• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Num erical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Eff ect on Arom atic Hydrocarbon Form ation

    2017-07-05 13:06:25TinyuLiJiioZouYnZhngChungchungCoWeiLiWenhoYun
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Tin-yu LiJi-io ZouYn ZhngChung-chung CoWei LiWen-ho Yun

    a.National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    b.Key Laboratory for Power Machinery and Engineering of MOE,Shanghai Jiao Tong University, Shanghai200240,China

    Num erical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Eff ect on Arom atic Hydrocarbon Form ation

    Tian-yu Lia,Jia-biao Zoub,Yan Zhangb,Chuang-chuang Caoa,Wei Lia,Wen-hao Yuanb?

    a.National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    b.Key Laboratory for Power Machinery and Engineering of MOE,Shanghai Jiao Tong University, Shanghai200240,China

    A num erical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel com ponents on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysisw ith the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments.Themodel is able to reproduce both the single com ponent pyrolysis and the co-pyrolysis experiments,as well as the synergistic effect between 1,3-butadiene and propyne on the form ation of a series of arom atic hydrocarbons.Based on the rate of production and sensitivity analyses,key reaction pathways in the fuel decom position and aromatic hydrocarbon formation processes are revealed and insight into the synergistic eff ect on aromatic hydrocarbon formation isalso achieved.The synergistic effect results from the interaction between 1,3-butadiene and propyne.The easily happened chain initiation in the 1,3-butadiene decom position provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radicalwhich p layskey roles in the formation of aromatic hydrocarbons.Besides,the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously,which stimulates the formation of key arom atic hydrocarbons such as toluene and naphthalene.

    1,3-Butadiene,Propyne,K inetic model,Synergistic eff ect,A rom atic hydrocarbon form ation

    I.INTRODUCTION

    Aromatic hydrocarbonsand soot are important combustion pollutants due to their carcinogenicity and mutagenicity[1–5].Consequently their formation m echanism s in combustion have attracted special attentions for a long time[1,6–10].In general,the formation of soot is a com plex processw ith severalmajor steps[1], including the form ation of fi rst benzene ring via the combination of sm all C1?C5 unsaturated m olecules, the formation and grow th of polycyclic aromatic hydrocarbons(PAHs),the nascent soot formation,the grow th of soot,and the form ation of mature soot. The form ation of the fi rst benzene ring is recognized as the rate-controlling step in the formation of PAHs and soot[1].A series of experimental studies found that many m ixtures containing two or m ore com ponents(at a given ratio)would generatemore aromatic hydrocarbons and soot in comparison w ith any single com ponent under the same condition,such as them ix-tures of methane/ethylene[11,12],ethylene/propane [13,14],1,3-butadiene/propyne[15],toluene/n-heptane [16],and so on.This phenomenon is defined as the synergistic eff ect between fuel com ponents on the formation processes of aromatic hydrocarbons and soot, which shows not only the interaction of different fuel decom position products on soot form ation,but also the diversity of critical pathways of benzene and PAHs formation.Due to the com p lex componentsof transportation fuels,synergistic effect is one of the crucial factors influencing soot em issions[1].Com pared w ith the experim ental study of synergistic eff ect,the m odels and numerical research are rather lim ited,which leads to the lack of the understanding of the cause of synergistic effect.This lack not only aff ects theunderstanding ofaromatics and soot formation m echanism but also m akes the control of soot em issions diffi cult consequently.

    Among them ixturesw ith synergistic eff ect,the 1,3-butadiene/propyne m ixture is a typical one since it presents a combination of odd C-atom s and even C-atom s.The synergistic eff ect between the two fuelswas recently reported by Poddaret al.[15]in the aromatic hydrocarbon form ation process under pyrolytic conditions.They found that the production of aromatic hy-drocarbons in the 1,3-butadiene/propyneco-pyrolysis experiments was much higher than that in any single com ponent pyrolysis experim ents performed by the sam e group[15,17,18].Sim ilarly to other fuelm ixtures w ith synergistic effect,there isno analysiswork on this system to explore the reason leading to the synergistic eff ect between 1,3-butadiene and propyne since there is no kineticmodelof1,3-butadiene/propyne co-pyrolysis.

    In this work,a kinetic model of 1,3-butadiene/ propyne co-pyrolysis is developed w ith consideration of both the fuel decom position sub-mechanism s and the sub-mechanism ofaromatic hydrocarbon formation. Validation on previous 1,3-butadiene and propyne pyrolysis experiments is performed to ensure the reliability of the m odel.Num erical simulation is carried out for the co-pyrolysis experim ent reported by Poddaret al.[15],while the rate of production(ROP)and sensitivity analyses are performed to reveal the key form ation pathways of aromatic hydrocarbons.Thiswork provides insight into the synergistic effect between fuel com ponents.

    II.KINET IC MODEL AND NUM ERICAL SIM ULAT ION M ETHOD

    The developm ent of the kinetic m odel of 1,3-butadiene/propyne co-pyrolysis originates from our recent aromatic hydrocarbon models[10,19–22].The sub-m echanism of 1,3-butadiene developed in thiswork m ainly contains the isomerization,unimolecular decom position,addition,H-atom abstraction reactions. The sub-mechanism of propyne mainly includes the isomerization,addition and H-atom abstraction reactions.The sub-mechanism of aromatic hydrocarbon formation includes two sets of reactions,i.e.formation reactionsofmonocyclic aromatic hydrocarbonsand formation/grow th reactions of PAHs.In the present model,the formation reactions of benzene mainly include the C4+C2 and C3+C3 pathways.The C4+C2 pathway which belongs to the even C-atom m echanism include the addition of acetylene to vinyl acetylene and 1,3-butadienyl radical,and the rate constants experimentally investigated by Chanmugathaset al.[23] and theoretically investigated by M illeret al.[24]are adopted in thismodel,respectively.The C3+C3 pathway which belongs to the odd C-atom mechanism include the self-combination of propargyl radical and the reactions of propargyl radical w ith propyne(pC3H4) and allene(aC3H4).M illeret al.[24]investigated the self-combination of propargyl radical theoretically and their recommended rate constant is used.The reactions of propargyl radical w ith propyne and allene are taken from themodel of D’Annaet al.[25].The formation pathways of toluenemainly include the C3+C4 and C1+C6 pathways[26].As for the form ation pathway of indene,the rate constant of addition of acetylene to benzyl radical is adopted from the theoretical investigation of Vereeckenet al.[27].The rate constant ofaddition of propargyl radical to benzene isestimated in thiswork,and the rate constant of reaction between cyclopentadienyl radical and cyclopentadiene is adopted from the theoretical calculation result of Cavallottiet al.[28].The formation pathway of naphthalene includes the hydrogen-abstraction/carbon-addition (HACA)pathways[29,30]and the reaction between vinylacetyleneand phenyl radicalw ith the rate constant recommended in themodelof Blanquartetal.[31].The reaction of propargyl radicalw ith benzyl radical form s methylindenyl and H-atom and 1-methyleneindan-2-yl radical decomposes to naphthalene and H-atom subsequently.The rate constant of the two reactions are adopted from the theoretical investigation ofM atsugiet al.[32].The presentsub-mechanism of aromatic hydrocarbons has been validated from a lot of experimental data[10,19–22].The finalmodel consistsof 278 species and 1705 reactions.

    The thermodynam ic data aremainly taken from the thermodynam ics database[33]or our previousm odels [10,19–22],while the transport data are taken from the Chem kin transport database[34]or our previousmodels [10,19–22].For the shock tube pyrolysis experiments, the simulation is performed w ith the closed homogeneous batch reactor module in the Chem kin-Pro software[35].For the flow reactor pyrolysis experiments, the simulation is performed w ith the p lug flow reactor module in the Chem kin-Pro software[35].In the flow reactor experim ents,Thom aset al.[17]and Poddaret al.[15,18]only provided the information of residence time which is 0.3 s.Therefore in the simulation,the inlet axial velocity is set as 30 cm/s,while the starting and ending axial positionsare set as0 and 9 cm,respectively.As a result,the residence time in the simulation is also 0.3 s which is consistent w ith the experimental condition.

    III.RESULTS AND D ISCUSSION

    A.M odel validation on single com ponent pyrolysis

    The presentmodel is validated on the shock tube pyrolysis data of 1,3-butadiene and propyne reported by Hidakaet al.[36,37],the flow reactor pyrolysis data of 1,3-butadiene by Thomaset al.[17],and the flow reactor pyrolysis data of propyne by Poddaret al.[18]. The 1,3-butadiene shock tube pyrolysis was performed for 6%1,3-butadiene and 94%argon at 50 Torr[37], while the propyne shock tube pyrolysis was performed for 4%propyne and 96%argon at 1.7?2.6 atm[36]. The two fl ow reactor pyrolysis experim ents[17,18]are actually the single com ponent experiments for the 1,3-butadiene/propyne co-pyrolysisexperiment reported by the sam e group[15].The experim ental conditions of three flow reactor pyrolysis experiments[15,17,18]are listed in Table Iw ith PY-C4,PY-C3,and CO-PY de-noting the 1,3-butadiene pyrolysis,propyne pyrolysis and co-pyrolysis experim ents.

    FIG.1 Simulated results(lines)of(a)1,3-butadiene,(b) acetylene,(c)m ethane,(d)p ropyne,(e)allene,and(f)benzene in the shock tube pyrolysis of 1,3-butadiene com pared w ith the experim ental data(symbols)reported by Hidakaet al.[37].

    TABLE I Conditions of three flow reactor pyrolysis experiments[15,17,18].P=1 atm,t=0.3 s.

    The simulated results of the shock tube pyrolysis of 1,3-butadiene and propyne are com pared w ith the experimental results[36,37]in FIG.1 and 2,respectively. From the two figures it can beobserved that the present m odel has a generally good performance in capturing the trends of fuel decom position and product form ations for both 1,3-butadiene and propyne.

    FIG.3 and 4 show the comparison of the simulated results and experim ental data for the PY-C4 case reported by Thomaset al.[17]and the PY-C3 case reported by Poddaret al.[18],respectively.In order to be consistent w ith the work of Thomaset al.[17]and Poddaret al.[18],the term“%Fed C as C in given products”,i.e.the percentage in the total fed carbon for given products,is adopted here instead of the conventionally used“mole fraction”,and this can elim inate the influence of C-atom numbers in diff erent species.

    FIG.2 Simu lated results(lines)of(a)propyne,(b)allene, (c)methane and(d)acetylene in the shock tube pyrolysis of propyne com pared w ith the experim ental data(symbols) reported by Hidakaet al.[36].

    FIG.3 Simulated results(lines)of(a)1,3-butadiene,(b) acetylene,(c)methane,(d)benzene,and(e)toluene in the PY-C4 case com pared w ith experim ental data(symbols)reported by Thomaset al.[17].

    As shown in FIG.3 and 4,the present model well predicts the decomposition of fuels and the formation of products in both PY-C4 and PY-C3 experiments. For the PY-C4 case,the ROP analysis is perform ed at 1173 K when the products have already been abundantly produced.According to the ROP analysis,51% of 1,3-butadiene decom poses to ethylene and vinyl radical via the H-atom attack reaction(Eq.(1)),while theβ-C-H scission of vinyl radical leads to the formation ofacetylene.10%of 1,3-butadiene decomposes to ethylene and acetylene via the unim olecular decom position reaction(Eq.(2)),which contributes 13%to the production of acetylene.8%of 1,3-butadiene is consumed via the H-atom abstraction reaction bymethyl radical (Eq.(3))to produce 1,3-butadien-2-yl(iC4H5)radical and methane,which dom inates the formation of both products.iC4H5radicalmainly suffers theβ-C-H scission reaction to produce vinylacetylene(Eq.(4)),which is also the dom inant form ation pathway of vinyl acetylene.Besides,9%of 1,3-butadiene can be isomerizedto 1,2-butadiene via Eq.(5).1,2-Butadiene can further decom pose to propargyl radicaland methyl radical through Eq.(6),which is them ost im portant chain initiation reaction in the pyrolysis of 1,3-butadiene.The simulated results of two aromatic products in the PYC4 case,i.e.benzene and toluene,are also presented in FIG.3.The m ain pathway of toluene form ation is the addition reaction between propargyl radical and 1,3-butadiene.The benzene formation is controlled by several pathways,including the isomerization of fulvene,the decom position of toluene,self-combination of propargyl radical,and so on.

    FIG.4 Simulated resu lts(lines)of(a)propyne,(b)acetylene,(c)methane,and(d)benzene in the PY-C3 case compared w ith the experim ental data(symbols)reported by Poddaret al.[18].

    For the PY-C3 case,the ROP analysis is also performed at 1173K when the productshavealready abundantly produced.The ROP analysis shows that 59% of propyne form s allene via the isomerization reaction (Eq.(7)),which contributes 98%to the production of allene.It is noticed that the unimolecular decomposition of allene producing propargyl radical and H atom is them ain chain initiation reaction in the PY-C3 case, however this reaction is much m ore diffi cult to happen than Eq.(6)in the PY-C4 case.Therefore the propyne pyrolysis is less abundant w ith free radicals com pared to the 1,3-butadiene pyrolysis.The H-atom attack reaction(Eq.(8))consumes 17%of propyne to form methyl radicaland acetylene,which dom inates the formation of acetylene in the PY-C3 case.Only 25%of the generated methyl radical form s ethane via the selfcombination reaction,while 32%and 28%of methyl radical is consum ed via themethyl radical attack reactions on propyne and allene(Eq.(9)and Eq.(10)),respectively.Propargyl radical and methane can be produced from Eq.(9)and Eq.(10),which contribute 98% to the production ofm ethane and 63%to the production of propargyl radical.Different from the PY-C4 case,the reactions of propargyl radical w ith propyne and allene contribute 97%to the formation of benzene in the PY-C3 case.

    FIG.5(a)Simulated results(lines)of 1,3-butadiene and propyne in the CO-PY case com pared w ith the experim ental data(symbols)reported by Poddaret al.[15].(b)Simulated results(lines)of m ethane in the CO-PY,PY-C4,and PYC3 cases com pared w ith the experim ental data(symbols) reported by Poddaret al.[15],Thomaset al.[17],and Poddaret al.[18].

    B.Analysis of synergistic eff ect in co-pyrolysis

    As shown in FIG.5?7,the present model well captures the decomposition of the two fed fuels and the formation of methane,ethylene,acetylene,benzene, and toluene in the CO-PY case.For the two aromatic species benzene and toluene,the synergistic eff ect between 1,3-butadiene and propyne on their formation is investigated.Sim ilar to Poddaret al.[15],theweighted sum for a specific species is calculated from its yield values in the PY-C4 and PY-C3 cases at the same tem-perature:

    FIG.6 Simulated results(lines)of(a)ethylene and(b) acetylene in the CO-PY,PY-C4 and PY-C3 cases com pared w ith the experim ental data(symbols)reported by Poddaret al.[15],Thomaset al.[17],and Poddaret al.[18].

    where 0.429 and 0.571 are the fractions of propyne and 1,3-butadiene in the total fed carbon in the CO-PY case,respectively,whileYC4andYC3are theyield values from the PY-C3 and PY-C4 cases,respectively.Thus the weighted sum denotes the production of a specific species in the CO-PY case if there is no synergistic eff ect or other interactions between 1,3-butadiene and propyne.Themain reaction network in theCO-PY case is presented in FIG.8.

    In the CO-PY case,the ROP analysis is performed at 1173 K when the fuels are consum ed and the productsare produced abundantly.The ROP analysisshows that 29%of 1,3-butadiene decom poses to ethylene and vinyl radical via the H-atom attack reaction(Eq.(1)), while almost all vinyl radical decom poses to acetylene and H atom.19%of 1,3-butadiene in the CO-PY case is consumed to produce iC4H5radical via the H-atom abstraction reaction by methyl radical(Eq.(3)). iC4H5radical further decom poses to vinyl acetylene and H atom via the unim olecular decom position reaction(Eq.(4)),which contributes 83%to the production of vinyl acetylene.12%of 1,3-butadiene form s 1,2-butadiene via the isomerization reaction,and alm ost all 1,2-butadiene decom poses to propargyl radical and methyl radical subsequently,which contributes 33%to the production of propargyl radical.For the consum ption of the other fuelpropyne,the isom erization reaction Eq.(7)only contributes 27%to the consumption of propyne in the CO-PY case,instead of 60%in the PYC3 case.The H-atom attack reaction Eq.(8)becomes the most im portant consumption pathway of propyne w ith a contribution of 38%.The reason that Eq.(8) becomes more important than Eq.(7)in the CO-PY case is that the 1,3-butadiene pyrolysis system ismore abundant in radicals com pared w ith the propyne pyrolysis system,especially for H atom,according to the discussion above.This reveals the interaction between1,3-butadiene and propyne in the fuel decom position processes.

    FIG.7 Simulated results(lines)of(a)benzene and(b) toluene in the CO-PY,PY-C4 and PY-C3 cases com pared w ith the experimental data(symbols)reported by Poddaret al.[15],Thom aset al.[17],and Poddaret al.[18].The hollow starsand corresponding line in each figure represents the sim luated and experim ental weighted sum values calculated from Eq.(1).

    FIG.8 M ain reaction network in the CO-PY case.The arrow thickness is proportional to the carbon flux of the corresponding reaction pathway.

    As the sim p lest arom atic hydrocarbon,benzene has attracted great attention due to its im portant role in soot formation[1].As shown in FIG.7(a),the concentration level of benzene in the CO-PY case ismuch higher than that in the PY-C4 case and com parable to that in the PY-C3 case.As a result,the yield of benzene in the CO-PY case ishigher than theweighted sum of those in the PY-C4 and PY-C3 cases,dem onstrating the synergistic eff ect between 1,3-butadiene and propyneon the formation ofbenzene.Thisphenomenon can be analyzed using the ROP analysis,together w ith the sensitivity analysis of benzene and propargyl radical at 1173 K(FIG.9).The ROP analysis indicates that benzene is dom inantly produced from the addition reaction of propargyl radical to propyne(Eq.(11),57%) andallene(Eq.(12),17%)in the CO-PY case due to the high concentration levels of propyne and allene.

    According to the sensitivity analysis in FIG.9,the isomerization reaction of1,3-butadiene to 1,2-butadiene (Eq.(5))has the m aximum positive sensitivity coefficient to the formation of both benzene and propargyl radical in the CO-PY case.This reveals the interaction between 1,3-butadiene and propyne in the form ation of benzene.In the PY-C4 case,both propyne and allene can hard ly be produced[17],thus themain formation pathway of benzene is only the self-combination of propargyl radical,leading to a low concentration levelof benzene.In the PY-C3 case,allene is greatly produced from the isomerization ofpropyneand propargyl radical can be produced from the H-atom abstraction reactions of p ropyne,and allene,leading to a high concentration level of benzene.But it is recognized the production of propargyl radical in the PY-C3 case is not very effective due to the lack of free radicals.In the CO-PY case, the radical pool ismore abundant than the PY-C3 case due to the effective chain initiation reaction sequence (Eq.(5)and Eq.(6)),and propargyl radical can be readily produced from Eq.(6)and the H-atom abstraction reactions of propyne and allene.As a result,the synergistic eff ect on the formation benzene can be observed in the CO-PY case.

    FIG.9 Sensitivity analyses of(a)benzene and(b)propargyl radical in the CO-PY case.

    As shown in FIG.7(b),the yield of toluene in the CO-PY case is much higher than those in the PY-C4 and PY-C3 cases,aswell as the weighted sum,indicating a great synergistic eff ect between 1,3-butadiene and propyne on the formation of toluene.ROP and sensitivity analyses are also performed to investigate the origin of this synergistic effect.The ROP analysis shows that toluene is dom inantly produced from the effective pathway of propargyl radical+1,3-butadiene(Eq.(13)) in the PY-C4 and CO-PY cases,while the form ation of toluene in the PY-C3 case has to rely on the addition ofm ethyl radical to benzene(Eq.(14),97%)since on ly negligib le 1,3-butadiene can be produced[18].The sensitivity analysis of toluene at 1173 K for the CO-PY case(FIG.10)shows that reactions producing propargyl radical all have positive sensitivity coeffi cient,indicating the im portance of propargyl radical to the formation of toluene.As discussed above,the production of propargyl radical is stimulated in the CO-PY cases due to the interaction of 1,3-butadiene and propyne, leading to the synergistic eff ect on the formation of toluene through the typical C3+C4 pathway.On the other hand,the origin of toluene from 1,3-butadiene and propargyl radical in the PY-C4 and CO-PY cases makes it be formed at much earlier stage(~1050 K) than that(~1150 K)in PY-C3 cases.

    It is concluded that the reactions involving propargyl radicals p lay crucial roles in the synergistic eff ects between 1,3-butadiene and propyne on the form ation of benzene and toluene.However in the experimental work of Poddaret al.[15,18]and Thomaset al.[17], Free radicals were not able to be detected like propargyl radical due to the lim itation of gas chrom atography used in their work[1].Novel diagnostic methods such assynchrotron vacuum ultraviolet photoionizationmass spectrom etry[2,38–40]can detect these crucial reactive interm ediates and w ill benefi t the experimental investigations on synergistic effect.

    FIG.10 Sensitivity analysis of toluene in the CO-PY case.

    As the sim plest PAHs,indene and naphthalene are two key species in the form ation of grow th p rocesses of PAHs.FIG.11 shows the simulated peak values of the two PAHs in the three pyrolysis cases togetherw ith the experim ental data[15,17,18].As observed from the experim ental and simulated results,both the two PAHs have the highest yields in the CO-PY cases,indicating the synergistic effects between 1,3-butadiene and propyne on their form ation.The synergistic effect on the form ation of indene ismainly caused by the enhanced formation of indene through the addition of propargyl radical to benzene(Eq.(15))in the CO-PY case due to the stimulated production of propargyl radical and benzene.The main reason for the synergistic eff ect on the formation of naphthalene is the reaction between phenyl radical and vinyl acetylene(Eq.(16)). This reaction isonly im portant in the CO-PY case since the PY-C4 case produces less phenyl radical and the PY-C3 case lacks of vinyl acetylene.

    IV.CONCLUSIONS

    FIG.11 Simulated results(solid colum ns)of(a)indene and (b)naphthalene in the CO-PY,PY-C4,and PY-C3 cases com pared w ith the experimental data(slash columns)of(c) indene and(d)naphthalene reported by Poddaret al.[15], Thomaset al.[17]and Poddaret al.[18].

    A detailed kinetic m odel of 1,3-butadiene/propyne co-pyrolysis w ith the sub-m echanism of arom atic hydrocarbon formation is developed.The simulated yield profi les of fuels,decom position products and several aromatic hydrocarbons capture the experim ental data of single com ponent pyrolysis and co-pyrolysis well. The ROP and sensitivity analysesare performed to understand the key reaction pathways in the fuel decomposition and arom atic hydrocarbon formation processes which provide insight into the synergistic effects between 1,3-butadieneand propyneon aromatic hydrocarbon form ation.1,3-Butadiene ism ainly consumed by the H-atom attack reaction to form ethylene and vinyl radical,while the unimolecular decom position of its isomerization product 1,2-butadiene to propargyl radical and methyl radical is themost im portant chain initiation pathway.Propyne ismainly consum ed via the isomerization reaction to form allene,the H-atom attack reaction to form acetylene and methyl radical,and the H-atom abstraction reactions to form propargyl radical. It is notable that in the PY-C3 case the last two reactionsaresuppressed due to the lack of free radicals.The synergistic effect on the formation of benzene,toluene, indene and naphthalene is concluded to result from the interaction between 1,3-butadiene and propyne.On one hand,the easily happened chain initiation in the 1,3-butadiene decom position provides an abundant radical pool for propyne to undergo the H-atom abstraction reaction and produce propargyl radical which p lays a key role in the formation of benzene,toluene and indene.On the other hand,the 1,3-butadiene/propyne co-pyrolysis includeshigh concentration levelsofC3 and C4 precursors simultaneously,which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene greatly.

    V.ACKNOW LEDGM ENTS

    This work is supported by the National Natural Science Foundation of China(No.51476155, No.51622605,No.91541201),the National Key Scientific Instrum ents and Equipm ent Developm ent Program of China(No.2012YQ22011305),the National Postdoctoral Program for Innovative Talents (No.BX201600100),and China Postdoctoral Science Foundation(No.2016M 600312).

    [1]C.S.M cEnally,L.D.Pfeff erle,B.Atakan,and K. Kohse-H¨oinghaus,Prog.Energy Combust.Sci.32,247 (2006).

    [2]F.Qi,R.Yang,B.Yang,C.Q.Huang,L.X.Wei,J. W ang,L.S.Sheng,and Y.W.Zhang,Rev.Sci.Instrum. 77,084101(2006).

    [3]B.Yang,Y.Y.Li,L.X.Wei,C.Q.Huang,J.Wang, Z.Y.T ian,R.Yang,L.S.Sheng,Y.W.Zhang,and F. Qi,Proc.Combust.Inst.31,555(2007).

    [4]Y.Y.Li,L.D.Zhang,Z.Y.Tian,T.Yuan,J.Wang, B.Yang,and F.Qi,Energy Fuels 23,1473(2009).

    [5]Y.Y.Li,L.D.Zhang,Z.Y.Tian,T.Yuan,K.W. Zhang,B.Yang,and F.Qi,Proc.Combust.Inst.32, 1293(2009).

    [6]H.Richter and J.B.Howard,Phys.Chem.Chem.Phys. 4,2038(2002).

    [7]L.D.Zhang,J.H.Cai,T.C.Zhang,and F.Qi,Combust.Flam e 157,1686(2010).

    [8]Y.Y.Li,J.H.Cai,L.D.Zhang,T.Yuan,K.W.Zhang, and F.Qi,Proc.Combust.Inst.33,593(2011).

    [9]Y.Y.Li,L.D.Zhang,Z.D.Wang,L.L.Ye,J.H.Cai, Z.J.Cheng,and F.Qi,Proc.Combust.Inst.34,1739 (2013).

    [10]W.H.Yuan,Y.Y.Li,P.Dagaut,J.Z.Yang,and F. Qi,Combust.Flam e 162,3(2015).

    [11]J.F.Roesler,S.Martinot,C.S.M cEnally,L.D.Pfeff erle,J.L.Delfau,and C.Vovelle,Combust.Flam e 134,249(2003).

    [12]S.Trottier,H.Guo,G.J.Smallwood,and M.R.Johnson,Proc.Combust.F lam e 31,611(2007).

    [13]J.Y.Hwang,S.H.Chung,and W.Lee,Proc.Combust. Flam e 27,1531(1998).

    [14]J.Y.Hwang,W.Lee,H.G.Kang,and S.H.Chung, Combust.Flam e 114,370(1998).

    [15]N.B.Poddar,S.Thom as,and M.J.Wornat,Proc. Combust.Inst.34,1775(2013).

    [16]B.C.Choi,S.K.Choi,and S.H.Chung,Proc.Combust.Inst.33,609(2011).

    [17]S.Thom as and M.J.Wornat,Proc.Combust.Inst.32, 615(2009).

    [18]N.B.Poddar,S.Thomas,and M.J.Wornat,Proc. Combust.Inst.33,541(2011).

    [19]H.F.Jin,A.Frassoldati,Y.Z.Wang,X.Y.Zhang,M. R.Zeng,Y.Y.Li,F.Qi,A.Cuoci,and T.Faravelli, Combust.Flam e 162,1692(2015).

    [20]W.H.Yuan,Y.Y.Li,P.Dagaut,J.Z.Yang,and F. Qi,Combust.Flam e 162,22(2015).

    [21]H.F.Jin,J.H.Cai,G.Q.Wang,Y.Z.Wang,Y.Y. Li,J.Z.Yang,Z.J.Cheng,W.H.Yuan,and F.Qi, Combust.Flam e 169,154(2016).

    [22]W.H.Yuan,Y.Y.Li,G.Pengloan,C.Togb′e,P.Dagaut,and F.Qi,Combust.Flame 166,255(2016).

    [23]C.Chanmugathas and J.Heicklen,Int.J.Chem.K inet. 18,701(1986).

    [24]J.A.M iller and S.J.K lippenstein,J.Phys.Chem.A 107,7783(2003).

    [25]A.D’Anna,A.D’A lessio,and J.Kent,Combust.Sci. Technol.174,279(2002).

    [26]S.J.K lippenstein,L.B.Harding,and Y.Georgievskii, Proc.Combust.Inst.31,221(2007).

    [27]L.Vereecken and J.Peeters,Phys.Chem.Chem.Phys. 5,2807(2003).

    [28]C.Cavallotti,D.Polino,A.Frassoldati,and E.Ranzi, J.Phys.Chem.A 116,3313(2012).

    [29]H.Wang and M.Frenklach,Combust.Flam e 96,163 (1994).

    [30]H.Wang and M.Frenk lach,Combust.Flame 110,173 (1997).

    [31]G.Blanquart,P.Pepiot-Desjardins,and H.Pitsch, Combust.Flam e 156,588(2009).

    [32]A.M atsugi and A.M iyoshi,Int.J.Chem.K inet.44, 206(2012).

    [33]E.Goos,A.Burcat,and B.Ruscic,Ideal Gas Thermochem ical Database w ith Updates from Active Therm ochem ical Tables,ftp://ftp.technion.ac.il/ pub/supported/aetdd/thermodunam ics(2005).

    [34]J.A.M iller,J.P.Senosiain,S.J.K lippenstein,and Y. Georgievskii,J.Phys.Chem.A 112,9429(2008).

    [35]Reaction Design,Chemkin-Pro 15092,San Diego (2009).

    [36]Y.Hidaka,T.Nakamura,A.M iyauchi,T.Shiraishi, and H.Kawano,Int.J.Chem.K inet.21,643(1989).

    [37]Y.Hidaka,T.Higashihara,N.Ninom iya,H.M asaoka, T.Nakamura,and H.Kawano,Int.J.Chem.K inet.28, 137(1996).

    [38]B.Yang,P.Osswald,Y.Y.Li,J.Wang,L.X.Wei, Z.Y.Tian,F.Qi,and K.Kohse-H¨oinghaus,Combust. Flame 148,198(2007).

    [39]P.Osswald,H.G ldenberg,K.Kohse-H¨oinghaus,B. Yang,T.Yuan,and F.Qi,Combust.Flam e 158,2 (2011).

    [40]F.Qi,Proc.Combust.Inst.34,33(2013).

    ceived on March 12,2017;Accepted on May 10,2017)

    ?Author to whom correspondence shou ld be addressed.E-m ail: yuanw h@sjtu.edu.cn,Tel.:+86-21-34204115

    国产精品一区二区在线不卡| 性色avwww在线观看| 各种免费的搞黄视频| 赤兔流量卡办理| 韩国高清视频一区二区三区| 嫩草影院入口| 伦理电影免费视频| 亚洲av福利一区| 中国三级夫妇交换| 3wmmmm亚洲av在线观看| 亚洲美女黄色视频免费看| 久久免费观看电影| 插逼视频在线观看| 久久婷婷青草| 国产91av在线免费观看| 丝袜脚勾引网站| 最后的刺客免费高清国语| 啦啦啦中文免费视频观看日本| 啦啦啦在线观看免费高清www| 欧美日韩精品成人综合77777| 在线观看av片永久免费下载| 国产男女超爽视频在线观看| 国产精品人妻久久久久久| 精品亚洲成国产av| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区黑人 | 成人国产麻豆网| 免费久久久久久久精品成人欧美视频 | 亚洲婷婷狠狠爱综合网| 一边亲一边摸免费视频| 精品一区二区免费观看| 91aial.com中文字幕在线观看| 日本免费在线观看一区| 亚洲丝袜综合中文字幕| 夜夜骑夜夜射夜夜干| 菩萨蛮人人尽说江南好唐韦庄| 国产伦精品一区二区三区四那| 热99国产精品久久久久久7| 亚洲欧美成人综合另类久久久| 久久鲁丝午夜福利片| 狂野欧美激情性bbbbbb| 草草在线视频免费看| 欧美激情国产日韩精品一区| 下体分泌物呈黄色| 极品人妻少妇av视频| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 亚洲中文av在线| av不卡在线播放| 亚洲欧美精品专区久久| 欧美日韩亚洲高清精品| 国产国拍精品亚洲av在线观看| 欧美精品一区二区大全| 99re6热这里在线精品视频| 午夜免费观看性视频| 在线观看免费视频网站a站| 国产男人的电影天堂91| 又大又黄又爽视频免费| 日本色播在线视频| 3wmmmm亚洲av在线观看| 天天操日日干夜夜撸| 高清黄色对白视频在线免费看 | 精品久久国产蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲欧洲国产日韩| 国产精品成人在线| 久久久久久久久久久久大奶| 熟女电影av网| 国产精品久久久久久久电影| 99精国产麻豆久久婷婷| av有码第一页| 精品酒店卫生间| 久久久久久久久久久免费av| 伦理电影大哥的女人| 亚洲国产日韩一区二区| 亚洲久久久国产精品| 十八禁网站网址无遮挡 | 国产亚洲欧美精品永久| 亚洲av.av天堂| 亚洲综合色惰| 色婷婷av一区二区三区视频| 日韩不卡一区二区三区视频在线| 亚洲精品乱久久久久久| 亚洲一级一片aⅴ在线观看| 最新中文字幕久久久久| av免费观看日本| 久久精品国产自在天天线| 26uuu在线亚洲综合色| 哪个播放器可以免费观看大片| 街头女战士在线观看网站| 精品国产乱码久久久久久小说| 国产一区二区三区av在线| 欧美bdsm另类| 少妇人妻 视频| 欧美亚洲 丝袜 人妻 在线| 性色av一级| 国产熟女欧美一区二区| 国产精品一区二区性色av| 五月伊人婷婷丁香| 日韩精品免费视频一区二区三区 | 日韩熟女老妇一区二区性免费视频| h日本视频在线播放| 久久久久久久久久久免费av| 国产精品一区二区三区四区免费观看| 欧美+日韩+精品| 韩国高清视频一区二区三区| 综合色丁香网| 久久精品久久久久久噜噜老黄| 亚洲精品乱久久久久久| 伦精品一区二区三区| 美女视频免费永久观看网站| 一区二区三区四区激情视频| 日本与韩国留学比较| 成人免费观看视频高清| 男人添女人高潮全过程视频| 国产精品久久久久久精品古装| 国产免费一区二区三区四区乱码| 99热网站在线观看| 少妇人妻久久综合中文| 夫妻午夜视频| 精品久久久久久久久av| 一级毛片久久久久久久久女| 免费大片18禁| 日韩欧美精品免费久久| 国产美女午夜福利| 九九爱精品视频在线观看| 国产色婷婷99| 日韩欧美一区视频在线观看 | 国产精品国产三级国产av玫瑰| 97在线视频观看| av在线播放精品| 国产老妇伦熟女老妇高清| 亚洲成人一二三区av| 亚洲精品国产av蜜桃| 国产色婷婷99| 国产伦理片在线播放av一区| .国产精品久久| 亚洲真实伦在线观看| 亚洲伊人久久精品综合| 啦啦啦在线观看免费高清www| 精品一区在线观看国产| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 老司机影院成人| 另类精品久久| 中文在线观看免费www的网站| 美女中出高潮动态图| 亚洲性久久影院| 国产熟女欧美一区二区| 日韩欧美 国产精品| 伊人亚洲综合成人网| 又大又黄又爽视频免费| 免费久久久久久久精品成人欧美视频 | 一级片'在线观看视频| 97在线视频观看| 国产成人免费无遮挡视频| 热99国产精品久久久久久7| 三级国产精品片| 自线自在国产av| 欧美一级a爱片免费观看看| av专区在线播放| 午夜福利,免费看| 国产一区二区三区综合在线观看 | 欧美日韩视频高清一区二区三区二| 国精品久久久久久国模美| 亚洲国产精品成人久久小说| 国产无遮挡羞羞视频在线观看| 国产深夜福利视频在线观看| 日本91视频免费播放| 成人午夜精彩视频在线观看| 国产一区二区三区综合在线观看 | 免费观看性生交大片5| 老司机亚洲免费影院| 男人爽女人下面视频在线观看| 亚洲av在线观看美女高潮| 秋霞伦理黄片| 国产男女超爽视频在线观看| 国产av码专区亚洲av| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 精品少妇久久久久久888优播| 欧美日韩av久久| 91成人精品电影| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 街头女战士在线观看网站| 在线观看三级黄色| 能在线免费看毛片的网站| 免费黄色在线免费观看| 免费黄频网站在线观看国产| 亚洲,欧美,日韩| 日韩欧美 国产精品| 女人精品久久久久毛片| 免费观看无遮挡的男女| 亚洲欧美中文字幕日韩二区| 精品亚洲乱码少妇综合久久| 欧美高清成人免费视频www| 天堂中文最新版在线下载| freevideosex欧美| 亚州av有码| 久久99热这里只频精品6学生| 亚洲国产精品成人久久小说| 在线亚洲精品国产二区图片欧美 | 国产深夜福利视频在线观看| 99久久精品一区二区三区| 亚洲av二区三区四区| 亚洲激情五月婷婷啪啪| 大码成人一级视频| 亚洲高清免费不卡视频| 久久久久国产精品人妻一区二区| 少妇高潮的动态图| 婷婷色av中文字幕| 99久久精品一区二区三区| 免费观看在线日韩| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 乱系列少妇在线播放| av在线老鸭窝| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 国产国拍精品亚洲av在线观看| 一本久久精品| 老熟女久久久| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区 | 一级av片app| 国产精品不卡视频一区二区| 国产一区二区三区综合在线观看 | 国产精品伦人一区二区| 精品久久久噜噜| 国产精品一区二区三区四区免费观看| 这个男人来自地球电影免费观看 | a级一级毛片免费在线观看| 黄色一级大片看看| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 婷婷色综合www| 久久久久久久国产电影| 免费看光身美女| 婷婷色麻豆天堂久久| 精品久久久久久久久av| 婷婷色综合www| 99久久人妻综合| 久久久久国产网址| 蜜臀久久99精品久久宅男| 偷拍熟女少妇极品色| 久久人人爽人人片av| 亚洲性久久影院| 最新的欧美精品一区二区| 人人澡人人妻人| 少妇人妻精品综合一区二区| 国产成人精品一,二区| 人人妻人人澡人人爽人人夜夜| 国产极品粉嫩免费观看在线 | 男人舔奶头视频| 国产精品欧美亚洲77777| 国产亚洲精品久久久com| 国产91av在线免费观看| 国产精品人妻久久久久久| 天天操日日干夜夜撸| 国产伦精品一区二区三区视频9| 中文字幕av电影在线播放| 18禁动态无遮挡网站| 久久精品国产亚洲av涩爱| 久久99一区二区三区| 精品久久久久久电影网| 国产精品欧美亚洲77777| 曰老女人黄片| 99热这里只有是精品50| 大话2 男鬼变身卡| 九九久久精品国产亚洲av麻豆| 亚洲国产最新在线播放| 免费在线观看成人毛片| 日韩电影二区| 你懂的网址亚洲精品在线观看| 3wmmmm亚洲av在线观看| av国产精品久久久久影院| 国产精品久久久久久久久免| 日日摸夜夜添夜夜添av毛片| 如日韩欧美国产精品一区二区三区 | 日韩视频在线欧美| 最近中文字幕2019免费版| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频| 久久久久久久国产电影| 女人久久www免费人成看片| 最新中文字幕久久久久| 91精品国产国语对白视频| 妹子高潮喷水视频| 国产成人精品福利久久| av免费在线看不卡| 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 少妇人妻 视频| 一本久久精品| 91成人精品电影| 天天操日日干夜夜撸| 久久影院123| 中文字幕制服av| 午夜福利在线观看免费完整高清在| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| av一本久久久久| 国产视频内射| 人人妻人人看人人澡| 男女边摸边吃奶| 人人澡人人妻人| 国产精品久久久久久精品古装| 成人国产av品久久久| 青青草视频在线视频观看| 热re99久久精品国产66热6| 看免费成人av毛片| 久久精品国产自在天天线| 能在线免费看毛片的网站| 精品亚洲成国产av| 天堂中文最新版在线下载| 亚洲欧洲日产国产| 久久99热6这里只有精品| 亚洲在久久综合| 日本wwww免费看| 中文字幕精品免费在线观看视频 | 亚洲国产欧美在线一区| 在现免费观看毛片| 精品久久久噜噜| 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 国产视频内射| 九草在线视频观看| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站| 亚洲无线观看免费| 国产一区二区在线观看av| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 国产精品偷伦视频观看了| 久久青草综合色| 亚洲图色成人| av.在线天堂| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 亚洲无线观看免费| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 一级二级三级毛片免费看| 国产一级毛片在线| 欧美日韩综合久久久久久| 一级a做视频免费观看| 日韩一区二区三区影片| 亚洲经典国产精华液单| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 精品人妻熟女毛片av久久网站| 五月伊人婷婷丁香| 国产黄片视频在线免费观看| av线在线观看网站| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 久久女婷五月综合色啪小说| 午夜激情久久久久久久| 韩国av在线不卡| 成年人免费黄色播放视频 | videossex国产| 久久精品国产亚洲av天美| 99精国产麻豆久久婷婷| 国产精品免费大片| 性色av一级| 少妇高潮的动态图| 国产成人91sexporn| 大香蕉97超碰在线| 尾随美女入室| 七月丁香在线播放| 午夜激情福利司机影院| 精品少妇黑人巨大在线播放| 十分钟在线观看高清视频www | 精品99又大又爽又粗少妇毛片| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 香蕉精品网在线| 日本黄大片高清| 欧美日韩视频高清一区二区三区二| 日日啪夜夜爽| 日本黄大片高清| 丰满迷人的少妇在线观看| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频 | 久久97久久精品| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 精品久久久精品久久久| 中文字幕久久专区| 亚洲精品,欧美精品| 亚洲成人手机| 久久久欧美国产精品| 最新中文字幕久久久久| 曰老女人黄片| 国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 日韩欧美 国产精品| 亚洲情色 制服丝袜| 亚洲国产毛片av蜜桃av| 久久99蜜桃精品久久| videossex国产| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| kizo精华| 亚洲怡红院男人天堂| 久久久久国产精品人妻一区二区| 黄色一级大片看看| 久久久国产一区二区| 丝袜在线中文字幕| 中文天堂在线官网| 美女福利国产在线| 青春草视频在线免费观看| 国产熟女午夜一区二区三区 | 天美传媒精品一区二区| tube8黄色片| 日韩欧美 国产精品| 嫩草影院入口| 日韩欧美一区视频在线观看 | 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 国产一区二区在线观看日韩| 人妻少妇偷人精品九色| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 成人无遮挡网站| 少妇被粗大的猛进出69影院 | 一本久久精品| 看免费成人av毛片| 国产男女内射视频| 久久久久久久久久久丰满| 亚洲精品乱码久久久久久按摩| 春色校园在线视频观看| 国产毛片在线视频| 在线观看三级黄色| 黑人巨大精品欧美一区二区蜜桃 | 免费看av在线观看网站| 亚洲成人av在线免费| 99九九线精品视频在线观看视频| 国产国拍精品亚洲av在线观看| 亚洲内射少妇av| 99热全是精品| 人体艺术视频欧美日本| 最近最新中文字幕免费大全7| 精品人妻熟女av久视频| 老司机影院毛片| 99九九线精品视频在线观看视频| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 内射极品少妇av片p| 日本猛色少妇xxxxx猛交久久| 日日啪夜夜爽| 免费观看a级毛片全部| 乱系列少妇在线播放| 99视频精品全部免费 在线| av国产精品久久久久影院| 国产又色又爽无遮挡免| 女人精品久久久久毛片| 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 亚洲综合精品二区| 国产欧美亚洲国产| 免费大片18禁| 人人妻人人看人人澡| 亚洲av福利一区| 国产日韩欧美亚洲二区| 少妇人妻一区二区三区视频| 久久久久精品性色| 亚洲成人av在线免费| 人人妻人人添人人爽欧美一区卜| 中文字幕久久专区| 99热网站在线观看| 久久久久久人妻| 美女主播在线视频| 久久精品国产亚洲网站| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 国产白丝娇喘喷水9色精品| 免费大片18禁| 人人妻人人看人人澡| 一级片'在线观看视频| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 在线观看av片永久免费下载| 国产淫片久久久久久久久| 你懂的网址亚洲精品在线观看| 午夜福利视频精品| 欧美激情国产日韩精品一区| 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 大码成人一级视频| 老女人水多毛片| 日韩三级伦理在线观看| 丁香六月天网| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 交换朋友夫妻互换小说| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 久久午夜福利片| h日本视频在线播放| 男男h啪啪无遮挡| av有码第一页| 高清不卡的av网站| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡 | 男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 男男h啪啪无遮挡| 成人亚洲精品一区在线观看| 国产av国产精品国产| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 国产免费又黄又爽又色| 午夜激情久久久久久久| 亚洲av成人精品一区久久| 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 韩国av在线不卡| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 丝袜在线中文字幕| 日韩精品免费视频一区二区三区 | 两个人的视频大全免费| 久久精品久久精品一区二区三区| 日韩一区二区视频免费看| 亚洲精品色激情综合| 一级爰片在线观看| 桃花免费在线播放| 久久久久久久久久久丰满| 69精品国产乱码久久久| 国产精品伦人一区二区| 亚洲天堂av无毛| 特大巨黑吊av在线直播| 男女边摸边吃奶| 91精品国产国语对白视频| 久久久久久久久久成人| 色视频在线一区二区三区| 久久久久久久久久成人| 久久6这里有精品| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 伦精品一区二区三区| 观看美女的网站| 亚洲国产日韩一区二区| 国产综合精华液| 99国产精品免费福利视频| 校园人妻丝袜中文字幕| 免费看光身美女| 我要看日韩黄色一级片| kizo精华| 久久午夜综合久久蜜桃| 伊人久久精品亚洲午夜| 亚洲色图综合在线观看| 久久久国产精品麻豆| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 交换朋友夫妻互换小说| 99九九在线精品视频 | 少妇裸体淫交视频免费看高清| 国产成人精品福利久久| 大片免费播放器 马上看| 最近中文字幕2019免费版| 亚洲综合精品二区| 久久久久久久久久久久大奶| 亚洲精品第二区| 亚洲美女黄色视频免费看| 熟妇人妻不卡中文字幕| 久久久久久久久大av| 国产淫语在线视频| 国产高清国产精品国产三级| 十八禁网站网址无遮挡 | 亚洲国产日韩一区二区| 日日摸夜夜添夜夜爱| 精品国产一区二区三区久久久樱花| 亚洲四区av| 边亲边吃奶的免费视频| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 亚洲精品456在线播放app| 少妇人妻 视频| 国产高清三级在线| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 美女内射精品一级片tv| 高清黄色对白视频在线免费看 | 在线观看av片永久免费下载| 婷婷色av中文字幕| 精品久久久久久电影网| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 国产伦在线观看视频一区| av卡一久久|