability used in this work.Since the HOMO and LUMO for BTBPD distribute the whole m olecule skeleton(FIG. S4 in supplementary materials),the lowest-excited singlet is a typically local excited state,and no obvious charge is transferred in light absorption process.

    TABLE II Calculated excited energies(λmax),molar absorption coeffi cients(ε),oscillator strengths(f),and main configuration for BTBPD w ith diff erent DFT m ethods coup led w ith the 6-31G(d,p)basis set.

    FIG.4 Simu lated and experim ental absorp tion spectra for BTBPD in solid state.

    3.Short-circuit current densityJsc,fi ll factorFF,and PCEη

    Short-circuit current densityJscis another key parameter that determ ines the PCE ofOSC devices,which can be expressed as[34,35]:

    FIG.5 PredictedJscandηλfor BTBPD-PC61BM cell.

    whereS(λ)is incident photon-to-current conversion efficiency at a fixed wavelength,eis the unit charge, andηEQE(λ)is the external quantum effi ciency.TheηEQE(λ)term can be described as the product ofηλ(light-harvesting effi ciency),ηCT(charge transfer efficiency),andηcoll(charge collection effi ciency)[36],

    whereηλcan be calculated asηλ=1?10?f,fis the oscillator strength.Then,to estimate themaximumJsc, we sent theηCT=1.0 and theηcoll=1.0.Our calculation showed thatfisabout 1.3963 at the lowest-excited singlet state for BTBPD,then yielding theηλ=0.752. FIG.5 shows that the simulatedηλandJscw ith the above-mentioned parameters.As seen,theJscwas estimated to be ashigh as16.874m A/cm2for the BTBPDPC61BM system,which can be attributed to its strong spectral response.In addition,it can be noticed that theηλis as large as 81.7%in visible region.Relatively, BTBPD has a weak cap ture for ultraviolet radiation (ηλ≈57%).For theFFcalculation,an approxim ate scheme can be expressed as[37,38],

    whereνocis the dimensionless voltage,which can be estim ated w ith theVoc[39,40],

    wherekB,Tandqare Boltzmann constant,temperature(here,we setT=300 K),and elementary charge respectively,nis an ideality factor relating to an ideal (n=1)or non-ideal(n>1)diode[41],organic solar cells typically have ideality factors in the range of 1.5?2.0 due to their inherent disorder[42].According to the calculatedVoc(0.70 V)for the BTBPD-PC61BM system,theνocwas estim ated to be 27.08 atn=1.0 and 13.54 atn=2,then,theFFfor P61BM-BTBPD was predicted to be as high as 0.748(n=2.0)and 0.846 (n=1.0),in excellent agreem ent w ith m easured values in most OSC devices.According to the previous study, the PCE(η)of OSC devices can be estimated with the follow ing equation[43,44]

    wherePmaxandPin(=100mW/cm2)are themaximum and incident power respectively.W ith the calculatedVoc,Jsc,andFF,the PCE of BTBPD-PC61BM system was predicted to be 8.83%(n=2.0)and 9.99%(n=1.0), which is slightly smaller than the value(>10%)estimated by the Scharber diagram.

    B.Charge dissociation and recom bination rates

    Generally,thecharge transfer in organic photoelectric m aterials obeys the incoherent charge-hopping m echanism,and the transfer rate constant between donor and acceptor,kDA,can be evaluated via the Marcusmodel [45,46],

    whereλis the total reorganization energy,VDAis the eff ective charge transfer integralbetween donor and acceptor,?Gis theGibbs free energy changebetween the initial and final states,kBis Boltzm ann constant,his Planck constant,andTis the tem perature(here,we setT=300 K).

    1.Gibbs free energy change in charge dissociation and recombination

    As seen in Eq.(8),the Gibbs free energy change,?G, has a remarkable influence on thekDA.Generally,the?Gcan be estimated as the energy diff erence in the final and initial states,accounting for the Coulombic attraction between the two charges in charge-separated state.Thus,for the charge-dissociation,the?Gisw ritten as[47],

    whereqDandqAare the atom ic charges on donor and acceptor in their relevant states w ith a separation distance,rDA.Theε0is the vacuum dielectric constant (8.854×10?12F/m),and theεsis the static dielectric constant ofm edium.Sim ilarly,the Gibbs free energy change(?Grec)in charge recombination can also be estimated w ith the expression sim ilar to Eq.(9)and Eq.(10).Here,theεsis estim ated w ith the Clausius-M ossotti equation[48],

    whereVis the Connolly molecular volume,is the isotropic com ponent of molecular polarizability,,and theαiiis the diagonalmatrix elements of fi rst-order polarizability tensor.Calculations show that theεsis3.653 for BTBPD,which is in accord w ith themeasured values(ranging from 2.0 to 5.0[49, 50])in most organic m aterials.As for PC61BM,the experimentalεsvalue of 3.9[51]was used in thiswork. The totalεsof BTBPD-PC61BM system was taken as an average of their respective contributions.Our calculation showed that the?Gdisis about?0.316 eV, while the?Grecis smaller(?0.640 eV).As seen,the?Gdisand?Grecare consistently calculated to be negative,denoting that the charge-dissociation and chargerecombination arealways favorable in thermodynam ics. In addition,thesmaller?Grecindicated a larger driving force in charge-recombination process.

    2.Reorganization energies in charge dissociation and recombination

    Generally,in organic solids the total reorganization energy(λ)of electron transfer can be divided into two parts,namely the internal reorganization energy(λint)and theexternalone(λext).Theλintterm can be calculated w ith the adiabatic potentialenergy surface(PES) m ethod[52,53].In the case of charge dissociation,theλintis actually taken as an average of the follow ingλ1andλ2[54],

    where(Q+)and(Q?)are the energies of donors in the lowest excited-statew ith the equilibrium geom etries of cationic and excited state respectively,(Q?) and(Q+)are the energies of donors in the cationic states w ith the equilibrium geometries of excited and cationic states respectively,(Q?)and(Q0)are the energies of acceptors in the neutral statesw ith the equilibrium geometries of anion and neutral states,respectively,and(Q0)/(Q?)are the energies of acceptors in the anionic states w ith the equilibrium geometries of neutral and anionic states.As seen in Table III,our calculation showed that theλint(λdis) is 0.191 eV in charge-dissociation process for BTBPDPC61BM,which rem arkably increases to 0.348 eV in the case of charge recombination.Com pared w ith theλint,theλextwas diffi cult to be accurately calculated. Here,we used the classical dielectric continuum model initially developed by M arcus for the electron-transfer reaction between spherical ions in solution to estim ate theλext.According to thismodel,theλextterm isgiven by[55],

    whereεopis the optical dielectric constant ofmedium,RD(=6.41?A for BTBPD)andRA(=6.50?A for PC61BM)are the eff ective radii of donor and acceptor estimated as the radius of sphere having the sam e surface as the surface accessible area ofmolecule.TheqDandqAdenote the atom ic charges on the ions.Theεopwhich can be estim ated w ith the Lorentz-Lorenz equation[56,57],

    wherenis the refractive index,Vmis themolar volume (Vm=M/ρ,Mis the molar mass,andρis the density ofm aterial),Ris the molar refraction.Here,theρwas estimated w ith them olecular dynam icsm ethod, and the simulated detailwas shown in the supp lementary materials.Our results showed theεopandρfor BTBPD were equal to 2.960 and 1.312 g/cm3respectively.As for PC61BM,the experimental refractive index(n=1.866)is used to estimate to theεop,which is equal to 3.482 according to our estimation.W ith the above-m entioned param eters,theλextcan be conveniently obtained.At the case of BTBPD-PC61BM,theλextis equal to 0.103 eV.Summ ary,theλis 0.294 eV in charge-dissociation process for BTBPD-PC61BM system,which remarkably increases to 0.451 eV for the charge-recombination process.

    姚偉英副總經(jīng)理介紹了廣東天禾的改革發(fā)展情況及未來戰(zhàn)略規(guī)劃。他強(qiáng)調(diào),廣東天禾的穩(wěn)步發(fā)展離不開合理的股權(quán)架構(gòu)、組織架構(gòu)和內(nèi)控體系,最主要的是擁有國(guó)內(nèi)最年輕的領(lǐng)導(dǎo)團(tuán)隊(duì),在近1600名員工中,管理團(tuán)隊(duì)平均年齡在35歲左右,這是廣東天禾不斷創(chuàng)新的源泉。

    TABLE III Calculatedλdis,λrec,andλextvalues in the gas and solid state for BTBPD w ith two diff erent DFT m ethods.

    3.Charge transfer integral in charge dissociation and recombination

    As seen in Eq.(8),theVDAis an im portant param eter that determ ines thekDA,in this work,the directcoup ling(DC)method coup led w ith the PW 91PW 91/6-31G(d)schemewasused to estimateVDA[58,59],which have been illustrated to present themost accurateVDAvalue at the DFT level[60,61].In term s of the DC scheme,theVDAvalue of charge transfer can be calculated by the follow ing exp ression[62],

    whereTD(i)A(j)is the charge transfer integral of theith molecular orbital of donor and thejth molecular orbital of acceptor,SD(i)A(j)is the spatial overlap integral of the above two m olecular orbitals,andeD(i)/eA(j)is the site energy.TD(i)A(j),SD(i)A(j),andeD(i)/eA(j)can be obtained from theandAmong them,ψD(i)is the HOMO(for charge-recombination)or LUMO(for charge-dissociation)of donor,ψA(j)is the LUMO of acceptor,andFKSis the Kohn-Sham matrix of donor-acceptor system.TheFKScan be obtained from

    whereSis the intermolecular overlap matrix,Cis the m olecular orbital coeffi cient m atrix from the isolated monom er,andεis the orbital energy from onestep diagonalization w ithout iteration.Generally,theVDAin the charge-dissociation process is taken as the coup ling between the LUMO of donor and acceptor.However,since the LUMO+1 and LUMO+2 in PC61BM are degenerated energetically w ith its LUMO [63],theVDAbetween the LUMO of BTBPD and the LUMO+1/LUMO+2 of PC61BM was also computed.Finally,the averageVDAvalue((V1V2V3)1/3)was viewed as the totalVDAand then applied to estimate the charge-dissociation rate.As for the chargerecombination,the sam e treatm ent was done.Calculations show that theVDAin the charge dissociation for the BTBPD-PC61BM is?31.82 meV,which is equal to 20.37 meV for the charge-recombination process. Based on the calculatedλandVDAvalues,the chargedissociation(kdis)and charge-recombination(krec)rate constants were estimated to be as high as 3.079×1013and 4.808×1012s?1respectively in BTBPD-PC61BM com p lex.Recent studies illustrated that the decay rate constant(kd)ofexcited organicmolecules typically ranges 1.0×108s?1to 1.0×1010s?1[64].Our results showed that thekdisis larger than thekd3?5 orders ofm agnitude,which indicates high charge-dissociation effi ciency(~100%)in the BTBPD-PC61BM system. In addition,although thekrecis relatively large,the charge-recombination effi ciency is still very low.According to previous studies,the electron transferred onto PC61BM can be rapidly converted to the trip let state from the singlet state[63,64],which remarkably hinders from the recombination of free carriers.

    C.Hole transfer rate and hole m obility in BTBPD thin-fi lm

    As is known to all,the charge transport ability of donor remarkably aff ects the solar cell’s perform ance. Thus,it is essential to discuss charge transport properties of BTBPD thin-fi lm.Generally,the charge transport ability of organicmaterials can be chartered with its carriermobility,μ,which can be calculated bymeans of the Einstein-Sm oluchowski equation[67,68],

    whereDis diff usion coeffi cient,eis elem entary charge,kBis Boltzmann constant,andTis absolute tem perature,respectively.TheDcan be estimated by means of the follow ing appropriate relation[69,70]:

    wherenis the spatial dim ensionality,which is 3 in organic solids,diis the centroids distance of theith hopping dimer,kiis the charge transfer rate constant, andPiis the hopping probability,In this work,the chargem obility of BTBPD thin-fi lm wasevaluated bymeansof an amorphous cellw ith 100 BTBPD molecules built by means of the molecular dynam ics simulation.Table IV lists the calculated theλintterm w ith two different DFT methods.As seen,the CAMB3LYP/6-31G(d,p)schemepresentsquite largeλintvalues due to the long-range correlation eff ect.In addition,it can be noticed that theλintin solid state is obviously smaller than that in gas phase,denotingthat the solid stack to som e extent,lim its the structural relaxation of BTBPD molecule in charge transfer process.Since the donor materials in OSC devices usually keep in solid state under operating conditions, theλintestim ated in the solid state ism ore reasonable. To exp lore possible charge transfer dim ers,21 m olecular pairs w ith the relatively largeVDAvalues were abstracted from the optim ized amorphous cell,and their geometries,centroids distances,as well as estimatedVDAvalueswere shown in Table S1(supp lementarymaterials).Based on theλintthe solid state andVDAvalues,the hole carrier mobility,μh,was estimated to be ashigh as3.970×10?3cm2V?1s?1in the solid BTBPD, which is in excellent agreementw ith itsmeasured value (3.0×10?3?8.4×10?3cm2V?1s?1[10].According to the previous investigation,for high-performance OSC devices,theμhshould be not less than 10?3cm2V?1s?1[26].Our estimation showed as a potential donormaterialof OSC devices,the BTBPD can rapid ly transports holes.

    TABLE IV Calcu latedλintfor BTBPD in solid and gas states w ith two diff erent DFT m ethods.

    IV.CONCLUSION

    In summary,BTBPD-PC61BM as a prom ising OSC system was theoretically studied bymeansof quantumchem ical and molecular dynam ics calculations.Results showed that BTBPD-PC61BM system possesses m idd le-sized open-circuit voltage(0.7 V),large shortcircuit current density(16.874m A/cm2),high fi ll factor (0.846),and high PCE(>10%).In addition,BTBPD was also revealed to possess the strong optical response, and suitable charge-binding energy(0.457 eV).Using the Marcus model,thekdiswas estimated to be as large as 3.079×1013s?1in the BTBPD-PC61BM blend,which indicated very high charge-dissociation effi ciency.Moreover,by means of an amorphous cell modelw ith 100 BTBPD molecules,the hole carriermobility of BTBPD thin fi lm was predicted to be as high as 3.970×10?3cm2V?1s?1.In brief,our calculation shows that BTBPD is a very potential donormaterial, and the BTBPD-PC61BM system isa high-performance OSC candidate.However,these results need to be verified by experim ents.

    Supp lem en tary m aterial:Detailed potential-surface scan,optim ized BTBPD geom etry,calculated the lowest-excited energy for BTBPD,HOMO and LUMOof BTBPD,and detailed description for molecular dynam ics simulation are shown.

    V.ACKNOW LEDGEM ENTS

    This work was supported by the National Natural Science Foundation of China(No.21373132, No.21502109,No.21603133),the Education Department of Shaanxi Provincial Government Research Projects(No.16JK 1142,No.16JK 1134),and the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents(No.SLGKYQD2-13, No.SLGKYQD2-10,No.SLGQD14-10).

    [1]A.M.Bagher,Sust.Energy.2,85(2014).

    [2]O.Ellabbana,H.Abu-Rub,and F.B laab jerg,Renew. Sust.Energy.Rev.39,748(2014).

    [3]A.Hagfeld t,G.Boschloo,L.Sun,L.K loo,and H.Pettersson,Chem.Rev.110,6595(2010).

    [4]M.T.Spitler and B.A.Parkinson,Acc.Chem.Res. 42,2017(2009).

    [5]S.Lew is,Science 315,798(2007).

    [6]M.G r¨atzel,Acc.Chem.Res.42,1788(2009).

    [7]J.Peet,M.L.Senatore,A.J.Heeger,and G.C.Bazan, Adv.Mater.21,1521(2009).

    [8]M.C.Scharber,D.M hlbacher,M.Koppe,P.Denk,C. Waldauf,A.J.Heeger,and C.J.Brabec,Adv.Mater. 18,789(2006).

    [9]P.Sista,H.Nguyen,J.M urphy,J.Hao,D.K.Dei,K. Palaniappan,J.Servello,R.S.Kularatne,B.E.Gnade, B.Xue,P.C.Dastoor,M.C.Biewer,and M.C.Stefan, Macromolecules 43,7875(2010).

    [10]Z.Cai,Y.Guo,S.Yang,Q.Peng,H.Luo,Z.Liu,G. Zhang,Y.Liu,and D.Zhang,Chem.Mater.25,471 (2013).

    [11]Y.Y i,V.Coropceanu,and J.L.Br′edas,J.M ater. Chem.21,1479(2011).

    [12]T.Liu,J.S.Gao,B.H.X ia,X.Zhou,and H.X.Zhang, Polym er 48,502(2007).

    [13]S.Goeb,A.De Nicola,and R.Ziessel,J.O rg.Chem. 70,1518(2005).

    [14]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [15]E.Runge and E.K.U.G ross,Phys.Rev.Lett.52,997 (1984).

    [16]R.Bauernschm itt and R.Ahlrichs,Chem.Phys.Lett. 256,454(1996).

    [17]T.Yanai,D.P.Tew,and N.C.Handy,Chem.Phys. Lett.393,51(2004).

    [18]K.Aidas,A.M?gelh?j,E.J.K.Nilsson,M.S.Johnson, K.V.M ikkelsen,O.Christiansen,P.S¨oderhjelm,and J.Kongsted,J.Chem.Phys.128,194503(2008).

    [19]T.Liu and A.Troisi,J.Phys.Chem.C 115,2406 (2011).

    [20]C.Zhao,Z.Wang,K.Zhou,H.Ge,Q.Zhang,L.Jin,W. W ang,and S.Y in,Acta Chim.Sinica 74,251(2016).

    [21]T.Lu and F.Chen,J.Com p.Chem.33,580(2012).

    [22]T.Lu and F.Chen,J.M ol.G raph.M odel.38,314 (2012).

    [23]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheesem an,G.Scalm ani, V.Barone,B.M ennucci,G.A.Petersson,H.Nakatsu ji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izm ay lov,J.B loino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajim a,Y.Honda,O.K itao,H.Nakai, T.Vreven,J.J.A.M ontgom ery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Norm and, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tom asi,M.Cossi,N.Rega,J.M.M illam,M. K lene,J.E.Knox,J.B.Cross,V.Bakken,C.Adam o,J. Jaram illo,R.Gom perts,R.E.Stratm ann,O.Yazyev, A.J.Austin,R.Camm i,C.Pom elli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.02, Wallingford,CT,USA:Gaussian Inc.(2009).

    [24]L.Zheng,Q.Zhou,X.Deng,M.Yuan,G.Yu,and Y. Cao,J.Phys.Chem.B 108,11921(2004).

    [25]X.Wang,Y.Guo,Y.Xiao,L.Zhang,G.Yu,and Y. Liu,J.M ater.Chem.19,3258(2009).

    [26]M.C.Scharber,D.M hlbacher,M.Koppe,P.Denk,C. Waldauf,A.J.Heeger,and C.J.Brabec,Adv.Mater. 18,789(2006).

    [27]J.C.Hummelen,B.W.Knight,F.LePeq,F.Wud l,J. Yao,and C.L.W ilkins,J.Org.Chem.60,532(1995).

    [28]Z.Xu,L.M.Chen,M.H.Chen,G.Li,and Y.Yang, App l.Phys.Lett.95,013301(2009).

    [29]P.K.Nayak and N.Periasam y,O rg.Electron.10,1396 (2009).

    [30]P.E.Schwenn,P.L.Burn,and B.J.Powell,O rg.Electron.12,394(2011).

    [31]B.P.Rand,J.Genoe,P.Herem ans,and Poortm ans,J. Prog.Photovolt:Res.App l.15,659(2007).

    [32]J.E.Norton and J.L.Br′edas,J.Am.Chem.Soc.130, 12377(2008).

    [33]Y.Li,T.Pullerits,M.Zhao,and M.Sun,J.Phys. Chem.C 115,21865(2011).

    [34]P.Peum ans,A.Yakim ov,and S.R.Forrest,J.App l. Phys.93,3693(2003).

    [35]N.B′erub′e,V.Gosselin,J.Gaudreau,and M.C?ot′e,J. Phys.Chem.C 117,7964(2013).

    [36]X.Liu,W.Shen,R.He,Y.Luo,and M.Li,J.Phys. Chem.C 118,17266(2014).

    [37]X.Guo,N.Zhou,S.Lou,J.Sm ith,D.T ice,J.Hennek, R.O rtiz,J.T.L.Navarrete,S.Li,J.Strzalka,L.Chen, R.P.H.Chang,A.Facchetti,and T.J.Marks,Nat. Photonics.7,825(2013).

    [38]D.Gupta,S.M ukhopadhyay,and K.Narayan,Sol.Energy M ater.Sol.Cells.94,1309(2010).

    [39]Y.Zhou,C.Fuentes-Hernandez,J.W.Shim,T.M. Khan,and B.K ippelen,Energy Environ.Sci.5,9827 (2012).

    [40]X.Liu,C.Huang,W.Shen,R.He,and M.Li,J.M ol. M odel.22,15(2016).

    [41]M.A.Green,Solid-State Electron.24,788(1981).

    [42]B.K ippelen and J.L.Br′edas,Energy Environ.Sci.2, 251(2009).

    [43]S.A rdo and G.J.Meyer,Chem.Soc.Rev.38,115 (2009).

    [44]G.P.Smestad and M.Gr¨atzel,J.Chem.Educ.75,752 (1998).

    [45]R.A.M arcus,Rev.M od.Phys.65,599(1993).

    [46]R.A.M arcus,Ann.Rev.Phys.Chem.15,155(1964).

    [47]V.Lem aur,M.Steel,D.Beljonne,J.L.B r′edas,and J. Cornil,J.Am.Chem.Soc.127,6077(2005).

    [48]O.F.M ossotti,M em orie M at.Fis.M odena 24,49 (1985).

    [49]D.Y.Zang,F.F.So,and S.R.Forrest,App l.Phys. Lett.59,823(1991).

    [50]G.Brocks,J.van den Brink,and A.F.Morpurgo,Phys. Rev.Lett.93,146405(2004).

    [51]V.D.M ihailetchi,J.K.J.van Duren,P.W.M.B lom, J.C.Humm elen,R.A.J.Janssen,J.M.K roon,M. T.Rispens,W.J.H.Verhees,and M.M.W ienk,Adv. Funct.M ater.13,43(2003).

    [52]M.M alagoliand J.L.B r′edas,Chem.Phys.Lett.327, 13(2000).

    [53]V.Lem aur,D.A.da Silva Filho,V.Coropceanu,M. Lehm ann,Y.Geerts,J.Piris,M.G.Debije,A.M.van de Craats,K.Senthilkumar,L.D.A.Siebbeles,J.M. W arm an,J.L.B r′edas,and J.Cornil,J.Am.Chem. Soc.126,3271(2004).

    [54]M.X.Zhang,S.Chai,and G.J.Zhao,O rg.Electron. 13,215(2012).

    [55]R.A.M arcus,J.Chem.Phys.43,679(1965).

    [56]H.A.Lorentz,Ann.Phys.9,641(1880).

    [57]L.Lorenz,Ann.Phys.11,70(1880).

    [58]S.Yin,Y.Yi,Q.Li,G.Yu,Y.Liu,and Z.Shuai,J. Phys.Chem.A 110,7138(2006).

    [59]A.Troisi and G.Orlandi,J.Phys.Chem.A 110,4065 (2006).

    [60]Y.Song,C.Di,X.Yang,S.Li,W.Xu,Y.Liu,L. Yang,Z.Shuai,D.Zhang,and D.Zhu,J.Am.Chem. Soc.128,15940(2006).

    [61]J.Huang and M.Kertesz,Chem.Phys.Lett.390,110 (2004).

    [62]S.Yin,L.Li,Y.Yang,and J.R.Reimers,J.Phys. Chem.C 116,14826(2012).

    [63]T.Liu and A.Troisi,Adv.M ater.25,1038(2013).

    [64]A.Listorti,B.O’Regan,and J.R.Durrant,Chem. M ater.23,3381(2011).

    [65]J.W.A rbogast,C.S.Foote,and M.Kao,J.Am.Chem. Soc.114,2277(1992).

    [66]P.M.A llemand,C.K.Khemani,A.Koch,F.Wud l,K. Holczer,S.Donovan,G.G rner,and J.D.Thom pson, Science.253,301(1991).

    [67]A.Einstein,Ann.Phys.17,549(1905).

    [68]M.van Sm oluchow ski,Ann.Phys.21,756(1906).

    [69]J.D.Huang,S.H.Wen,W.Q.Deng,and K.L.Han, J.Phys.Chem.B 115,2140(2011).

    [70]Q.Peng,Y.Y i,Z.Shuai,and J.Shao,J.Am.Chem. Soc.129,9333(2007).

    ceived on February 16,2017;Accepted on April 7,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: zhaocb@snut.edu.cn,gehg@snut.edu.cn,Tel.:+86-916-2641660

    猜你喜歡
    源泉副總經(jīng)理戰(zhàn)略規(guī)劃
    我的快樂源泉——書
    一機(jī)多用,滿足聽歌觀影的高音質(zhì)需求 專訪芝杜zidoo副總經(jīng)理毛勇強(qiáng)
    超市也是快樂的源泉
    國(guó)內(nèi)外車企智能網(wǎng)聯(lián)汽車戰(zhàn)略規(guī)劃
    汽車縱橫(2018年8期)2018-08-16 05:35:30
    對(duì)戰(zhàn)略規(guī)劃評(píng)估體系研究的思考
    創(chuàng)新是企業(yè)的未來——訪金日制藥(中國(guó))副總經(jīng)理于秉良
    匠心依舊 精致完美——訪綠城·春江明月項(xiàng)目副總經(jīng)理 徐浩杰
    金色年華(2017年10期)2017-06-21 09:46:49
    論油氣田戰(zhàn)略規(guī)劃與投資風(fēng)險(xiǎn)管理
    “一帶一路”戰(zhàn)略規(guī)劃探究
    品質(zhì)元年再出發(fā)——訪廣西寶能副總經(jīng)理張健
    金色年華(2016年9期)2016-02-28 01:40:53
    在线观看免费高清a一片| 九九爱精品视频在线观看| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 99热国产这里只有精品6| 精品久久国产蜜桃| 亚洲国产精品成人久久小说| 男女那种视频在线观看| 搞女人的毛片| 欧美精品一区二区大全| 久久久久久久久大av| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 人妻 亚洲 视频| 国内精品美女久久久久久| 久久久久精品久久久久真实原创| 日韩成人av中文字幕在线观看| 在线免费观看不下载黄p国产| 国产探花在线观看一区二区| 高清午夜精品一区二区三区| 免费av毛片视频| 亚洲国产精品成人综合色| 午夜激情福利司机影院| 小蜜桃在线观看免费完整版高清| av网站免费在线观看视频| 免费不卡的大黄色大毛片视频在线观看| av卡一久久| 香蕉精品网在线| 日日摸夜夜添夜夜添av毛片| 中文天堂在线官网| 国产男女内射视频| 精品一区二区三区视频在线| 免费少妇av软件| 免费观看av网站的网址| 最近最新中文字幕免费大全7| av卡一久久| 熟妇人妻不卡中文字幕| 黄色配什么色好看| 日韩中字成人| 欧美zozozo另类| 一级av片app| av在线亚洲专区| 亚洲av国产av综合av卡| av一本久久久久| 亚洲欧美中文字幕日韩二区| 国产探花在线观看一区二区| 国产爱豆传媒在线观看| 亚洲欧洲日产国产| 51国产日韩欧美| 国产日韩欧美在线精品| av在线蜜桃| 亚洲精品色激情综合| 性色avwww在线观看| 久久精品国产亚洲av天美| 色综合色国产| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 99久久九九国产精品国产免费| 亚洲精品成人久久久久久| 成人漫画全彩无遮挡| 简卡轻食公司| 美女被艹到高潮喷水动态| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频 | 亚洲性久久影院| 神马国产精品三级电影在线观看| 欧美另类一区| 天天躁日日操中文字幕| 久久精品国产a三级三级三级| 一个人看的www免费观看视频| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 国产91av在线免费观看| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 久久6这里有精品| 狠狠精品人妻久久久久久综合| 免费大片黄手机在线观看| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 成人鲁丝片一二三区免费| 人妻一区二区av| 亚洲精品乱码久久久久久按摩| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 熟女av电影| 国产亚洲5aaaaa淫片| 中国国产av一级| 性色av一级| 国产精品99久久久久久久久| eeuss影院久久| 亚洲精品久久午夜乱码| 国产精品国产三级国产专区5o| 成人美女网站在线观看视频| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 日韩不卡一区二区三区视频在线| videossex国产| 中文字幕人妻熟人妻熟丝袜美| 高清午夜精品一区二区三区| 一级a做视频免费观看| 97精品久久久久久久久久精品| 欧美高清成人免费视频www| 2021天堂中文幕一二区在线观| 青青草视频在线视频观看| 又爽又黄无遮挡网站| 不卡视频在线观看欧美| 黄片wwwwww| 在线观看免费高清a一片| 又爽又黄a免费视频| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 最近的中文字幕免费完整| 97超碰精品成人国产| 国产精品成人在线| 性插视频无遮挡在线免费观看| 国产乱人偷精品视频| 国产精品久久久久久久电影| 国产男女内射视频| 又爽又黄无遮挡网站| 成人免费观看视频高清| 国产精品国产三级国产av玫瑰| 亚洲最大成人手机在线| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| 国产av国产精品国产| 别揉我奶头 嗯啊视频| 亚洲第一区二区三区不卡| 九色成人免费人妻av| 97精品久久久久久久久久精品| 内射极品少妇av片p| 久久久久精品久久久久真实原创| 毛片女人毛片| kizo精华| 成人国产麻豆网| 亚洲四区av| 日韩一区二区视频免费看| 亚洲精品乱码久久久久久按摩| 午夜免费鲁丝| 日日啪夜夜爽| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 精品酒店卫生间| 亚洲精品乱久久久久久| a级毛色黄片| 免费大片黄手机在线观看| 色吧在线观看| 亚洲欧美一区二区三区国产| 国产成人freesex在线| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品 | 国产男女超爽视频在线观看| 久久人人爽人人爽人人片va| 美女高潮的动态| 国产精品.久久久| av又黄又爽大尺度在线免费看| 国产 精品1| 一个人看视频在线观看www免费| www.色视频.com| 色婷婷久久久亚洲欧美| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 国产成人aa在线观看| 伊人久久精品亚洲午夜| 亚洲自偷自拍三级| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 嫩草影院精品99| 午夜精品国产一区二区电影 | 嫩草影院新地址| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 国产免费视频播放在线视频| av专区在线播放| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| 又黄又爽又刺激的免费视频.| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 久久97久久精品| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| av国产免费在线观看| 男插女下体视频免费在线播放| 午夜免费观看性视频| 亚洲成人中文字幕在线播放| 热99国产精品久久久久久7| 亚洲欧美成人精品一区二区| 亚洲国产精品专区欧美| 亚洲精品第二区| 亚洲av二区三区四区| 亚洲欧洲日产国产| 国产在线一区二区三区精| 91久久精品电影网| 在线观看免费高清a一片| av专区在线播放| 26uuu在线亚洲综合色| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 18禁裸乳无遮挡动漫免费视频 | 免费av毛片视频| 亚洲精品成人av观看孕妇| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 亚洲色图av天堂| 少妇的逼好多水| 国产一级毛片在线| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| 国产大屁股一区二区在线视频| 一区二区三区精品91| 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| 久久综合国产亚洲精品| 国产 一区 欧美 日韩| 国产精品偷伦视频观看了| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 欧美精品国产亚洲| 欧美高清性xxxxhd video| 国产永久视频网站| 欧美xxxx黑人xx丫x性爽| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 我要看日韩黄色一级片| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 69人妻影院| 青春草视频在线免费观看| 国内揄拍国产精品人妻在线| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 美女被艹到高潮喷水动态| 亚洲怡红院男人天堂| 国产视频内射| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频 | 日韩欧美精品v在线| 毛片女人毛片| av天堂中文字幕网| 国产精品精品国产色婷婷| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 免费在线观看成人毛片| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 亚洲国产精品999| 精品午夜福利在线看| 特大巨黑吊av在线直播| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 久久久久精品性色| 亚洲欧美精品自产自拍| 欧美xxxx黑人xx丫x性爽| 99re6热这里在线精品视频| 国国产精品蜜臀av免费| 精品一区二区三卡| 亚洲国产精品专区欧美| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃 | 国产精品一区二区性色av| 嫩草影院入口| 看免费成人av毛片| av在线天堂中文字幕| 成人综合一区亚洲| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 高清欧美精品videossex| www.av在线官网国产| 嫩草影院精品99| 国产淫语在线视频| 亚州av有码| 国产 一区精品| 视频中文字幕在线观看| 日韩成人伦理影院| 欧美少妇被猛烈插入视频| 又黄又爽又刺激的免费视频.| 精品国产三级普通话版| 极品教师在线视频| 亚洲欧美精品专区久久| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 国产精品久久久久久精品电影小说 | 观看免费一级毛片| 亚洲av男天堂| 别揉我奶头 嗯啊视频| av国产免费在线观看| 青春草国产在线视频| 亚洲av欧美aⅴ国产| 亚洲av免费高清在线观看| 久久精品国产亚洲av涩爱| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 国产精品99久久99久久久不卡 | 少妇 在线观看| 纵有疾风起免费观看全集完整版| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃 | 日韩av不卡免费在线播放| 老司机影院成人| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 看免费成人av毛片| 国产高清有码在线观看视频| 黄色配什么色好看| 欧美激情在线99| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 在线观看三级黄色| 午夜精品一区二区三区免费看| 国产精品国产三级国产av玫瑰| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 国产精品蜜桃在线观看| 日韩精品有码人妻一区| 成年av动漫网址| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 国产精品福利在线免费观看| 美女高潮的动态| 免费高清在线观看视频在线观看| 性色av一级| 日本与韩国留学比较| 国产乱来视频区| 久久精品人妻少妇| a级毛色黄片| 免费高清在线观看视频在线观看| 欧美3d第一页| 黄片wwwwww| 在线亚洲精品国产二区图片欧美 | 免费黄频网站在线观看国产| 精品午夜福利在线看| 一级爰片在线观看| 777米奇影视久久| 一级爰片在线观看| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 久久人人爽人人爽人人片va| 成人午夜精彩视频在线观看| av在线天堂中文字幕| 中文资源天堂在线| 综合色丁香网| 免费大片黄手机在线观看| 一区二区三区四区激情视频| 亚洲色图av天堂| av卡一久久| 波野结衣二区三区在线| 丰满少妇做爰视频| 亚洲电影在线观看av| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 久久热精品热| 99热这里只有是精品在线观看| 免费看a级黄色片| 三级国产精品片| 亚洲欧美精品专区久久| 国产欧美日韩一区二区三区在线 | 国产爽快片一区二区三区| 日韩精品有码人妻一区| 国产日韩欧美亚洲二区| 国产成年人精品一区二区| 日本一本二区三区精品| 大码成人一级视频| 国产在线男女| 99九九线精品视频在线观看视频| 亚洲在久久综合| 91在线精品国自产拍蜜月| 免费看光身美女| 久久精品久久精品一区二区三区| 精品酒店卫生间| 好男人视频免费观看在线| 插逼视频在线观看| 亚洲av免费高清在线观看| 永久免费av网站大全| 亚洲国产色片| 免费看a级黄色片| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 久久久久久久国产电影| 色吧在线观看| 午夜免费观看性视频| 亚洲欧洲日产国产| 亚洲性久久影院| 啦啦啦中文免费视频观看日本| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频 | 下体分泌物呈黄色| 2021天堂中文幕一二区在线观| 婷婷色av中文字幕| 九九久久精品国产亚洲av麻豆| 日日啪夜夜爽| 2018国产大陆天天弄谢| kizo精华| 国产成人免费无遮挡视频| 成人亚洲欧美一区二区av| 亚洲最大成人手机在线| 亚洲精品日韩在线中文字幕| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 97在线人人人人妻| 久久人人爽人人爽人人片va| 熟女av电影| 免费观看性生交大片5| 五月开心婷婷网| av国产久精品久网站免费入址| 高清午夜精品一区二区三区| 亚洲人与动物交配视频| av国产免费在线观看| 国产在线一区二区三区精| 亚洲自偷自拍三级| 亚洲欧美成人精品一区二区| 亚洲国产精品成人综合色| 全区人妻精品视频| 国产 精品1| 亚洲一区二区三区欧美精品 | 亚洲欧洲国产日韩| 成人美女网站在线观看视频| 日韩 亚洲 欧美在线| 汤姆久久久久久久影院中文字幕| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| 十八禁网站网址无遮挡 | 久久综合国产亚洲精品| .国产精品久久| 在线 av 中文字幕| 国产精品福利在线免费观看| 99久久人妻综合| 爱豆传媒免费全集在线观看| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 全区人妻精品视频| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 最近最新中文字幕大全电影3| 少妇的逼好多水| 高清视频免费观看一区二区| 最后的刺客免费高清国语| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 国内揄拍国产精品人妻在线| 亚洲三级黄色毛片| 午夜亚洲福利在线播放| 你懂的网址亚洲精品在线观看| 国产精品99久久99久久久不卡 | 免费观看的影片在线观看| 91午夜精品亚洲一区二区三区| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 久热这里只有精品99| 69人妻影院| 一级毛片黄色毛片免费观看视频| 少妇熟女欧美另类| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| a级毛片免费高清观看在线播放| 国产有黄有色有爽视频| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 精品久久久久久久末码| 在线a可以看的网站| 国产在视频线精品| 女人久久www免费人成看片| 69av精品久久久久久| 国产成人精品福利久久| 国产在视频线精品| 神马国产精品三级电影在线观看| 欧美 日韩 精品 国产| 99久久精品热视频| 亚洲在线观看片| 欧美少妇被猛烈插入视频| 日韩国内少妇激情av| av卡一久久| 99视频精品全部免费 在线| 黄色视频在线播放观看不卡| 日本与韩国留学比较| 成年人午夜在线观看视频| 99精国产麻豆久久婷婷| 精品熟女少妇av免费看| 亚洲欧美精品专区久久| 日本一二三区视频观看| 亚洲精华国产精华液的使用体验| 亚洲怡红院男人天堂| 天堂俺去俺来也www色官网| 国产高潮美女av| 性色avwww在线观看| 中国美白少妇内射xxxbb| 成人国产av品久久久| 黄片无遮挡物在线观看| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区| 国产黄色视频一区二区在线观看| 97人妻精品一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 亚洲欧洲日产国产| 精品酒店卫生间| 又爽又黄a免费视频| 久久国产乱子免费精品| 丝袜喷水一区| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 一区二区三区乱码不卡18| 男人舔奶头视频| 亚洲不卡免费看| 欧美另类一区| 国产成人精品福利久久| 国产 精品1| 国产一区二区在线观看日韩| 国产一区有黄有色的免费视频| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 建设人人有责人人尽责人人享有的 | 99久久精品一区二区三区| 啦啦啦中文免费视频观看日本| 亚洲第一区二区三区不卡| 成年免费大片在线观看| 最近最新中文字幕免费大全7| 免费看不卡的av| 美女内射精品一级片tv| 2022亚洲国产成人精品| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx在线观看| av福利片在线观看| 热99国产精品久久久久久7| 91aial.com中文字幕在线观看| 观看免费一级毛片| 久久综合国产亚洲精品| 三级国产精品欧美在线观看| 国产v大片淫在线免费观看| 国产男人的电影天堂91| 亚洲国产日韩一区二区| 亚洲国产精品成人久久小说| 99热国产这里只有精品6| 可以在线观看毛片的网站| 免费观看无遮挡的男女| 日本免费在线观看一区| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 免费看不卡的av| 超碰av人人做人人爽久久| 在线精品无人区一区二区三 | 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 国产视频内射| 街头女战士在线观看网站| 日韩一区二区三区影片| 成年女人看的毛片在线观看| 亚洲婷婷狠狠爱综合网| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 日韩欧美一区视频在线观看 | 精品久久久噜噜| 久久人人爽人人爽人人片va| 少妇的逼水好多| 精品一区在线观看国产| 国产伦精品一区二区三区四那| 国产一区二区亚洲精品在线观看| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 免费大片黄手机在线观看| 欧美成人a在线观看| av天堂中文字幕网| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 97精品久久久久久久久久精品| 午夜福利在线在线| 欧美3d第一页| 国产一区二区在线观看日韩| videos熟女内射| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 黄色怎么调成土黄色| 交换朋友夫妻互换小说| 久久精品国产a三级三级三级| 综合色丁香网| 日韩av不卡免费在线播放|