• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diff usion of Form aldehyde on Rutile TiO2(110)Assisted by Surface Hydroxyl Groups

    2017-07-05 13:06:28DaweiGuanRuiminWangXianchiJinDongxuDaiZhiMaHongjunFanXueingYangad
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Da-weiGuanRui-min WangXian-chi JinDong-xu DaiZhi-o MaHong-jun FanXue-m ing Yangad

    a.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai201210,China

    b.State Key Laboratory ofMolecularReaction Dynam ics,Dalian Institute ofChem icalPhysics,Chinese Academ y of Science,Dalian 116023,China

    c.University ofChinese Academy of Science,Beijing 100049,China

    d.School of Physical Science and Technology,ShanghaiTech University,Shanghai201210,China

    Diff usion of Form aldehyde on Rutile TiO2(110)Assisted by Surface Hydroxyl Groups

    Da-weiGuana,b,c,d?,Rui-min Wangb,c?,Xian-chi Jinb,c?,Dong-xu Daib,Zhi-bo Mab?,Hong-jun Fanb?,Xue-m ing Yanga,b,d?

    a.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai201210,China

    b.State Key Laboratory ofMolecularReaction Dynam ics,Dalian Institute ofChem icalPhysics,Chinese Academ y of Science,Dalian 116023,China

    c.University ofChinese Academy of Science,Beijing 100049,China

    d.School of Physical Science and Technology,ShanghaiTech University,Shanghai201210,China

    As the photo-dissociation product ofmethanol on the TiO2(110)surface,the diff usion and desorption processes of formaldehyde(HCHO)were investigated by using scanning tunneling m icroscope(STM)and density functional theory(DFT).Themolecular-level images revealed the HCHO molecules could diffuse and desorb on the surface at 80 K under UV laser irradiation.The diff usion was found to bem ediated by hydrogen adatom s nearby,which were produced from photodissociation ofmethanol.Diff usion ofHCHO wassignificantly decreased when there was only one H adatom near the HCHO molecule.Furthermore,single HCHO molecule adsorbed on the bare TiO2(110)surface was quite stable,little photo-desorption was observed during laser irradiation.Them echanism of hydroxyl groups assisted diff usion of formaldehyde was also investigated using theoretical calculations.

    Diff usion,Desorption,Formaldehyde,Scanning tunneling m icroscope

    I.INTRODUCTION

    The understanding of diff usion process on surfaces is im portant in surface physical and chem ical processes, especially in heterogeneous catalysis.Becausem ost of chem ical reactions occur on active sites such as interface,steps,surface point defects[1?3].Reactants and interm ediates need to be close to those active sites by diff usion p rocess,and the products also need to be carried away from the active positions to keep reacting.So the diffusion processshould bea key step in actual reaction[4?5].Sometim es reactivity could be related w ith diff usivity of reactants and intermediates.Therefore, the research of diffusion process on surface in fundamental level plays an im portant guidance to optim ize catalyst.

    Since water splitting in a photo-electrochem ical cell was reported in 1972,titanium dioxide(TiO2)has received extensive and increasing attention because of its potentialapplications in clean hydrogen production[6]. It has been reported that pure TiO2hasweak catalytic activity for water sp litting,and adding somem ethanol could increase the productivity of H2obviously[7].As the most im portant intermediate product,formalde-hyde(HCHO)acted a key role in this catalytic process. The research of HCHO diffusion on TiO2surface could contribute to the understanding of the effect of HCHO in O?H bond cleavage ofwatermolecules.

    The rutile TiO2(110)has becom e a well-studied model catalyst surface partly due to its stability [6,8?12].The surface consists of protruding twocoordinated bridging oxygen(Obr)rows and fivecoordinated Ti(Ti5c)rows running in the[001]direction.As a major surface point defect,Obrvacancies can be easily introduced by ultrahigh vacuum(UHV) annealing.In order to investigate the m icrostructure and fundamental chem ical property of TiO2(110),highresolution scanning tunnelingm icroscope(STM)isperformed to provide detailed information at submolecular level.STM studies have shown the surface structure [13,14],m olecular adsorption[15?20],m etal-doping [21?25]and chem ical reactions[26?28].Furthermore, time-lapsed STM studies by Besenbacheret al.could record the fast changing of STM im ages as a STM movie,and they show a dram atic diff usion m ovie about ethanol diffusion along and across the Ti rows by assistant of hydrogen adsorbed on bridging bonded oxygen (BBO-H)[29].

    Methanol photocatalysis has been studied on TiO2single crystal surface aswell as on supported nanoparticles using various techniques[30?34]because adding methanol could dram atically enhance the water sp litting effi ciency which wementioned before[7].HCHOis always considered to be the key factor to accelerate the water splitting[35?37].Meanwhile,HCHO could further react w ith another methoxy radical to form m ethyl formate[38,39].And chem ical reaction of HCHO on TiO2(110)has been extensively studied [40?43].Recently,we reported a real-space imaging of a com p lete photocatalytic process for a singlemethanol on TiO2(110)surface by direct high resolution STM imaging[44].Photo-dissociation process can be followed step by step,and HCHO was resolved as a product by experim ental imaging and theoreticalsimulation. Actually theevolution of imageswasdue to thediffusion and desorption of HCHO.A fter the cleavage of both O?H and C?H bond on methanolm olecular,HCHO was adsorbed on the original position.Then it tended to diff use to theadjacent Tisite,and desorbed from the surface finally.This phenomenon reveals the diffusion of HCHO on the TiO2(110)exists which is consistent w ith our p revious conjecture.

    In this work,we report all the transfer possibility including diffusion and desorption of HCHO on the surface under UV light irradiation by low-tem perature STM and DFT calculation.The results indicated HCHO could diffuse both paralleland perpendicular to the rowsofObr.In contrastw ith other environmentsof HCHO’sadsorption sites,HCHO presented diff erent activity including diff usion and desorption.Possible reasons are discussed based on the energetic calculation, and the decrease of the diffused barrier is the key point of the whole com p lex phenom ena.

    II.EXPERIM ENTS AND COM PUTATIONAL M ETHODS

    The experimentswere performed in a UHV chamber equipped w ith a low-tem perature scanning tunneling m icroscope(LT-STM)(M atrix,Om icron).The vacuum in the STM chamberwasmaintained in UHV condition (<4×10?11Torr).CH3OH and HCHO were dosed on TiO2(110)at 80 K,and the realspace STM im ageswere recorded at the same tem perature.In this experiment, wealwaysmadea STM scan on the clean and the dosed CH3OH and HCHO surface before each light irradiation period,and the STM tip is then pu lled back by about 20μm from the surface during CH3OH and HCHO dosing and laser irradiation.A fter a laser irradiation period was com p leted,we then engaged the STM tip to the surface again and found the sam e surface area to trace the change of each individualmolecule.The UV laser irradiation was accom plished by using a 355 nm ns-laser(HIPO,Spectra-Physics)in our photoreaction. The pulse duration is 12 ns,and the high frequency of 50 kHz could ensure that the surfacewas not damaged by this UV laser irradiation.

    A ll the calculations were carried out w ith the Viennaab initiosimulation package(VASP)code[45, 46].The generalized gradient approximation(GGA) w ith thespin-polarized Perdew-Burke-Ernzerhof(PBE) functional[47]and p lane augmented waves(PAW)potential[48]were used for characterize op tim ized m olecular structures of TiO2(110).The wave function was expanded by p lane wave w ith kinetic cutoff of 400 eV and density cutoff of650 eV.Our surfacemodelwas cut out of a six-layer slab TiO2crystal to expose the(110) surface[31,49].M onkhorst-Pack grid[50]of(2×1×2)k-points was used for the 4×2 surface unit cell.One HCHO wasadsorbed on the top layer.A ll Ti5csites on the bottom layer were saturated w ith water molecules to maintain the bulk coordination environment[32]. Transition stateswere located by constrainedm inim ization and climbing-im age nudged elastic band m ethods [51,52].

    III.RESULTS AND DISCUSSION

    A.HCHO ad jacent to various num bers of H atom on TiO2(110)surface at 80 K

    FIG.1(a)is a photo-reacted surface which was covered bymethanol.Themethanolwasdosed at 80K and irradiated by UV laser.The bright rows are due to the in-p lane Ti5catom rows,and the dark rowsare two-fold coordinated Obratom rows.Obrvacancies show up as bright spots on the Ti5crows.Most ofmethanol adsorbed on the Ti5csites and two of them reacted after irradiation by 355 nm 50 mW ns-laser which is shown in FIG.1(a).The O?H and one C?H bond on m ethyl cracked and the hydrogen atom s dropped on the adjacent Obrsites.The species of the big spot are one formaldehydem olecule on original adsorption site and two hydrogen atom s adsorbed on ad jacent BBO sites. We reported that three distinct products formed in previous work,which represented reacted m ethanol and the follow ing diff usion and desorption form,respectively [44].Except the diffusion parallel to the Ti5crows we reported,another kind of diff usion was observed,which is shown in FIG.1(e)and(f).The HCHO crossed the Obrrow and adsorbed on the neighbored Ti row which looks like“pole vault”w ith one hydrogen adatom,even theexistenceof BBO-H increased the height of jum ping on topological structure.It is worth noting that these two types of diff usion correspond to the two dim ension on the surface,so it means the formaldehyde can diffuse on the surface easily.We observed both the diffusions happened around the BBO-H and no one cou ld diff use further,which allows us to deduce the hydrogen atom sacted asa im portant role in the diffusion process. Double-irradiation experiment was also performed to measure the diff usion and desorption proportions.A fter the fi rst irradiation,the elliptical spotswhich represent HCHO localized in the m idd le of two BBO-H atom s are m arked.Then the system is illum inated again by 50 mW 355 nm laser for 10 m in.Depending on thein situphoto reaction observation,the statistical resultscould be counted clearly which are shown in Table I. The proportions of diffusion and desorption are 16.1% and 28.5%,respectively.

    FIG.1 The diff usion phenom ena of the reacted m ethanol/TiO2surface.Every big protrusion in(a)consists of one HCHO m olecule and two BBOH,and the HCHO m olecule is localized between the two BBOHs.A ll of them are the p roducts of photo-reacted methanol.(b)A fter second time of illum ination,two kinds of diff usion could be observed.(c,e)Detailed im ages of both dissociated processes ofm ethanols which are large versions of(a).(d,f)Detailed im ages of both diff usion processes of HCHO moleculeswhich are large versions of(b).

    TABLE I Statistical resu lts of diff usion and desorption probability of HCHO adsorbed ad jacent to 0,1,and 2 BBOH,respectively.

    As we know,the dissociation ofmethanol is a typical endotherm ic reaction,the energetics calculation indicated the reaction barrier is 1.6 eV and the energy diff erence between reactant and products is 1.1 eV[31]. This result suggested the energy of photon not only dissociated themethanol but also induced diffusion or desorption of HCHO.Proceeding from this perspective, the HCHO should be very active on Ti5csites.So it is meaningful to investigate binding energy and adsorption situation of HCHO on bare surface.Then the photo-induced diff usion and desorption experiment is performed by the sam e UV light.Surp risingly,the behavior of pure HCHO is very stable under the laser irradiation.The diffusion and desorption proportionsare also listed in Tab le Iwhich showsa significant diff erence from HCHO localized in-between two BBO-Hs.Only four HCHO molecules desorbed from the substrate and no one could diff use to the ad jacent Ti row or neighbored Ti site.Thein situdesorption phenom enon is shown in FIG.2.So we speculated that the two hydrogen adatom s induced the activity of HCHO.

    FIG.2 Photo-desorption of HCHO on TiO2(110). (a)HCHO adsorbed on the bare surface.(b)A fter laser irradiation,on ly rare desorption could be observed,which is m arked by a yellow arrow.

    FIG.3 The diff usion of HCHO w ith one BBO-H nearby on the hydrate-TiO2(110).(a)Hyd rate-TiO2(110),a target BBO-H ism arked by green×.(b)A fter dosing HCHO molecules,one HCHO molecu lar was localized at the ad jacent T i site.(c)HCHO m olecule diff used to the neighbored T i row after laser irradiation.

    To further prove this conjecture,we investigated the movem ent ofHCHO which localized only one BBO-H.If surface hydroxyl could increase the activity of HCHO, the probability of diff usion and desorption should be located in between two statistical results.A special hydrated TiO2(110)surfacewasprepared by dosing water at room temperature the photo-desorption are shown in FIG.3(a)[14,18],water only adsorbed on the vacancies and dissociated spontaneously.The brighter protrusions on the Obrrows are BBO-H atoms.The bigger spots on the surface are im purities to m ark thein situposition.A fter HCHO was dosed on the Ti5csite, we could observe some targetmolecules adsorbed ad jacent to the BBO-H directly.We alsomanipulated som e HCHO molecules which are near the hydrogen atom s move to the adjacent Ti5csite in order to increase the sam ple size.A fter the same laser irradiation,themovem ent of HCHO appeared aswe expected.It could cross the Obrrow and localize just at the symm etrical position.And the probability of diffusion and desorption fall in between situations of no BBO-H and two BBOHs.Considering the assisted eff ect of BBO-H in other system[29],we believe that the hydrogen adatom s on the Obrcould assist the diffusion of HCHO,even reduce the binding energy to make it easy to desorb from the surface.

    B.Calculated HCHO diff usion assisted by H atom on TiO2(110)surface at 80 K

    To understand how BBO-H atom s could assist the diffusion of HCHO,theoretical calculation hasbeen carried out to investigate the role of BBO-H in HCHO diffusion.The optim ized structures of adsorbed HCHO and transition states of diff usion are shown in FIG.4. Three adsorption structures of HCHO and BBO-H atom s are considered:(i)HCHO molecule adsorbs on the Ti5cw ith no BBO-H atom nearby;(ii)HCHO molecule adsorbs on the Ti5cw ith one BBO-H atom nearby;(iii)HCHO molecule adsorbs on the Ti5cw ith two BBO-H atoms nearby,the adsorption energies of HCHO are 0.49,0.51,and 0.45 eV,respectively. The interactions between oxygen atom s of HCHO and Ti5catom s are diff erent because of the existence of BBO-H.W ithout BBO-H nearby,the Ti-OCH2distance is2.28?A.However,adding H atom son theneighbored BBO sites increase the density of Ti5c’s electron cloud,which leads to the change of Ti-OCH2distance. Thus,w ith one and two BBO-H atom s nearby,the Ti-OCH2distance stretches to 2.37?A,whichm eans theadsorption energy should be decreased.However,the adsorption energy ofHCHO w ith one BBO-H atom nearby is bigger than the other two adsorption structures,and the adsorption energies for all the three structures are very sim ilar by considering the eff ect of hydrogen bonding between HCHOmoleculeand BBO-H atoms.W ithout BBO-H atom nearby,only a weak BBO-H-CHO bond is form ed,the length of the weak bond is 2.26?A. W ith one or two BBO-H atom snearby,the length of the weak hydrogen bond increases to 2.40 and 2.52?A,respectively.However,w ith one BBO-H nearby,a strong hydrogen bonding is formed between the BBO-H and O atom of HCHO,the length is 2.36?A.W hen the HCHO molecule adsorbs between two BBO-H atom s, this length decreases to 2.32?A,the bonding energy is further strengthened.Due to a variety of interactions between HCHO and the substrate,the adsorption energy of HCHO does not decreasew ith increasing BBOH atom s nearby.

    W hereas,the diff usion barriers are significantly reduced along w ith the increase of BBO-H atom s.The presence of hydrogen bonding could assist HCHO to diff use across the Obrrow.As the number of BBOH atom s increases from 0 to 2,the energy of diff usion barrier decreases from 0.43 eV to 0.29 eV.We calculated the transition-state structures of HCHO cross the Obrrow as shown in FIG.4(a)?(c).W hen there is no BBO-H,only theweak BBO-H-CHO hydrogen bond exist,the distance is 2.64?A.However,after form ing real hydrogen bondingw ith BBO-H,the distance of BBOHOCH2is 1.95 and 1.83?A for one and two BBO-H,respectively.This iswhy diff usion is easier when H atom s are localized on the BBO sites.Therefore,theenergetic results suggested HCHO ismore active for the diffusion crossObrrow when it adsorbed ad jacent to the BBO-H. And the desorption should be related to the diff usion process,because the adsorption energies are not much diff erent.Due to the easy diffusion of HCHO w ith the BBO-H nearby,we speculate that the desorption process could happen in the position of the intermediate state.Direct desorption were stillhard which need several bonds cleaving together,but on the interm ediate state,the Ti-O-CH2already cracked,only bonding energy of BBOH-O-CH2should be overcome.This two-step escape process from the surface should be reliable in energetics.Sim ilarly,the diff usion as shown in FIG. 1(d)could be exp lained based on the sim ilar two-step process.The HCHO in the immediate state did not escape from the surface or cross the BBO row,but fall down on the ad jacent Ti5csite.So we couldn’t say the existence of BBO-H enhanced the probability of both diffusion and desorption generally,actually it reduced the diffi culty of the diff usion and the diff usion is the precondition of desorption.

    FIG.4 Side view of HCHO via BBO diff usion reaction for the zero,one and two BBO-H cases are shown in(a)?(c), respectively.Transition states of diff usion are shown in TS(a),TS(b)and TS(c).The chart is the HCHO diff usion barriers w ith zero,one and two BBO-H,and shown by b lack,red and blue lines,respectively.Tiatom s are shown in white,O atom s are shown in red,C atom s are shown in yellow,and H atom s are shown in green.B lue dotted lines indicate hydrogen bonds.

    IV.CONCLUSION

    In conclusion,we demonstrate a novel use of hydrogen atom sadsorbed on the BBO sites to investigate the strong assistant eff ect of a paralleled and perpendicular diffusion correspondent to BBO row.Both probabilities ofdiff usion and desorption increased continuously along w ith increasing of localized H atom on ad jacent BBO sites.Theoretical calculations also proved this conclusion and further elucidated the relationship between BBO-H and diffusion.Our results indicated BBO-H only increase the diff usion probability and the desorption should be the next step in the interm ediate state of diff usion.This results proved the BBO-H species p lays an im portant role in diffusion even chem ical reactions.

    V.ACKNOW LEDGM ENTS

    This work was supported by the Chinese Academy of Sciences,the National Natural Science Foundation of China(No.21225315,No.21173210,No.21673224 and No.21210004)and theM inistry of Science and Technology(No.2013CB834605 and No.2013CB834603).

    [1]S.Dah l,A.Logadottir,R.C.Egeberg,J.H.Larsen,I. Chorkendorff,E.T¨ornqvist,and J.K.N?rskov,Phys. Rev.Lett.83,1814(1999).

    [2]A.L.Linsebigler,G.Q.Lu,and J.T.Yates,Chem. Rev.95,735(1995).

    [3]T.Zambelli,J.W intterlin,J.Trost,and G.Ertl,Science 273,1688(1996).

    [4]C.N.Satterfield,and T.K.Sherwood,The Role of D iffusion in Catalysis,Massachusetts,Palo A lto, London:Addison-Wesley Pub lishing Com pany,Inc., (1975).

    [5]J.M.Thom as,W.J.Thom as,J.R.Anderson,and M. Noudart,Prin ciples and Practice of H eterogeneous Catalysis,Weinheim:VCH Verlagsgesellschaft,(1997).

    [6]A.Fu jishim a and K.Honda,Nature 238,37(1972).

    [7]S.Sato and J.M.W hite,Chem.Phys.Lett.72,83 (1980).

    [8]A.Fujishim a,X.T.Zhang,and D.A.Tryk,Surf.Sci. Rep.63,515(2008).

    [9]A.Kudo and Y.M iseki,Chem.Soc.Rev.38,253 (2009).

    [10]K.M aeda and K.Dom en,J.Phys.Chem.Lett.1,2655 (2010).

    [11]F.E.Osterloh,Chem.M ater.20,35(2008).

    [12]W.J.Youngb lood,S.H.A.Lee,K.M aeda,and T.E. Mallouk,Acc.Chem.Res.42,1966(2009).

    [13]U.Diebold,J.F.Anderson,K.O.Ng,and D.Vanderbilt,Phys.Rev.Lett.77,1322(1996).

    [14]S.Wend t,P.T.Sprunger,E.Lira,G.K.H.M adsen, Z.S.Li,J.?.Hansen,J.M atthiesen,A.B lekinge-Rasmussen,E.L?gsgaard,B.Hammer,and F.Besenbacher,Science 320,1755(2008).

    [15]B.Hammer,S.Wendt,and F.Besenbacher,Top.Catal. 53,423(2010).

    [16]J.O.Hansen,P.Huo,U.M artinez,E.Lira,Y.Y.Wei, R.Streber,E.Laegsgaard,B.Hamm er,S.Wendt,and F.Besenbacher,Phys.Rev.Lett.107,136102(2011).

    [17]S.C.Li,L.N.Chu,X.Q.Gong,and U.Diebold,Science 328,882(2010).

    [18]Z.Zhang,O.Bondarchuk,B.D.Kay,J.M.W hite,and Z.Dohn′alek,J.Phys.Chem.B 110,21840(2006).

    [19]Z.R.Zhang,O.Bondarchuk,J.M.W hite,B.D.Kay, and Z.Dohn′alek,J.Am.Chem.Soc.128,4198(2006).

    [20]Y.Zhao,Z.Wang,X.F.Cui,T.Huang,B.Wang,Y. Luo,J.L.Yang,and J.G.Hou,J.Am.Chem.Soc. 131,7958(2009).

    [21]R.P.Galhenage,H.Yan,S.A.Tenney,N.Park,G. Henkelm an,P.A lbrecht,D.R.M ullins,and D.A.Chen, J.Phys.Chem.C 117,7191(2013).

    [22]D.Matthey,J.G.Wang,S.Wend t,J.Matthiesen, R.Schaub,E.L?gsgaard,B.Hamm er,and F.Besenbacher,Science 315,1692(2007).

    [23]J.B.Park,S.F.Conner,and D.A.Chen,J.Phys. Chem.C 112,5490(2008).

    [24]X.Tong,L.Benz,P.Kem per,H.Metiu,M.T.Bowers,and S.K.Buratto,J.Am.Chem.Soc.127,13516 (2005).

    [25]E.Wah lstr¨om,N.Lopez,R.Schaub,P.Thostrup,A. R?nnau,C.A frich,E.L?gsgaard,J.K.N?rskov,and F.Besenbacher,Phys.Rev.Lett.90,026101(2003).

    [26]S.J.Tan,H.Feng,Y.F.Ji,Y.Wang,J.Zhao,A.D. Zhao,B.Wang,Y.Luo,J.L.Yang,J.G.Hou,J.Am. Chem.Soc.134,9978(2012).

    [27]F.Yang,M.S.Chen,and D.W.Goodman,J.Phys. Chem.C 113,254(2009).

    [28]C.Y.Zhou,Z.F.Ren,S.J.Tan,Z.B.M a,X.C.M ao, D.X.Dai,H.J.Fan,X.M.Yang,J.LaRue,R.Cooper, A.M.Wod tke,Z.Wang,Z.Y.Li,B.Wang,J.L.Yang, and J.G.Hou,Chem.Sci.1,575(2010).

    [29]P.P.Huo,J.?.Hansen,U.M artinez,E.Lira,R.Streber,Y.Y.Wei,E.L?gsgaard,B.Hammer,S.Wendt, and F.Besenbacher,J.Phys.Chem.Lett.3,283(2012).

    [30]T.Chen,Z.H.Feng,G.P.Wu,J.Y.Shi,G.J.Ma,P. L.Y ing,and C.Li,J.Phys.Chem.C 111,8005(2007).

    [31]Q.Guo,C.B.Xu,Z.F.Ren,W.S.Yang,Z.B.Ma, D.X.Dai,H.J.Fan,T.K.M inton,and X.M.Yang, J.Am.Chem.Soc.134,13366(2012).

    [32]Y.Tamaki,A.Furube,M.Murai,K.Hara,R.Katoh, and M.Tachiya,J.Am.Chem.Soc.128,416(2006).

    [33]N.L.Wu,M.S.Lee,Z.J.Pon,and J.Z.Hsu,J.Photochem.Photobiol.A Chem.163,277(2004).

    [34]C.B.Xu,W.S.Yang,Q.Guo,D.X.Dai,M.D.Chen, and X.M.Yang,J.Am.Chem.Soc.135,10206(2013).

    [35]T.Kawai and T.Sakata,J.Chem.Soc.Chem.Commun.694(1980).

    [36]C.Y.Wang,J.Rabani,D.W.Bahnem ann,and J.K. Dohrm ann,J.Photochem.Photobiol.A Chem.148, 169(2002).

    [37]A.Yam akata,T.A.Ishibashi,and H.Onishi,J.Phys. Chem.B 106,9122(2002).

    [38]Q.Guo,C.B.Xu,W.S.Yang,Z.F.Ren,Z.B.M a,D. X.Dai,T.K.M inton,and X.M.Yang,J.Phys.Chem. C 117,5293(2013).

    [39]K.R.Phillips,S.C.Jensen,M.Baron,S.C.Li,and C. M.Friend,J.Am.Chem.Soc.135,574(2013).

    [40]T.Crem er,S.C.Jensen,and C.M.Friend,J.Phys. Chem.C 118,29242(2014).

    [41]G.Lu,A.Linsebigler,and J.T.Jr.Yates,J.Phys. Chem.98,11733(1994).

    [42]X.C.Mao,D.Wei,Z.Q.Wang,X.C.Jin,Q.Q.Hao, Z.F.Ren,D.X.Dai,Z.B.M a,C.Y.Zhou,and X.M. Yang,J.Phys.Chem.C 119,1170(2015).

    [43]Q.Yuan,Z.F.W u,Y.K.Jin,F.X iong,and W.X. Huang,J.Phys.Chem.C 118,20420(2014).

    [44]D.Wei,X.C.Jin,C.Q.Huang,D.X.Dai,Z.B.M a, W.X.Li,and X.M.Yang,J.Phys.Chem.C 119, 17748(2015).

    [45]G.K resse and J.Furthm¨uller,Phys.Rev.B 54,11169 (1996).

    [46]G.K resse and J.Hafner,Phys.Rev.B 48,13115(1993).

    [47]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [48]P.E.B l¨och l,Phys.Rev.B 50,17953(1994).

    [49]R.M.Wang and H.J.Fan,Sci.China Chem.58,614 (2015).

    [50]J.Paier,R.Hirschl,M.M arsm an,and G.K resse,J. Chem.Phys.122,234102(2005).

    [51]G.Henkelm an and H.Jonsson,J.Chem.Phys.113, 9978(2000).

    [52]G.Henkelm an,B.P.Uberuaga,and H.J′onsson,J. Chem.Phys.113,9901(2000).

    ceived on March 12,2017;Accepted on March 25,2017)

    ?These authors contributed equally to this work.

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: zhbm a@d icp.ac.cn,fanh j@dicp.ac.cn,xm yang@d icp.ac.cn.

    欧美在线一区亚洲| 国产av在哪里看| 成年女人毛片免费观看观看9| 制服丝袜大香蕉在线| 白带黄色成豆腐渣| 欧美极品一区二区三区四区| 中国美女看黄片| 午夜影院日韩av| 熟女电影av网| 国产综合懂色| 高清毛片免费观看视频网站| 美女高潮喷水抽搐中文字幕| 欧美又色又爽又黄视频| 在线十欧美十亚洲十日本专区| 中文字幕人妻熟人妻熟丝袜美 | 一进一出抽搐动态| 偷拍熟女少妇极品色| 久久婷婷人人爽人人干人人爱| 999久久久精品免费观看国产| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 亚洲一区二区三区不卡视频| 欧美极品一区二区三区四区| www.www免费av| 国产精品一及| 国产高潮美女av| 看片在线看免费视频| 欧美另类亚洲清纯唯美| 黄片大片在线免费观看| 国产亚洲欧美在线一区二区| 99国产极品粉嫩在线观看| 亚洲av五月六月丁香网| 亚洲人成网站高清观看| 国产欧美日韩一区二区精品| 90打野战视频偷拍视频| 深夜精品福利| 国产精品一及| 国产精品久久久久久精品电影| 国产三级在线视频| 精品电影一区二区在线| 国产精品亚洲一级av第二区| 国产精品乱码一区二三区的特点| 亚洲中文日韩欧美视频| 欧美最黄视频在线播放免费| 内地一区二区视频在线| 久久久国产成人精品二区| 免费观看的影片在线观看| 久久久久国内视频| 欧美在线一区亚洲| 观看美女的网站| 午夜福利免费观看在线| 久久精品影院6| 日韩欧美三级三区| 国产主播在线观看一区二区| 搡老岳熟女国产| 国产野战对白在线观看| 伊人久久大香线蕉亚洲五| 久久久久久九九精品二区国产| 亚洲电影在线观看av| 一个人看的www免费观看视频| 欧美绝顶高潮抽搐喷水| 国产激情偷乱视频一区二区| 亚洲人成网站高清观看| 精品久久久久久久人妻蜜臀av| 国产色婷婷99| 久久久久精品国产欧美久久久| 精品人妻一区二区三区麻豆 | www.999成人在线观看| 脱女人内裤的视频| 久久精品国产综合久久久| 在线免费观看不下载黄p国产 | 国产精品久久久久久久久免 | 欧美在线一区亚洲| 免费观看人在逋| 精品免费久久久久久久清纯| av在线天堂中文字幕| 乱人视频在线观看| 舔av片在线| 狠狠狠狠99中文字幕| 国产高清有码在线观看视频| 偷拍熟女少妇极品色| 香蕉丝袜av| 欧美激情在线99| 亚洲aⅴ乱码一区二区在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲精华国产精华精| 三级毛片av免费| 中文在线观看免费www的网站| 精品久久久久久久久久久久久| 国产aⅴ精品一区二区三区波| 制服人妻中文乱码| 日日夜夜操网爽| 中文资源天堂在线| 国产亚洲精品av在线| 中文字幕高清在线视频| 18+在线观看网站| 欧美+日韩+精品| 又黄又粗又硬又大视频| 精品福利观看| 在线a可以看的网站| 欧美日韩黄片免| 日本免费一区二区三区高清不卡| 国产高清视频在线播放一区| 国产爱豆传媒在线观看| 大型黄色视频在线免费观看| 伊人久久大香线蕉亚洲五| 国产野战对白在线观看| 亚洲美女黄片视频| 亚洲美女黄片视频| 欧美一区二区精品小视频在线| 成人av一区二区三区在线看| 欧美+亚洲+日韩+国产| 美女大奶头视频| 一进一出好大好爽视频| 天堂√8在线中文| 18禁在线播放成人免费| 天美传媒精品一区二区| 成人午夜高清在线视频| 中亚洲国语对白在线视频| 精品一区二区三区视频在线 | 免费无遮挡裸体视频| 国产精品亚洲一级av第二区| 在线观看免费视频日本深夜| 国产亚洲精品久久久久久毛片| 亚洲中文字幕日韩| 国产乱人视频| 亚洲精品成人久久久久久| 日韩 欧美 亚洲 中文字幕| 久久99热这里只有精品18| 久久婷婷人人爽人人干人人爱| 国产成年人精品一区二区| 国产av不卡久久| 99国产综合亚洲精品| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区黑人| 一个人观看的视频www高清免费观看| 成年人黄色毛片网站| 亚洲人成电影免费在线| 热99re8久久精品国产| 国产成人av教育| 久久草成人影院| 国产成人啪精品午夜网站| 一本精品99久久精品77| 看黄色毛片网站| 欧美+日韩+精品| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 国产精品综合久久久久久久免费| 女人高潮潮喷娇喘18禁视频| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 在线观看美女被高潮喷水网站 | 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月| 岛国视频午夜一区免费看| 国产精品久久久久久人妻精品电影| 一本久久中文字幕| av女优亚洲男人天堂| 高清毛片免费观看视频网站| 在线观看免费午夜福利视频| 99久国产av精品| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 激情在线观看视频在线高清| 国产99白浆流出| 亚洲欧美日韩无卡精品| eeuss影院久久| 亚洲18禁久久av| 一夜夜www| 男人的好看免费观看在线视频| 嫁个100分男人电影在线观看| 一进一出抽搐动态| 婷婷丁香在线五月| 最近最新中文字幕大全电影3| 可以在线观看毛片的网站| 香蕉久久夜色| 亚洲国产高清在线一区二区三| 国产免费一级a男人的天堂| 男女午夜视频在线观看| 99久久精品热视频| 欧美性猛交黑人性爽| 欧美黑人巨大hd| 欧美日韩福利视频一区二区| 性欧美人与动物交配| 制服人妻中文乱码| 9191精品国产免费久久| 亚洲av二区三区四区| 欧美三级亚洲精品| 人人妻人人澡欧美一区二区| 国产精品,欧美在线| 舔av片在线| 99riav亚洲国产免费| aaaaa片日本免费| 成人18禁在线播放| 一级黄色大片毛片| 亚洲国产精品合色在线| 国产精品一区二区免费欧美| 国产伦一二天堂av在线观看| 午夜两性在线视频| 日本五十路高清| 亚洲av美国av| 欧美一区二区亚洲| 日本 欧美在线| 欧美色视频一区免费| 亚洲精品456在线播放app | 又黄又粗又硬又大视频| 精品国产亚洲在线| 午夜福利在线在线| 亚洲片人在线观看| a级毛片a级免费在线| 中亚洲国语对白在线视频| 女警被强在线播放| 国产在视频线在精品| 午夜视频国产福利| 免费av不卡在线播放| 欧美又色又爽又黄视频| 美女高潮喷水抽搐中文字幕| 69av精品久久久久久| 女警被强在线播放| 成人亚洲精品av一区二区| 99热精品在线国产| 国产精品99久久久久久久久| 国产高清视频在线播放一区| 国产不卡一卡二| 国产精品日韩av在线免费观看| 欧美成人性av电影在线观看| 久久久色成人| 欧美成人免费av一区二区三区| 99久久精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 免费在线观看影片大全网站| 精品国产三级普通话版| 精品久久久久久久毛片微露脸| 嫁个100分男人电影在线观看| 亚洲av不卡在线观看| 一级毛片高清免费大全| 亚洲专区国产一区二区| 欧美又色又爽又黄视频| 五月玫瑰六月丁香| 日韩av在线大香蕉| 黄色丝袜av网址大全| 一级黄色大片毛片| 婷婷六月久久综合丁香| 国产黄色小视频在线观看| 国产精品嫩草影院av在线观看 | 麻豆一二三区av精品| 九九在线视频观看精品| 在线观看免费视频日本深夜| 国产精品久久久久久久电影 | 精品久久久久久久末码| 国产亚洲欧美98| 成人一区二区视频在线观看| 国产视频一区二区在线看| 村上凉子中文字幕在线| 长腿黑丝高跟| 毛片女人毛片| 99热这里只有精品一区| 啦啦啦韩国在线观看视频| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久一区二区三区 | 亚洲18禁久久av| 18美女黄网站色大片免费观看| 国产精品亚洲av一区麻豆| 午夜精品一区二区三区免费看| 麻豆成人av在线观看| av欧美777| 一个人免费在线观看电影| 亚洲欧美激情综合另类| 怎么达到女性高潮| 岛国在线观看网站| 国产成人系列免费观看| 免费大片18禁| 一级黄片播放器| 亚洲av成人精品一区久久| 一个人看的www免费观看视频| 人人妻人人澡欧美一区二区| 亚洲av日韩精品久久久久久密| 亚洲欧美激情综合另类| 又黄又爽又免费观看的视频| 97人妻精品一区二区三区麻豆| 18禁在线播放成人免费| 操出白浆在线播放| 天堂网av新在线| 日本免费一区二区三区高清不卡| 亚洲,欧美精品.| 亚洲精品影视一区二区三区av| 操出白浆在线播放| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区免费观看 | 久久人妻av系列| 国内精品一区二区在线观看| 一进一出抽搐gif免费好疼| 欧美+亚洲+日韩+国产| 天堂动漫精品| 成年人黄色毛片网站| 久久人妻av系列| 人妻夜夜爽99麻豆av| 美女黄网站色视频| 亚洲精华国产精华精| 成人高潮视频无遮挡免费网站| 人妻夜夜爽99麻豆av| 国产一区二区亚洲精品在线观看| 少妇人妻精品综合一区二区 | 深夜精品福利| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 婷婷亚洲欧美| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 午夜视频国产福利| 动漫黄色视频在线观看| 亚洲,欧美精品.| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 在线观看66精品国产| 国产精品香港三级国产av潘金莲| av视频在线观看入口| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 桃色一区二区三区在线观看| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 露出奶头的视频| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 在线观看一区二区三区| 啪啪无遮挡十八禁网站| 欧美中文综合在线视频| 手机成人av网站| 热99在线观看视频| 一本久久中文字幕| 久久国产精品人妻蜜桃| 午夜两性在线视频| 变态另类丝袜制服| x7x7x7水蜜桃| 内射极品少妇av片p| 日本 av在线| 中国美女看黄片| 制服人妻中文乱码| 两个人的视频大全免费| 久久久久久国产a免费观看| 97超级碰碰碰精品色视频在线观看| 少妇高潮的动态图| 精品国产三级普通话版| 岛国在线免费视频观看| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 18禁黄网站禁片午夜丰满| 国产探花极品一区二区| 美女大奶头视频| 成人无遮挡网站| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 国产精品99久久99久久久不卡| 色吧在线观看| 国产亚洲精品久久久com| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 欧美3d第一页| 757午夜福利合集在线观看| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 国产激情欧美一区二区| 男人舔奶头视频| 日本免费a在线| 最新美女视频免费是黄的| 悠悠久久av| 欧美一区二区亚洲| 午夜久久久久精精品| 成人av一区二区三区在线看| 国产精品精品国产色婷婷| 欧美一级毛片孕妇| 在线观看66精品国产| 国产国拍精品亚洲av在线观看 | 欧美中文日本在线观看视频| 国产精品1区2区在线观看.| 免费高清视频大片| 欧美黄色淫秽网站| 婷婷精品国产亚洲av| 亚洲av美国av| av片东京热男人的天堂| 免费av不卡在线播放| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 女同久久另类99精品国产91| 国产一区二区激情短视频| 性欧美人与动物交配| 成年女人看的毛片在线观看| or卡值多少钱| 欧美中文综合在线视频| 国产99白浆流出| 听说在线观看完整版免费高清| 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 午夜福利18| 一个人观看的视频www高清免费观看| 国产av麻豆久久久久久久| 丁香欧美五月| 午夜精品在线福利| 色综合婷婷激情| 婷婷六月久久综合丁香| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 亚洲熟妇中文字幕五十中出| 国产成人欧美在线观看| 精品不卡国产一区二区三区| or卡值多少钱| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| 最近在线观看免费完整版| 人人妻人人看人人澡| 一进一出好大好爽视频| 黄片大片在线免费观看| 精品国内亚洲2022精品成人| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 日本一本二区三区精品| 欧美av亚洲av综合av国产av| 一本一本综合久久| 国产探花极品一区二区| 亚洲av成人av| 日韩欧美在线二视频| 97碰自拍视频| 日本 欧美在线| av专区在线播放| 亚洲片人在线观看| 在线观看免费午夜福利视频| 白带黄色成豆腐渣| 18禁在线播放成人免费| 校园春色视频在线观看| 国产午夜精品论理片| 中文在线观看免费www的网站| 国产精品嫩草影院av在线观看 | 色综合站精品国产| 最近最新中文字幕大全免费视频| 中出人妻视频一区二区| 精品福利观看| 麻豆国产97在线/欧美| 亚洲人成网站在线播| av中文乱码字幕在线| a在线观看视频网站| 欧美日韩瑟瑟在线播放| 国产成人福利小说| 国产高清videossex| 国产野战对白在线观看| 黄片大片在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 床上黄色一级片| 国产av一区在线观看免费| 亚洲中文字幕日韩| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 久久久久久人人人人人| 免费观看的影片在线观看| 日韩精品中文字幕看吧| 超碰av人人做人人爽久久 | 中国美女看黄片| 国内精品一区二区在线观看| 欧美激情在线99| h日本视频在线播放| 老鸭窝网址在线观看| 免费av不卡在线播放| 日本 欧美在线| av福利片在线观看| 高清毛片免费观看视频网站| 在线观看66精品国产| 69av精品久久久久久| 成人国产综合亚洲| 国产伦人伦偷精品视频| 亚洲无线观看免费| 我要搜黄色片| 在线十欧美十亚洲十日本专区| 男女视频在线观看网站免费| 精品福利观看| 午夜老司机福利剧场| 老熟妇乱子伦视频在线观看| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 久久精品91无色码中文字幕| 婷婷精品国产亚洲av| 国模一区二区三区四区视频| 麻豆成人av在线观看| 毛片女人毛片| 午夜福利高清视频| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 国产成人欧美在线观看| 欧美av亚洲av综合av国产av| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 美女高潮的动态| 国产真人三级小视频在线观看| 久久伊人香网站| 黄色女人牲交| 中文在线观看免费www的网站| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 久久精品国产亚洲av香蕉五月| svipshipincom国产片| 午夜福利成人在线免费观看| 国产精品99久久99久久久不卡| 日本免费a在线| 国产亚洲精品综合一区在线观看| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 操出白浆在线播放| 国产99白浆流出| 日韩av在线大香蕉| 免费看光身美女| 制服丝袜大香蕉在线| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 国产色婷婷99| 一二三四社区在线视频社区8| 欧美中文综合在线视频| 一区福利在线观看| 欧美一级毛片孕妇| 精品久久久久久,| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| 99久久精品国产亚洲精品| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 国产探花极品一区二区| 亚洲av一区综合| 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 少妇的逼水好多| 亚洲内射少妇av| 99精品在免费线老司机午夜| 天堂√8在线中文| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 国内精品久久久久久久电影| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 国产精品亚洲一级av第二区| 午夜免费激情av| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看 | 亚洲专区中文字幕在线| 国产美女午夜福利| 亚洲精品亚洲一区二区| 可以在线观看的亚洲视频| 国产免费一级a男人的天堂| 国产淫片久久久久久久久 | 天堂av国产一区二区熟女人妻| 国产成人福利小说| 看片在线看免费视频| 国产精品爽爽va在线观看网站| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 国产精品99久久久久久久久| 狠狠狠狠99中文字幕| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 热99re8久久精品国产| 神马国产精品三级电影在线观看| 51国产日韩欧美| 午夜影院日韩av| 国产精品久久久久久久久免 | 波野结衣二区三区在线 | 九色国产91popny在线| 国产精品一区二区三区四区久久| 怎么达到女性高潮| 欧美日韩中文字幕国产精品一区二区三区| 18+在线观看网站| 在线观看美女被高潮喷水网站 | 亚洲avbb在线观看| 国产免费av片在线观看野外av| 国产色爽女视频免费观看| 国产成人福利小说| 搡老熟女国产l中国老女人| 丝袜美腿在线中文| 亚洲 欧美 日韩 在线 免费| 欧美日韩一级在线毛片| 日韩人妻高清精品专区| 两人在一起打扑克的视频| 亚洲成人中文字幕在线播放| 国产av一区在线观看免费|