• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT+U Analysis on Stability of Low-Index Facets in Hexagonal LaCoO3Perovskite:Eff ect of Co3+Spin States

    2017-07-05 13:06:21DanWuGongongChenChaoyiGeZhenpengHubcXuehaoHeXingangLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Dan WuGong-ong ChenChao-yiGeZhen-peng HubcXue-hao HeXin-gang Li

    a.Tianjin Key Laboratory ofApplied Catalysis Science&Technology(Tianjin),Tianjin 300072,China

    b.Collaborative Innovation CenterforChem ical Science&Engineering(Tianjin),Tianjin 300072,China

    c.School of Physics,NankaiUniversity,Tianjin 300071,China

    d.Department ofChem istry,School of Science,Tianjin University,Tianjin 300072,China

    DFT+U Analysis on Stability of Low-Index Facets in Hexagonal LaCoO3Perovskite:Eff ect of Co3+Spin States

    Dan Wua,b,Gong-dong Chena,b,Chao-yiGea,b,Zhen-peng Hub,c?,Xue-hao Hed,Xin-gang Lia,b?

    a.Tianjin Key Laboratory ofApplied Catalysis Science&Technology(Tianjin),Tianjin 300072,China

    b.Collaborative Innovation CenterforChem ical Science&Engineering(Tianjin),Tianjin 300072,China

    c.School of Physics,NankaiUniversity,Tianjin 300071,China

    d.Department ofChem istry,School of Science,Tianjin University,Tianjin 300072,China

    By the fi rst-princip les calculations,m ost studies indicated that the(1ˉ102)-CoO2term ination of LaCoO3cannot be stabilized,which disagreesw ith the experimentalobservation.Besides the crystalstructure,we found that the spin statesof Co3+ions could affect surface stability, which previously were not well considered.By exam ining the diff erent states of Co3+ions in hexagonal-phase LaCoO3,including low spin,intermediate spin,and high spin states,the surface grand potentials of these facets are calculated and compared.The results show that the spin states of Co3+ions have an im portant influence on stability of the LaCoO3faˉcets. Diff erent from the previous results,the stability diagram s dem onstrate that the(1102)-CoO2term ination can stably exist under O-rich condition,which can get an agreementw ith the experimental ones.Furthermore,the surface oxygen vacancy formation energies(EOv) of stable facets are com puted in diff erent spin states.TheEOvof these possible exposed term inations strongly depend on the spin state of Co3+ions:in particular,theEOvof the HS states is lower than that of other spin states.This indicates that one can tune the pro perties of LaCoO3by directly tuning the spin states of Co3+ions.

    DFT+U,Spin state,Surface,Perovskite

    I.INTRODUCTION

    In recent decades,perovskite oxides(ABO3)have aroused considerable interests as the cathodematerials in solid oxide fuel cells for use in many energy storage and conversion technologies,such as the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)[1?5].These oxides are also catalyticallyactive and cost-effective catalysts for many im portant chem ical reactions,such as NOx(including NO and NO2)storage reduction[6,7],CO oxidation[8],and m ethane combustion[9].Since those catalytic reactions are surface processes,studies on the surface properties of thosematerials play an im portant role in deep ly understanding the catalytic reactions.Usually,the experim ental observations believed that(001)facets,particularly(001)B-term inated surface,in perovskite oxides(ABO3)are stable and play a pivotal role in these catalytic chem ical reactions[10?14].However,to the best of our know ledge,the surface stabilities of perovskite oxides,especially for LaCoO3,are still under debate from theoretical calculations.For examp le,us-ing the cubic-phase structure of LaCoO3in the calculations,Kahnet al.[15]predicted the Co-term inated (111)surface and LaCoO-term inated(110)surface to be the most stable;Chenet al.[16]reported that the ground term ination was the(001)-LaO surface,transitioning to the(111)-LaO3facet in oxygen-rich condition;while Zhanget al.[17]found that the LaO-and CoO2-term inated(001)surfaceswere stable.

    It is noticed that LaCoO3has a rhombohedral primitive cellw ithsymmetry[18?23],which belongs to the hexagonal phase,but the cubic phase was used in the previous calculations[15?17].As well known,results from the fi rst-princip les calculations are very sensitive to the geometric structure ofmaterials.Therefore,the com p lexity of p revious studiesmay com e from the difference on crystal structures of LaCoO3.Recently,Liuet al.exp lored the stability of low-index facets on the hexagonal-phase LaCoO3by using the fi rˉst-p rincip lesˉ analysis[24],and they found that the (1102)-LaO,(1104)-O2and(0001)-LaO3term inations were thermodynam ically stable w ith a non-spin(NS) state.Though a more accurate crystal structure was em p loyed in their calculations,the results were still in confl ict w ith the common sense from the experimentalists that the(001)-CoO2was stable and active in the reactions[11?14].Therem ight be som e key factors ig-noredin previous calculations,which can reconcile the disagreement between com putational result and experim ental observation.

    Besides the crystal structure,the spin state of Co3+ion is another im portant factor which can aff ect the resultsof calculations,butwasnotwell considered before. As reported in Ref.[25?29],LaCoO3exhibits nonmagnetic behavior at low tem perature(below 90 K)where the Co3+ions are in the low spin(LS)states,and undergoes a transition from sem iconductor to metal over 500 K,coincident to the spin state transition from intermediate spin(IS)to high spin(HS).It has also been reported that the spin states of Co3+ions in LaCoO3can greatly affect oxygen vacancy formation on the surface[30]and theirm igration in the bulk[31].However, there is a lack of report on surface stability of LaCoO3w ith consideration of the effects of spin states of Co3+ions.To this point,the reason for the above disagreem ent may arise from the spin states of the Co3+ions in LaCoO3.It is necessary to perform calcu lationsw ith appropriate Co3+spin states to clarify the propertiesof LaCoO3surface system s for the in-depth researches.

    In this work,we com pared the surface grand potentials(?)of low-index facets of hexagonal-phase LaCoO3,where the Co3+ions’spin states are in LS,IS (ferromagnetic(FM),and anti-ferromagnetic(AFM)) and HS(FM,and AFM)states,to get a com prehensive understanding of LaCoO3surface system s.We determ ined the stable surfaces of LaCoO3in special chemical conditions by com paring the surface grand potentials(?).As the spin states of Co3+ions change,the region of stability diagram undergoes a significant variation.In addition,theEOvof stable facets of LaCoO3were com puted in different spin states.It indicates that the energy of surface oxygen vacancy links strongly to the spin mom ent of Co3+ions.Our simulations indicate that the(1ˉ102)-CoO2-term inated facet in hexagonal LaCoO3can be stabilized in most spin stateswhen the Co3+ions’spin states are taken into consideration. And this agreeswellw ith the experim entalobservation.

    II.COM PUTATIONAL DETAILS

    A.M odels of bulk and slab

    The space group of crystalline LaCoO3is(No.167),which can be constructed w ith either a rhombohed ral or a hexagonal m odel(FIG.1).The Jahn-Teller effect causes a slight distortion of CoO6octahedron in LaCoO3,resulting in a prim itive cell of rhombohedral structure[18]w ith lattice param eters ofa=b=c=5.344?A,α=β=γ=61.01?(FIG.1(a)).As shown in FIG.1(b),theexperimental latticeparameters of hexagonalm odel[18]area=b=5.426?A,c=12.991?A,α=β=90?,andγ=120?.

    FIG.1(a)Rhombohedral p rim itive cell and(b)hexagonal unit cells of LaCoO3.G reen,blue,and red balls represent La,Co and O atom s,respectively.

    FIG.2 The top and side view s of optim ized(a)(1ˉ102)-LaO,(b)(1ˉ102)-CoO2,(c)(0001)-LaO3,(d)(0001)-Co,(e) (ˉ1104)-LaCoO,and(f)(ˉ1104)-O2.G reen,blue,and red balls represent La,Co,and O atom s,respectively.

    In order to discuss the thermodynam ic stability of the low-index surfaces,we constructed six slab models.Adapted from the m odels in Ref.[24],a sevenlayer nonstoichiometric slab of LaO(FIG.2(a))or CoO2(FIG.2(b))term ination was used to simulate the facet along the(1ˉ102)direction,a thirteen-layer nonstoichiometric slab of LaO3(FIG.2(c))or Co(FIG.2(d))term ination wasused to simulate the facet along the(0001) direction;and an eleven-layer nonstoichiometric slab of LaCoO(FIG.2(e))or O2(FIG.2(f))term ination was used to simulate the facet along the(ˉ1104)direction. The(1ˉ102),(0001)and(ˉ1104)directions in the hexagonal phase correspond to the(001),(111)and(110) directions in a pseudo cubic phase.The black fram es in FIG.2 represent the periodic boundaries.

    B.General setup for com putation

    Density functional theory(DFT)calculations were performed w ith the Viennaab initioSimulation Package(VASP)[32,33].Thenucleiand core electronswere treated w ith the projector augmented wave(PAW)[34] m ethod.Generalized gradient approxim ation(GGA) w ith the Perdew-Burke-Ernzerhof(PBE)[35]form was em ployed to describe the electron exchange and correlation.For relaxation of bulk LaCoO3(hexagonal phase),a p lane wave basis set w ith cut-off of 400 eV and a 7×7×3 Monkhorst-Pack[36]k-point mesh were used to get the optimal lattice parameters.The optim al parameters of hexagonal phase area=b=5.485?A andc=13.031?A.For the slab calculations,the p lane wave energy cutoff of 400 eV and a 3×3×1 ofk-point mesh were used to get the properties of different surfaces.A ll the atom s in the bulk and slab were allowed to relax until the maximum force on each atom was smaller than 0.05 eV/?A.In each slab model,a separation over 15?A in vacuum was introduced to m inim ize interactions between periodic im ages.

    The oxygen vacancy formation energy(EOv)is calculated using the follow ing equation:

    whereE(defect)is the totalenergy of the slab w ith one surface oxygen vacancy,E(perfect)is the energy of the ideal slab andE(O2)is the energy of the O2molecule in the gas phase,respectively.

    The different Co-3d occupations result in three spin states of Co3+ions in LaCoO3,including LS of t2g6eg0(S=0),IS of t2g5eg1(S=1)and HS of t2g4eg2(S=2). Each spin statewas constructed by changing the initial m agnetic mom ent of Co3+ion,i.e.LS=0,IS=±2 and HS=±4,where thequantity is the diff erencebetween alpha and beta electrons in a certain Co3+ion.The initial configurations of all Co3+ionswere set by MAGMOM, and then NUPDOWN was chosen to control the total spin of the slab.The selection rule of spin was also app lied to get a reasonable energy when oxygen vacancy was generated.For exam ple,two total spin numbers of the defect slab(+2 or?2 from the total spin number of initial slab)were calculated and the lower energy wasaccepted.The spin state of calculated O2molecule is always triplet.The partially fi lled d states in the Co3+ions are not well described by the standard DFT calculations,where the norm al GGA m ethods give a zero band gap of LaCoO3on the contrast to the experimental value of about 0.6 eV[37].We thus performed the DFT+Uapproach,where the on-siteUandJwere treated asa singleeff ective parameter among the d electrons on the Co3+ions,Ueff=U?J[38?40].We fixedJ=0.49 eV[41]in allour GGA+Ucalculations,and varied the value ofUin determ ining an optimal param eterU(3.4 eV),which w ill be discussed later.

    C.The surface grand potential

    To com pare the stability ofdiff erent term inations,the surface grand potential(?)is imp lemented in the calculations,as defined in Ref.[42]

    whereNLa,NCo,andNOare the numbers of La,Co, and O atom s in the slab,respectively,andμrepresents the chem ical potential of La,Co,and O atoms species. Since the surface is in thermodynam ic equilibrium w ith the bu lk LaCoO3(μLaCoO3=EbulkLaCoO3)and the chem ical potentials of each species are related to the chem ical potentialof the bulk crystal,we thushave the follow ing constraint:

    W henμLaiselim inated by Eq.(2)and(3),we introduce:

    Subsequently,the surface grand potential can be determ ined as:

    The surface La,Co,and O atoms are assumed to form no condensate on the surface,and the chem ical potential of each speciesmust be lower than the energy of an atom in the stable phase.We thus obtain the follow ing upper lim its of the chem ical potentials:

    By combining Eq.(3)and(9),the lower lim its can be determ ined as follows,

    whereis the formation energy of LaCoO3bulk crystal w ith respect to the La and Co atom s in their bulk phases,and the O atom in the gas phase.Once?μCoand?μOare determ ined in the eff ective ranges, the accessible values of?are thus obtained.

    III.RESULTS AND DISCUSSION

    A.Determ ining the optim izedUparam eter

    It iswellknown thatUparameter playsan im portant role in the determ ination of the valence structure and the crystal structure.Since the band gap is generally related to the electronic structure of the bulk LaCoO3, it is essential to determ ine an appropriateUvalue for Co element to correct them istake.Previous studies indicate that the ground state LaCoO3is a nonm agnetic sem iconductor w ith Co3+ions in the LS state[28,29]. Therefore,band gap scan calculations were performed w ith the param eterUvarying from 2.9 eV to 3.9 eV w ith an interval of 0.1 eV on the LS ground state.The band gap as a function of the exchange parameterUis shown in FIG.3.W ith the increase of parameterU,the value of the band gap linearly increases.W henU=3.4 eV is em ployed,a band gap of 0.61 eV is obtained,which well agrees w ith the experimental value [37].TheUparameter of 3.4 eV was thus used for the GGA+Ucalculations to investigate surface stability of LaCoO3perovskite.

    B.Therm odynam ic stability in diff erent spin states w ith GGA+U

    To exam ine the influence of spin states of Co3+ions on surface stability,the surface grand potentials(?)of low-index facets have been calculated(Table S1?S3 in supp lementary materials),where the Co3+ions’spin states are in LS,IS(FM,AFM)and HS(FM,AFM) states,respectively.The FM and AFM configurations can be considered as two lim its in energy w ith respect to the spin state of LaCoO3.To determ ine the accessible values of?,we should calculate the eff ective intervals of?μCoand?μOaccording to the formation energy of LaCoO3bulk crystal,as defined in Ref.[42].The obtained formation energy of hexagonal LaCoO3is?9.31 eV.On the basis of Eq.(11),?μCoand?μOare thus restricted w ithin the ranges of(?9.31 eV

    The stability diagram of the surface grand potential?of diff erent term inations w ithin the allowed area is displayed in FIG.4(a)when the Co3+ions are in LS state.Only three term inations out of six low-index facets are found to be stable:(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2.The calculated results indicate that the(1ˉ102)-LaO term ination is stable in low O chemical potential and low Co chem ical potential,while its com p lem entary,the(1ˉ102)-CoO2term ination is in rich O chem ical potential and rich Co chem ical potential.Additionally,the(0001)-LaO3facet shows a stability dom ain in moderate Co and rich O environment. FIG.4(b)reveals the?of diff erent facets of the low spin Co3+ions as a function of?μCow ith?μO=0 eV. It can be noted that the(1ˉ102)-LaO term ination is favored in a large interval(?9.31 eV

    FIG.3 Band gap of hexagonal phase LaCoO3as a function of exchange param eterU.

    FIG.4(a)Stability diagram of the low-index surfaces of hexagonal LaCoO3in LS state.The surface grand potential (?)is represented as functions of?μCoand?μO.(b)The surface grand potentials of diff erent term inations in condition of?μO=0 eV.

    FIG.5(a)and(c)Stability diagram of the low-index surfaces of hexagonal LaCoO3in IS state w ith a FM and an AFM con figurations.The surface grand potential(?)is represented as functions of?μCoand?μO.(b)and(d)The surface grand potentials of diff erent term inations in condition of?μO=0 eV in IS state w ith a FM and an AFM con figurations.

    FIG.5(a)shows the?of different term inations as functions of?μCoand?μOin IS statew ith a FM configuration.Our calcu lations suggest that(1ˉ102)-CoO2, (0001)-Co and(ˉ1104)-LaCoO areunstablebecause their surface grand potentials are always larger than that of at least one stable facet w ithin the allowed region.According to FIG.5(a),the(1ˉ102)-LaO term ination is the most stable one in O-and Co-poor conditions.The (0001)-LaO3and(ˉ1104)-O2term inationsare favored in a small region corresponding to O-and Co-rich environm ents,respectively.FIG.5(b)shows the?of different facets as a function of?μCoin O-rich condition (?μO=0 eV)in IS state w ith a FM configuration.It appears that the(0001)-LaO3and(ˉ1104)-O2term inations can be stabilized in a very lim ited area(?2.15 eV

    As disp layed in FIG.5(c),the(1ˉ102)-LaO,(0001)-LaO3,(ˉ1104)-O2and(1ˉ102)-CoO2are thermodynamically most favorable when the IS state is in an AFM configuration.Com pared to the stability diagram of the ISstatew ith a FM con figuration,thearea of the(1ˉ102)-LaO and(0001)-LaO3facets hardly change,while the region of(ˉ1104)-O2term ination only exists in a very sm all domain.The(1ˉ102)-CoO2term ination em erges and becom esm ost stable in rich O and Co environment. FIG.5(d)plots the surface grand potential?of different facets as a function of?μCow ith?μO=0 eV in IS state w ith an AFM configuration.The(1ˉ102)-LaO term ination is favorable in a large interval(?9.31 eV

    FIG.6(a)p lots the surface grand potential?of different term inations as functions of?μCoand?μOin HS state w ith a FM configuration.The calculated results indicate that only four term inationsare thermodynam ically stable:(1ˉ102)-LaO,(0001)-LaO3,(ˉ1104)-O2and(1ˉ102)-CoO2as shown in FIG.6(a).The(1ˉ102)-LaO term ination is stable at low O chem ical potential(O-poor lim it)and low Co chem ical potential(Copoor lim it),as the(0001)-LaO3facet shows a stability domain in moderate Co and rich O environment. In general,the(ˉ1104)-O2and(1ˉ102)-CoO2term inations become the stable facets in a sm all domain corresponding to Co-and O-rich conditions.FIG.6(b) p lots the?of different facets of the high spin Co3+ions w ith a FM configuration as a function of?μCow ith?μO=0 eV(O-rich condition).The results indicate that when?μCoranges from?9.31 eV to?4.60 eV,the(1ˉ102)-LaO term ination is favored.W hen?μCois restricted to(?4.60 eV

    FIG.6(a)and(c)Stability diagram of the low-index surfaces of hexagonal LaCoO3in HS state w ith a FM and an AFM con figurations.The surface grand potential(?)is represented as functions of?μCoand?μO.(b)and(d)The surface grand potentials of diff erent term inations in condition of?μO=0 eV in HS state w ith a FM and an AFM con figurations.

    As shown in FIG.6(c),when the HS state is in the AFM configuration,the(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2term inations are the most favorable facets.The stable region of(1ˉ102)-LaO term ination of the AFM configuration is larger than that of the FM configuration.However,the area of(0001)-LaO3becomes smaller.And the(1ˉ102)-CoO2facet alm ost does not change.FIG.6(d)reveals the?of the lowest-energy facets of the high spin Co3+ions w ith an AFM configuration as a function of?μCoin O-rich condition(?μO=0 eV).According to FIG.6(d), the(ˉ1104)-LaCoO,(0001)-Co and(ˉ1104)-O2facets cannot beobtained;however,the(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2term inations can be stabilized in som e specialCo environm ent,as?9.31 eV

    According to the above calculations,as the Co3+ions’spin states change,the stability diagram of lowindex facets in hexagonal-phase LaCoO3undergoes a significant variation.Considering diff erent spin states of Co3+ionsand diff erentmagnetic configurations,one can find that(1ˉ102)-LaO term ination is stable in a large region w ith oxygen poor condition.M oreover,the (0001)-LaO3and(1ˉ102)-CoO2term inations can be stabilized in an oxygen rich condition,which is a typical experimentalenvironment for LaCoO3.And tuning the chem ical potential of Co can tune the final surface exposition of LaCoO3nanoparticle.The(1ˉ102)-CoO2term ination is favorable under suitable chem ical potential regions,which can reach an agreement on theoretical resultsand experimentalobservation.This corresponds to the spin states of Co3+ions in perovskite LaCoO3. The Co3+ions occupying octahedral sites surrounded by oxygen ions can introduce comp lex magnetic property in LaCoO3,which has influence on the Co?O and O?O bond strength on the surface.

    C.Oxygen vacancy form ation energy of the stable facets

    Surface oxygen vacancy p lays a key role in the catalytic oxidation reactions in perovskite LaCoO3.We therefore analyze how the spin states of Co3+ions change the fundamental properties of oxygen vacancy formation.In order to exp lore the properties of these possible exposed facets,theEOvof the surfaces have been calculated.As shown in Table I,it can be found that higher Co3+magneticmoments lead to lower oxygen vacancy formation energies,in good agreem entw ith the previouswork[30].They attribute the tendencies in the surface oxygen vacancy formation energies to varia-tions in the O p-band center,which can be described as the Co?O bond strength.This trend suggests that oxygen vacancy energetics link strongly to the spinmom ent of Co3+ions.Furthermore,whether the Co3+ions are in a LS,an IS-FM,an IS-AFM,a HS-FM or a HS-AFM configuration,the(1ˉ102)-LaO term ination has thehighestEOvam ong these surfaces.It indicates that the (1ˉ102)-LaO facetmay be not active,since O atom s are strongly bound.In the HS-FM configuration,theEOvof(1ˉ102)-CoO2term ination is close to zero(0.08 eV), which is lower than that of(0001)-LaO3term ination (0.20 eV).W hen the spin state of Co3+ions is in a HS-AFM configuration,theEOvof(1ˉ102)-CoO2facet is 1.05 eV,which ismore than the(0001)-LaO3term ination(0.69 eV).As a result,it can be predicted that the(1ˉ102)-CoO2-and(0001)-LaO3-term inated surfaces m ight have good activity of O atoms,which can p lay a critical role in the surface reaction processes.

    TABLE I Oxygen vacancy formation energy(EOv)for possible exposed surfaces w ith diff erent spin configurations.

    For com parison,we also calculated surface oxygen vacancy formation energies w ith NS polarized m ethod as used in Ref.[24].The NS oxygen vacancy form ation energy of the(1ˉ102)-LaO term ination is still themaximum.Moreover,theEOvof(1ˉ102)-CoO2term ination is greater than that of the(0001)-LaO3surface.Comparing theEOvin NS state of(1ˉ102)-LaO and(0001)-LaO3facets w ith previous work[24],it can be found that there is a certain degree of error even ifwe use the sam em ethod andm odel.It isbecause that therew illbe a variety of uncertain spin configurations in the calculation processwhen we ignore the spin states,since there are a lot of localm inimums on the energy surfacew ith diff erent spin configurations.In fact,the above resu lt also represents that the spin statesextrem ely aff ect surface oxygen vacancies.Therefore,considering the spin states of Co3+ions is an essential role in exp loring the surface properties of LaCoO3.

    IV.CONCLUSION

    We performed DFT+Ucalculations to study the effect of Co3+spin states on surface stabilities of several low-index term inations of the perovskite LaCoO3.And theEOvof possibleexposed facets iscalculated in different spin states.The parameterUisem p loyed to correct the on-site Coulomb and theelectron interactions for local d orbitals.It is found that the spin states of Co3+ions in hexagonal-phase LaCoO3have an im portant effect on the region of stability diagram s.For themost cases w ith diff erent spin states and spin configurations of Co3+ions,the(1ˉ102)-CoO2term ination can be stabilized in oxygen rich environment,which agrees well w ith the experimental observation.Moreover,the spin states of Co3+ions can aff ect surface oxygen vacancy. The higher Co3+spin states give out the lower oxygen vacancy formation energies.Our results reveal that the spin states of Co3+ions should be well considered for studying the properties of LaCoO3facets.

    Supp lem entary m aterials:The surfacegrand potential(?)of different term inations in LS,IS(FM,AFM) and HS(FM,AFM)states are disp layed,which is expressed as functions of the excess O and Co chem ical potentials(?μCoand?μO).

    V.ACKNOW LEDGM ENTS

    This work was supported by the National Natural Science Foundation of China(No.U1232118, No.21203099),the National Basic Research Program (No.2014CB932403),the Program of Introducing Talents of Discip lines to China Universities(No.B06006), Research Program for Advanced and App lied Technology of Tianjin(No.13JCYBJC36800),Doctoral Fund of M inistry of Education of China(No.20120031120033), Fok Ying Tung Education Foundation(No.151008), and Special Program for App lied Research on Super Com putation of the NSFC-Guangdong Joint Fund (the second phase).We appreciate the supports from the National Super-Com puting Center at Tianjin and Guangzhou.

    [1]E.P.M urray,T.Tsai,and S.A.Barnett,Nature 400, 649(1999).

    [2]J.Suntivich,K.J.M ay,H.A.Gasteiger,J.B.Goodenough,and Y.Shao-Horn,Science 334,1383(2011).

    [3]J.Suntivich,H.A.Gasteiger,N.Yabuuchi,H.Nakanishi,J.B.Goodenough,and Y.Shao-Horn,Nat.Chem. 3,546(2011).

    [4]J.W.Desm ond Ng,Y.Gorlin,T.Hatsukade,and T. F.Jaram illo,Adv.Energy Mater.3,1545(2013).

    [5]J.Jung,M.Risch,S.Park,M.G.K im,G.Nam,H.Y. Jeong,Y.Shao-Horn,and J.Cho,Energy Environ.Sci. 9,176(2016).

    [6]C.H.K im,G.S.Qi,K.Dahlberg,and W.Li,Science 327,1624(2010).

    [7]X.G.Li,Y.H.Dong,H.X ian,W.Y.Hern′andez,M. M eng,H.H.Zou,A.J.M a,T.Y.Zhang,Z.Jiang,N.Tsubaki,and P.Vernoux,Energy Environ.Sci.4,3351 (2011).

    [8]K.S.Song,S.K.Kang,and S.D.K im,Catal.Lett. 49,65(1997).

    [9]G.Saracco,G.Scibilia,A.Iannibello,and G.Baldi, App l.Catal.B 8,229(1996).

    [10]Y.M.Choi,D.S.M ebane,M.C.Lin,and M.L.Liu, Chem.M ater.19,1690(2007).

    [11]Y.L.Lee,J.K leis,J.Rossmeisl,and D.M organ,Phys. Rev.B 80,224101(2009).

    [12]Y.L.Lee,J.K leis,J.Rossmeisl,Y.Shao-Horn,and D. M organ,Energy Environ.Sci.4,3966(2011).

    [13]S.O.Choi,M.Penninger,C.H.K im,W.F.Schneider, and L.T.Thom pson,ACSCatal.3,2719(2013).

    [14]M.W.Penninger,C.H.K im,L.T.Thom pson,and W. F.Schneider,J.Phys.Chem.C 119,20488(2015).

    [15]S.Khan,R.J.O ldm an,F.Cor`a,C.R.A.Catlow,S. A.French,and S.A.Axon,Phys.Chem.Chem.Phys. 8,5207(2006).

    [16]Z.Z.Chen,C.H.K im,L.T.Thom pson,and W.F. Schneider,Surf.Sci.619,71(2014).

    [17]S.G.Zhang,N.Han,and X.Y.Tan,RSC Adv.5,760 (2015).

    [18]P.G.Radaelli and S.W.Cheong,Phys.Rev.B 66, 094408(2002).

    [19]S.M.Zhou,L.F.He,S.Y.Zhao,Y.Q.Guo,J.Y. Zhao,and L.Shi,J.Phys.Chem.C 113,13522(2009).

    [20]M.Risch,A.Grimaud,K.J.May,K.A.Stoerzinger, T.J.Chen,A.N.M ansour,and Y.Shao-Horn,J.Phys. Chem.C 117,8628(2013).

    [21]S.M ukhopadhyay,M.W.Finnis,and N.M.Harrison, Phys.Rev.B 87,125132(2013).

    [22]P.Ravindran,P.A.Korzhavyi,H.Fjellv?ag,and A. K jekshus,Phys.Rev.B 60,16423(1999).

    [23]A.M ineshige,M.Inaba,T.Yao,Z.Ogum i,K.K ikuchi, and M.Kawase,J.Solid State Chem.121,423(1996).

    [24]X.Liu,Z.Z.Chen,Y.W.Wen,R.Chen,and B.Shan, Catal.Sci.Technol.4,3687(2014).

    [25]G.Thornton,B.C.Tofield,and A.W.Hewat,J.Solid State Chem.61,301(1986).

    [26]K.Asai,P.Gehring,H.Chou,and G.Shirane,Phys. Rev.B 40,10982(1989).

    [27]S.Yam aguchi,Y.Okim oto,and Y.Tokura,Phys.Rev. B 55,R8666(1997).

    [28]I.A.Nekrasov,S.V.Streltsov,M.A.Korotin,and V. I.Anisim ov,Phys.Rev.B 68,235113(2003).

    [29]D.P.Kozlenko,N.O.Golosova,Z.Jirk,L.S.Dubrovinsky,B.N.Savenko,M.G.Tucker,Y.Le Godec,and V. P.G lazkov,Phys.Rev.B 75,064422(2007).

    [30]W.T.Hong,M.Gad re,Y.L.Lee,M.D.Biegalski,H. M.Christen,D.M organ,and Y.Shao-Horn,J.Phys. Chem.Lett.4,2493(2013).

    [31]A.M.Ritzm ann,M.Pavone,A.B.M u?noz-Garc′?a,J. A.Keith,and E.A.Carter,J.Mater.Chem.A 2,8060 (2014).

    [32]G.K resse and J.Hafner,Phys.Rev.B 47,558(1993).

    [33]W.Kohn and L.J.Sham,Phys.Rev.140,A 1133 (1965).

    [34]P.E.Bl¨och l,Phys.Rev.B 50,17953(1994).

    [35]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [36]H.J.M onkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [37]A.Chainani,M.M athew,and D.D.Sarma,Phys.Rev. B 46,9976(1992).

    [38]V.I.Anisimov,J.Zaanen,and O.K.Andersen,Phys. Rev.B 44,943(1991).

    [39]H.Hsu,K.Um em oto,M.Cococcioni,and R.Wentzcovitch,Phys.Rev.B 79,125124(2009).

    [40]L.Wang,T.M axisch,and G.Ceder,Phys.Rev.B 73, 195107(2006).

    [41]C.L.M a and J.Cang,Solid State Commun.150,1983 (2010).

    [42]F.Bottin,F.Finocchi,and C.Noguera,Phys.Rev.B 68,035418(2003).

    ceived on March 16,2017;Accepted on March 21,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: zphu@nankai.edu.cn,xingang li@tju.edu.cn

    亚洲av熟女| 麻豆成人av在线观看| 久久人妻av系列| 免费在线观看成人毛片| 欧美日韩中文字幕国产精品一区二区三区| 国产三级中文精品| 国产午夜精品论理片| 婷婷丁香在线五月| 国产精品人妻久久久影院| 亚洲 国产 在线| 九九在线视频观看精品| 欧美+日韩+精品| 日韩欧美在线二视频| 好男人在线观看高清免费视频| 国产伦人伦偷精品视频| 免费高清视频大片| 亚洲成人精品中文字幕电影| 成年女人看的毛片在线观看| netflix在线观看网站| 亚洲人成网站在线播| 国产精品一区www在线观看 | 成年免费大片在线观看| 69av精品久久久久久| 亚洲无线在线观看| 国产av在哪里看| 亚洲中文字幕日韩| 白带黄色成豆腐渣| 亚洲va日本ⅴa欧美va伊人久久| 91精品国产九色| 麻豆国产av国片精品| 一区二区三区四区激情视频 | 桃色一区二区三区在线观看| 中国美女看黄片| 丰满乱子伦码专区| 午夜a级毛片| 亚洲av中文av极速乱 | 国产精品三级大全| 久久精品久久久久久噜噜老黄 | 亚洲av二区三区四区| 亚洲在线自拍视频| 成熟少妇高潮喷水视频| 1024手机看黄色片| 久久久久久久精品吃奶| 丰满乱子伦码专区| 国产精品免费一区二区三区在线| 一a级毛片在线观看| 久久精品国产自在天天线| 18禁黄网站禁片免费观看直播| 永久网站在线| 婷婷精品国产亚洲av| 免费在线观看日本一区| 色尼玛亚洲综合影院| 一级av片app| 简卡轻食公司| 夜夜爽天天搞| 国产精品爽爽va在线观看网站| 草草在线视频免费看| 国产精品综合久久久久久久免费| 又黄又爽又免费观看的视频| 日日摸夜夜添夜夜添小说| 精品日产1卡2卡| 成人性生交大片免费视频hd| 亚洲aⅴ乱码一区二区在线播放| 麻豆国产97在线/欧美| 高清日韩中文字幕在线| 999久久久精品免费观看国产| 欧美最新免费一区二区三区| 成人国产综合亚洲| 国产老妇女一区| 99久久九九国产精品国产免费| 熟妇人妻久久中文字幕3abv| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻熟女av久视频| 国产成人影院久久av| 观看美女的网站| 丰满乱子伦码专区| 亚洲内射少妇av| 丰满人妻一区二区三区视频av| eeuss影院久久| 久久热精品热| 全区人妻精品视频| 色综合色国产| 国产激情偷乱视频一区二区| 久久久久久久久久久丰满 | 欧美成人免费av一区二区三区| 成人av在线播放网站| 欧美黑人巨大hd| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 热99在线观看视频| eeuss影院久久| 亚洲精品一区av在线观看| 日韩欧美 国产精品| 一区二区三区激情视频| 久久香蕉精品热| 老司机深夜福利视频在线观看| 免费在线观看日本一区| 黄色丝袜av网址大全| 一级av片app| 中文字幕精品亚洲无线码一区| 美女cb高潮喷水在线观看| 制服丝袜大香蕉在线| 久久精品综合一区二区三区| 97超视频在线观看视频| 热99在线观看视频| 精华霜和精华液先用哪个| 自拍偷自拍亚洲精品老妇| 久久热精品热| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线观看免费| 搞女人的毛片| 亚洲av五月六月丁香网| 国产亚洲精品久久久久久毛片| 少妇熟女aⅴ在线视频| 日日摸夜夜添夜夜添av毛片 | 日韩欧美 国产精品| 我的老师免费观看完整版| 一区二区三区激情视频| 成人特级黄色片久久久久久久| 欧美日韩综合久久久久久 | 91久久精品电影网| 婷婷精品国产亚洲av在线| 人人妻,人人澡人人爽秒播| 色在线成人网| 国产真实伦视频高清在线观看 | 最新在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产亚洲欧美98| 亚洲久久久久久中文字幕| 久久国产精品人妻蜜桃| 男女边吃奶边做爰视频| 国产精品久久久久久精品电影| 一a级毛片在线观看| 亚洲精品成人久久久久久| 村上凉子中文字幕在线| 神马国产精品三级电影在线观看| 日韩欧美 国产精品| 成人av一区二区三区在线看| 午夜福利在线观看免费完整高清在 | 日日摸夜夜添夜夜添小说| 国产欧美日韩精品一区二区| 久久久久免费精品人妻一区二区| 18+在线观看网站| 国产av麻豆久久久久久久| 国产激情偷乱视频一区二区| 午夜日韩欧美国产| 国产在线男女| 国产午夜精品论理片| 看黄色毛片网站| 少妇的逼水好多| 午夜免费男女啪啪视频观看 | 亚洲第一电影网av| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲av天美| 亚洲第一电影网av| 亚洲天堂国产精品一区在线| 乱码一卡2卡4卡精品| 国产在线精品亚洲第一网站| 国产又黄又爽又无遮挡在线| 伦精品一区二区三区| 麻豆成人av在线观看| 亚洲乱码一区二区免费版| 2021天堂中文幕一二区在线观| 97碰自拍视频| 美女大奶头视频| 制服丝袜大香蕉在线| 亚洲一区高清亚洲精品| 琪琪午夜伦伦电影理论片6080| 22中文网久久字幕| 看免费成人av毛片| h日本视频在线播放| 国产视频一区二区在线看| 99视频精品全部免费 在线| av.在线天堂| 成人av一区二区三区在线看| 日韩人妻高清精品专区| 成人国产一区最新在线观看| 久久欧美精品欧美久久欧美| av中文乱码字幕在线| 精品久久久久久,| 国产不卡一卡二| 国产一区二区在线av高清观看| 国产精品自产拍在线观看55亚洲| 免费人成视频x8x8入口观看| 国产亚洲av嫩草精品影院| 日本黄色片子视频| 亚洲avbb在线观看| 麻豆av噜噜一区二区三区| 精品日产1卡2卡| 精品久久久久久久久久久久久| 最近最新中文字幕大全电影3| 久久久精品大字幕| 日日摸夜夜添夜夜添av毛片 | 亚洲熟妇熟女久久| 偷拍熟女少妇极品色| videossex国产| 麻豆国产av国片精品| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 一个人看的www免费观看视频| 久久精品91蜜桃| 村上凉子中文字幕在线| 久久人人爽人人爽人人片va| 国产精品自产拍在线观看55亚洲| 久久亚洲真实| 国产中年淑女户外野战色| 久久精品国产亚洲av天美| 国产精品,欧美在线| www日本黄色视频网| 国产精品久久久久久精品电影| 国产精品人妻久久久影院| 综合色av麻豆| 日韩av在线大香蕉| 18禁裸乳无遮挡免费网站照片| 麻豆国产av国片精品| 国产日本99.免费观看| 蜜桃久久精品国产亚洲av| 亚洲在线观看片| netflix在线观看网站| 一个人看的www免费观看视频| 日本-黄色视频高清免费观看| 中文字幕av成人在线电影| 男人舔女人下体高潮全视频| 国产黄a三级三级三级人| 免费大片18禁| 亚洲四区av| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片 | 国产精品,欧美在线| 国产精品精品国产色婷婷| 日本 欧美在线| 国产成人av教育| 亚洲第一电影网av| 亚洲精华国产精华液的使用体验 | 丝袜美腿在线中文| 一进一出抽搐动态| 精品人妻一区二区三区麻豆 | 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 亚洲专区国产一区二区| 又黄又爽又免费观看的视频| 一级a爱片免费观看的视频| 日本a在线网址| 亚洲精品影视一区二区三区av| 国产av麻豆久久久久久久| 在线观看舔阴道视频| 国产男人的电影天堂91| a级毛片免费高清观看在线播放| 成人午夜高清在线视频| 亚洲av成人精品一区久久| 免费在线观看日本一区| 内射极品少妇av片p| 亚州av有码| 久久精品综合一区二区三区| 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 国产亚洲精品综合一区在线观看| 免费电影在线观看免费观看| 变态另类丝袜制服| 久久6这里有精品| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 人妻丰满熟妇av一区二区三区| 国产男人的电影天堂91| 中文字幕久久专区| 亚洲图色成人| 啦啦啦观看免费观看视频高清| 成人永久免费在线观看视频| 熟女电影av网| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 免费人成视频x8x8入口观看| 午夜激情福利司机影院| 精品久久久久久成人av| 免费黄网站久久成人精品| 国产v大片淫在线免费观看| 成年免费大片在线观看| av在线老鸭窝| 亚洲欧美日韩东京热| 国产亚洲精品久久久久久毛片| 悠悠久久av| 婷婷色综合大香蕉| 变态另类丝袜制服| 搡老妇女老女人老熟妇| 99久久精品国产国产毛片| 夜夜夜夜夜久久久久| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看| 又黄又爽又免费观看的视频| 国产亚洲精品久久久久久毛片| 12—13女人毛片做爰片一| 亚洲乱码一区二区免费版| 午夜福利欧美成人| 噜噜噜噜噜久久久久久91| 男人的好看免费观看在线视频| 熟女人妻精品中文字幕| 国产综合懂色| 日韩国内少妇激情av| 1000部很黄的大片| 免费不卡的大黄色大毛片视频在线观看 | 99久久中文字幕三级久久日本| 久久久久久伊人网av| or卡值多少钱| 一本久久中文字幕| 成人鲁丝片一二三区免费| 国产激情偷乱视频一区二区| 久久香蕉精品热| 一a级毛片在线观看| 日本爱情动作片www.在线观看 | 精品乱码久久久久久99久播| 变态另类丝袜制服| 欧美黑人巨大hd| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 九九爱精品视频在线观看| 亚洲欧美日韩东京热| 又紧又爽又黄一区二区| 最新中文字幕久久久久| 国产精品,欧美在线| 国产精品自产拍在线观看55亚洲| 国产精品嫩草影院av在线观看 | 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| 久久精品人妻少妇| 99在线人妻在线中文字幕| 成人无遮挡网站| 亚洲男人的天堂狠狠| 搞女人的毛片| 中文字幕av成人在线电影| 亚洲av美国av| 禁无遮挡网站| 亚洲第一电影网av| 成人国产综合亚洲| 嫩草影视91久久| 我要看日韩黄色一级片| 亚洲国产色片| 国产在视频线在精品| 中国美白少妇内射xxxbb| 欧美日韩黄片免| 99久久中文字幕三级久久日本| 国产精品久久视频播放| 婷婷丁香在线五月| 波多野结衣巨乳人妻| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 国产激情偷乱视频一区二区| 搡老岳熟女国产| 国产精品一区www在线观看 | 色综合亚洲欧美另类图片| 国产人妻一区二区三区在| 搞女人的毛片| 99热只有精品国产| 在线看三级毛片| 小说图片视频综合网站| 99在线人妻在线中文字幕| 九九爱精品视频在线观看| 国产午夜精品久久久久久一区二区三区 | 婷婷精品国产亚洲av| 露出奶头的视频| 老女人水多毛片| 一级a爱片免费观看的视频| 日韩 亚洲 欧美在线| 国产视频一区二区在线看| 日韩欧美免费精品| 国产色婷婷99| 日本 av在线| 国产日本99.免费观看| 国产白丝娇喘喷水9色精品| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 久久精品国产亚洲av涩爱 | 午夜爱爱视频在线播放| 联通29元200g的流量卡| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| x7x7x7水蜜桃| 久久久久久久久久成人| 精品人妻视频免费看| videossex国产| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 日本精品一区二区三区蜜桃| 99riav亚洲国产免费| 一本精品99久久精品77| 国产免费一级a男人的天堂| 色综合站精品国产| 欧美丝袜亚洲另类 | 一进一出好大好爽视频| 99久久精品国产国产毛片| av专区在线播放| 91av网一区二区| www.www免费av| 99久久精品一区二区三区| 日韩欧美精品v在线| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 国产一级毛片七仙女欲春2| 舔av片在线| 可以在线观看的亚洲视频| 亚洲成av人片在线播放无| 日韩欧美精品v在线| 最近最新免费中文字幕在线| 精品久久久噜噜| 久久久午夜欧美精品| 欧美成人性av电影在线观看| 国产精品久久电影中文字幕| 人妻制服诱惑在线中文字幕| 国产免费av片在线观看野外av| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 国产高潮美女av| 69人妻影院| 日本一本二区三区精品| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 神马国产精品三级电影在线观看| 黄色丝袜av网址大全| 91狼人影院| 村上凉子中文字幕在线| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 亚州av有码| 国产麻豆成人av免费视频| 国内精品久久久久精免费| 日本五十路高清| a在线观看视频网站| 看黄色毛片网站| 午夜福利欧美成人| 男插女下体视频免费在线播放| 中文字幕高清在线视频| 久久人人精品亚洲av| 亚洲五月天丁香| aaaaa片日本免费| 成熟少妇高潮喷水视频| 成年版毛片免费区| 一a级毛片在线观看| 亚洲精品久久国产高清桃花| 国产aⅴ精品一区二区三区波| 亚洲av中文av极速乱 | 国内精品久久久久久久电影| 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 亚洲性夜色夜夜综合| 内地一区二区视频在线| 三级男女做爰猛烈吃奶摸视频| 亚洲av美国av| 国产中年淑女户外野战色| 精品一区二区三区视频在线观看免费| 亚洲熟妇熟女久久| 成人三级黄色视频| 性色avwww在线观看| 99热精品在线国产| 亚洲欧美日韩无卡精品| 久久午夜福利片| 18+在线观看网站| 久久这里只有精品中国| 国产成人av教育| 伦理电影大哥的女人| 琪琪午夜伦伦电影理论片6080| 中出人妻视频一区二区| 全区人妻精品视频| 嫩草影院精品99| 又爽又黄a免费视频| 97碰自拍视频| 最近最新免费中文字幕在线| av专区在线播放| avwww免费| 国产人妻一区二区三区在| 在线播放无遮挡| 国产精品国产三级国产av玫瑰| 亚洲成a人片在线一区二区| 黄色日韩在线| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 狂野欧美白嫩少妇大欣赏| 久久精品91蜜桃| 97热精品久久久久久| 亚洲最大成人中文| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 深夜精品福利| 国产精品久久久久久久久免| 精品一区二区三区人妻视频| 一区二区三区四区激情视频 | 在线观看av片永久免费下载| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区 | 一区二区三区四区激情视频 | 亚洲精品色激情综合| 在线免费观看不下载黄p国产 | 一级毛片久久久久久久久女| 国产综合懂色| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 一区二区三区激情视频| 成人午夜高清在线视频| 看黄色毛片网站| 久久精品影院6| 色尼玛亚洲综合影院| 久久欧美精品欧美久久欧美| 国产精华一区二区三区| 伊人久久精品亚洲午夜| 久久久久久国产a免费观看| 直男gayav资源| 国产午夜精品久久久久久一区二区三区 | 欧美日韩亚洲国产一区二区在线观看| 成人毛片a级毛片在线播放| 两个人视频免费观看高清| 人人妻人人看人人澡| 久久久久久伊人网av| 国产69精品久久久久777片| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添av毛片 | 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 黄色配什么色好看| 最近中文字幕高清免费大全6 | 国产熟女欧美一区二区| 我要搜黄色片| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 午夜老司机福利剧场| 人人妻人人看人人澡| 亚洲av.av天堂| 久久久国产成人精品二区| 日本黄色视频三级网站网址| 女人十人毛片免费观看3o分钟| 联通29元200g的流量卡| 成人国产麻豆网| 很黄的视频免费| 国产视频一区二区在线看| 久久久久久大精品| 又爽又黄a免费视频| 国产精品福利在线免费观看| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| 亚洲无线在线观看| 午夜精品一区二区三区免费看| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 精品久久久久久,| 亚洲国产色片| 国产极品精品免费视频能看的| 性插视频无遮挡在线免费观看| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 人人妻人人看人人澡| 天堂√8在线中文| 国产精品久久电影中文字幕| 美女大奶头视频| 国产亚洲欧美98| 最好的美女福利视频网| 午夜激情欧美在线| 久久热精品热| 人妻少妇偷人精品九色| 精品一区二区三区视频在线观看免费| 春色校园在线视频观看| 在线天堂最新版资源| 欧美激情在线99| 免费看光身美女| 黄色视频,在线免费观看| 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| 美女被艹到高潮喷水动态| 99热只有精品国产| av黄色大香蕉| 久久中文看片网| 中文字幕免费在线视频6| 一级a爱片免费观看的视频| 免费看日本二区| 亚洲精品日韩av片在线观看| xxxwww97欧美| 亚洲av中文av极速乱 | 一个人看的www免费观看视频| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区 | 一个人免费在线观看电影| 人人妻人人看人人澡| 久久久久久大精品| 人人妻人人看人人澡| 亚洲国产欧美人成| av专区在线播放| 国国产精品蜜臀av免费| av专区在线播放| 亚洲精品粉嫩美女一区| 日韩一区二区视频免费看| 亚洲国产欧美人成| 国产精品人妻久久久久久| 听说在线观看完整版免费高清| 波多野结衣巨乳人妻| 露出奶头的视频| 国产午夜精品论理片| 欧美在线一区亚洲| 白带黄色成豆腐渣| 中国美女看黄片| 日本黄色视频三级网站网址| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 真人一进一出gif抽搐免费| 久久热精品热| 97超级碰碰碰精品色视频在线观看|