• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New kHz Velocity M ap Ion/Electron Im aging Spectrom eter for Fem tosecond Tim e-Resolved M olecular Reaction Dynam ics Studies

    2017-07-05 13:06:23ZhigngHeZhichoChenDongyunYngDongxuDiGuorongWuXueingYng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Zhi-gng HeZhi-cho ChenDong-yun YngDong-xu DiGuo-rong WuXue-m ing Yng

    a.State Key Laboratory ofMolecular Reaction Dynam ics,Dalian Institute ofChem ical Physics,Dalian 116023,China

    b.University of Chinese Academy of Sciences,Beijing 100049,China

    A New kHz Velocity M ap Ion/Electron Im aging Spectrom eter for Fem tosecond Tim e-Resolved M olecular Reaction Dynam ics Studies

    Zhi-gang Hea,b?,Zhi-chao Chena,b?,Dong-yuan Yanga,b,Dong-xu Daia,Guo-rong Wua?Xue-m ing Yanga

    a.State Key Laboratory ofMolecular Reaction Dynam ics,Dalian Institute ofChem ical Physics,Dalian 116023,China

    b.University of Chinese Academy of Sciences,Beijing 100049,China

    A new velocity m ap im aging spectrometer is constructed for m olecular reaction dynam ics studies using time-resolved photoelectron/ion spectroscopy method.By combining a kHz pulsed valve and an ICCD camera,this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz,totally com patiblew ith the fs Ti:Sapphire laser system,facilitating time-resolved studies in gas phasewhich are usually time-consum ing.Tim e-resolved velocity map imaging study ofNH3photodissociation at 200 nm wasperformed and the time-resolved total kinetic energy release spectrum of H+NH2products provides rich information about the dissociation dynam ics of NH3.These results show that this new apparatus is a powerful tool for investigating themolecular reaction dynam ics using tim e-resolved methods.

    Photoelectron spectrum,Pum p/probe,Fem tosecond time-resolved

    I.INTRODUCTION

    Various experimentalmethods have been developed in the field of m olecular reaction dynam ics.They can generally be classified into two categories:energyresolved measurements and time-resolved measurements.In the former method,the quantum state distribution,translationalenergy distribution,angular distribution,etc.of the final reaction products are measured.The reaction mechanism and dynam ics are often indirectly inferred from the information of the final products,usually in concert w ith high-level theoretical calculations.Tim e-resolved m ethods,founded upon sem inal work of Zewail and coworkers[1?3]directly follow the energy and/or charge flow w ithin molecular system s during chem ical reactions w ith ultrafast laser pulses,X-ray pulses,electron pulses,etc.Unified pictures involving both energy-resolved and time-resolved measurements are often required in order to provide them ost detailed information on the dynam ics of a reaction.

    In time-resolved studies of molecular reaction dynam ics,experim ental methods are m ainly diff ered in the way of probing a reaction triggered by the pum p pulse,such as nonlinear optical spectroscopy and transient absorption spectroscopy in the condensed phase,laser-induced fluorescence and resonant multiphoton ionization in the gas phase,and time-resolved X-ray or electron diff raction in condensed or gas phases,tim eresolved photoelectron spectroscopy(TRPES)in gasor condensed phases.Among them,the TRPESmethod has become a very powerfulm ethod in the molecular reaction dynam ics studies,especially in the excitedstate nonadiabatic dynam ics studies,due to a number of practical and conceptual advantages brought by the photoionization probingm ethod[4?19].

    There aremany ways tomeasure photoelectron spectra,includingmagnetic bottlespectrometer,hem ispherical analyzer,cold target recoil ion momentum spectrom eter,velocity m ap im aging(VM I)spectrom eteretc.By combining w ith a fs laser system,time-resolved velocitymap imaging(TRVM I)ofphotoelectron hasbecom e a popular way tom easure the TRPES spectrum, w ith the capability of m easuring the translational energy and angular distributions of photoelectron simultaneously[10,17,20,21].A TRVM Iexperiment needs taking im ages atmany diff erent delays,including those w ith very small signal.It typically takes m any hours or even days to get enough statistics for data analysis. Therefore,it is very critical to increase the repetition rate of the TRVM Ispectrom eter in order to shorten the tim e needed or even m ake som e of the experim ents feasible.Commercial Ti:Sapphire fs laser systems can be run w ith a kHz repetition rate.However,most of the VM I spectrometers are lim ited to tens of hertz,due to the low fram e rate of CCD cameras and som etim es also the low repetition rate of pulse valves.It is practically im portant to increase the repetition rateof VM Ispectr-ometers up to kHz and tomatch w ith the fs laser systems.Suzuki and coworkers have developed a very elegant m ethod to run VM I at 1000 fram es/s(w ith a 512×512 pixel array)[22].Com p lem entary m etal oxide sem iconductor(CMOS)image sensor w ith multistage image intensifier was used to increase to frame rate of the camera,and programmable gate array circuit(FPGA)was used to perform real-time centers of gravity(COG)calculation[23]of the light spots on the phosphor screen and data transfer between the camera and a personal com puter.Suzuki’sm ethod is very advanced,but also relatively com plicated.In the present work,we report a new ly constructed VM Ispectrometer in which a combination of an Even-Lavie pulsed valve and an ICCD camera is used.W ith this sim p lem odification,charged particlescan be recorded at a frame rate of 1 kHz w ith a 1024×1024 pixel array.A lthough the readout rate is only lim ited to the order of 10 Hz and the real-tim e COG calculation is infeasiblew ith current configuration,the1 kHz imaging on theMCP/phosphor screen is collected w ith a high effi ciency,w ithout noise problem inherent to long exposuremethod which is often im p lemented when a low frame rate cam era is used. The abandonment of COG calculation makes the speed resolution lim ited to 2%?3%.But this is not a real sacrifice since the inherent broad bandw idth of fs laser pulsesw ill eventually lim it the speed resolution achievable in TRPES experiments.

    II.NEW APPARATUS

    A.Velocity map im aging spectrom eter

    Thenew ly constructed VM Ispectrometer isvery similar to the setup asdescribed by Eppink and Parker[24], w ith necessary modifications suitable to 1 kHz repetition and fs tim e-resolved experim ents.The apparatus consists of a source chamber and an interaction chamber,both diff erentially pum ped,as shown in FIG.1. The source chamber and the interaction chamber are evacuated w ith a 3200 and a 1000 L/s magnetically levitated turbo-molecular pum p(Edwards,3306c and 1003c),respectively,sharing a backing pum p station (Pfeiff er,HiCube 80 Eco).The vacuum for both chamber w ith themolecular beam off are as good as 1×10?9Torr.The source and interaction chambers are separated by a skimmer w ith a 1-mm diameter aperture (Beam Dynam ics Inc.),which is mounted on a translatable gate-valve assembly[25].W ith this design,the source chamber could bevented to atmospheric pressure while the interaction chambermaintains base vacuum. This design is practically im portant for experiments w ith liquid or solid sam pleswhich need to be loaded into the cartridge of the Even-Lavie pulsed valve.By this design,this can be donew ithout theneed for a time consum ing pum p-up of the interaction chamber before the experiments are restarted.A typical turnaround time for sam p le rep lacem ent and subsequent recomm encement of data acquisition is about 1.5 h.

    FIG.1 Schem atic view of the velocity m ap im aging spectrom eter.

    The m olecular beam is produced by expanding gas samp le into vacuum through a pulsed valve[26](Even-Lavie valve,200μm diameter conical nozzle)operating at 1 kHz.For gas sam p les or liquid sam p les w ith reasonable vapor pressure at room tem perature,a prepared m ixture of samp le and carrier gas is used.W hile for liquid or solid samp lesw ith low vapor pressure,the sam p lesare preloaded into the cartridgewhich isw ithin the body of valve and then carrier gas flows through the cartridge before expanding into vacuum through the nozzle.The valve can be heated up to 250?C to ad just the concentration of the sam p le in the m ixture.The distance between the nozzle and the skimmer is ad justable from 20 mm to 120 mm.A fter passing through the skimmer,them olecular beam is intersected by laser beam s at the center of ion optics which consistsof three electrodes.The electrodesare 1-mm-thick stainless steel p lates of 56 mm in diameter mounted w ith alum inum oxide spacers of about 5 mm in length (K imball Physics Inc).The repeller electrode isa p late, while both the extractor and ground electrode have a 5-mm-diameter hole at the center.The ion optics could be used for ion or electron im aging by sim p ly changing the polarity of the power supp lies for them.The tim eof-fl ight axis is perpendicular to the p lane containing molecular and laser beam s.The ion opticsand the timeof-fl ight(TOF)path to the detector are shielded from the stray electric and m agnetic fields by a stainless steel and aμ-metal shielding tubes.A 75-mm dualm icro channel p late(MCP)detector backed by a P31 phosphor screen(Photek Lim ited,V ID275.The decay tim e of P31 to 10%brightness quoted by Photek is 40μs.) ismounted onto a flange at the end of the TOF tube. There isa 10-mm gap between the end of these shielding tubes and MCP detector to ensure adequate gas pum ping in the region close to the detector.The distancefrom the interaction point to the front surface of the MCP detector is about 558mm.The MCP p lates and the phosphor screen are powered by a 3-channel high voltage power supp ly(Photek Lim ited,DPS3),w ith the back plate of MCP assembly gated w ith a high voltage gate unit(Photek Lim ited,GM-MCP).Charged particles im pinging on the MCP/phosphor screen are recorded by an ICCD cam era w ith a 1024×1024 pixel array(Princeton Instruments,Pi-max3 1024i).The intensifier of the ICCD camera is operated at a repetition rate of 1 kHz,fully com patiblew ith the fs laser system. The intensifier is timed w ith the laser system and gated. The intensifier is only open when the ion or electron cloud im pinges on the MCP/phosphor screen,greatly reducing the background.The accumulated signal on the CCD chip w illbe read out before getting saturated, typically at a rate of 10 Hz or even less,depending on the signal level.By thism ethod,the 1 kHz imaging on the MCP/phosphor screen is collected w ith a high efficiency,w ithout noise problem inherent to long exposure method which is often used when a low repetition rate CCD camera is used in a 1 kHz experiment.A photomultip lier tube(Hamam atsu,H10722-20)m ounted beside the ICCD camera is used to record TOF spectrum of charged particles arriving at MCP/phosphor screen detector,by sw itching off the gate unit and running the detector at the DC m ode.

    B.Fem tosecond laser system

    The laser system,shown schematically in FIG.2, consists of a fully integrated Ti:Sapphire oscillator/am p lifier system(Coherent,Libra-HE),two commercial optical parametric am plifiers(OPAs,Coherent,OPerA-Solo)and a fourth harmonic generation (FHG)box.The regenerative am p lifier delivers about 3.8m J/pulse at a repetition rate of 1 kHz,w ith a pulse duration slightly less than 50 fs and a central wavelength of 800 nm.The output of the am plifier is sp lit into 4 beam s,two of them w ith about 1.3 m J/pulse, the third 0.9 m J/pulse and the last 0.3 m J/pulse.The fi rst two are used to pum p two OPAs.The outputs of OPAsarewavelength tunable from 240 nm to 2600 nm, w ith m icrojoule pulse energy level even at wavelengths of the lowest effi ciency.The output of one of the OPAs is furtherm ixed w ith the 0.3m J/pulse beam in a BBO crystal to push the wavelength down to 200 nm.The 0.9 m J/pulse beam is used to pum p the FHG box in which the fundamental is frequency doubled,trip led, and then quadrupled by a series of BBO crystals.Depending on the specific experiment,either the third harm onic or the fourth harm onic isused,w ith typicalpulse energiesof12 and 1μJ,respectively.Thereare twomotorized high-performance travelling linear stage(Newport,M-ILS250HA),one between the am p lifier and one of the OPAs and the other between the am p lifier and the FHG box,which provide the capability to change the tem poral delay between any two of the three arm s w ith a m inimum step size of 2 fs and a maximum delay of 1.5 ns.These laser beam sare combined w ith one or two thin dichroic m irrors and focused into the VM I spectrom eterwhere they intersected w ith them olecular beam at 90?.

    FIG.2 Schem atic overview of the fem tosecond laser system.

    C.Data acquisition program

    A tim e-resolved photoelectron or photoion imaging experiment needs taking images at m any diff erent delays,including thosew ith very small signal.Therefore, it usually takesmany hours or even days to get enough statistics for data analysis.The data acquisition needs to be done by systematically changing the pump/probe delay back and forth many times in order to m inim ize the uncertainties caused by the variations in pulse energies of laser pulses,molecular beam intensity,pointing of laser beam s,etc.A reliable and automated data acquisition program is therefore necessary.

    We have developed such a program in LabVIEW environm ent.Them ain featuresare listed below:(i)Data acquisition parameters setting including the number of delays scanning,the number of laser shotsat each delay in a delay scanning for pum p/p robe signal,the number of laser shots at each delay in a delay scanning for pum p or probe only signal(single color signal is delay independent and subtracted in data analysis as background.),the delays(equally or non-equally spaced) where the im ages are taken.(ii)Autom atically change the pum p/probe delay bymoving themotorized travelling linear stageand read thestatusofstageas feedback. (iii)Autom atically block/unblock pum p or probe laser beam using optical shutters.This provides the capability of taking signal and background alternatively at each delay.(iv)Real-time data analysis,including the reconstruction of the 3D distribution of charged particles from the 2D images[27],and the further derivation of the velocity and angular distributions.Two methods of reconstruction of the 3D distribution are im p lemented:one is the basis-set expansion m ethod[28?30] and the other is sim ilar to that proposed by Cho andNa[31]and Townsend and coworkers[21],but developed independently.(v)COG calculations[23]are also integrated into this program although it is disabled in the fs tim e-resolved experim ents due to the lim ited resolution caused by the bandw idth of fs laser pulses.

    III.EXPERIMENTAL RESULTS

    A.Velocity calibration of VM I spectrom eter

    The velocity calibration of the apparatus was done by measuring the photoelectron im age from multiphoton ionization of Xenon atom at 400 nm(second harmonic of the fundamental).The Xebeam wasgenerated by expanding neat Xe of 5 bar using the Even-Lavie pulsed value operating at 1 kHz repetition rate.The raw photoelectron image accumulated over 0.2 m illion laser shots is shown in FIG.3(a)after the subtraction of background which is taken w ith the laser and molecular beam s tem porally separated.The photoelectron 3D distribution is reconstructed using theβ-basis expansion method[29]and the cut through the center of the 3D distribution is shown in FIG.3(b).Integrating the 3D distribution over recoil angles gives the distribution of photoelectron along the radial direction,as shown in FIG.3(c).The peaks in this distribution are readily assigned to photoelectron of Xe ionized w ith 4,5 and 6 photons of 400 nm.There are two peaks correspond to 5 photons ionization process,resulting into the ground(Xe+(2P3/2))and spin-orbit excited (Xe+(2P1/2))cation,respectively.The kinetic energy of the photoelectron at each peak in this distribution is readily calculated.In FIG.3(d),the square root of the kinetic energy of photoelectron at each peak is p lotted against the radius(in pixel)of the corresponding ring in the im age.This p lot is very well fi tted w ith a straight line crossing the ordinate at 0 which proves the VM I spectrometer is properly working[24].Measurem ents at diff erent voltages,w ith a fixed ratio between repeller and extractor electrodes were also perform ed (not shown)which proves that the VM I spectrometer works properly over a w ide range of voltages.

    B.Fem tosecond tim e-resolved experim ent

    In a test experiment,the TRVM Istudy of NH3photodissociation at 200 nm is performed[20,32].The time-resolved totalkinetic energy release(TKER)spectrum obtained by im aging the H atom products provides rich information about the H-atom elim ination and the coupling between the initially excited S1state and the ground state S0of NH3.

    FIG.3(a)The raw photoelectron image from multiphoton ionization of Xe at 400 nm.(b)The cut through the center of the 3D distribution derived from(a)using p-Basex transform ationm ethod.(c)The speed distribution(in pixelunit) obtained from(b).(d)The square root of kinetic energy of electronvs.the radius of the rings in(b).The double arrow indicates the polarization direction of the laser pulse.

    The NH3molecular beam was generated by expanding a m ixture of 1%NH3in He carrier gas of 3 bar using a pulsed valve.The pum p laser was at 200 nm (~0.5μJ/pulse)which excites NH3from the ground state toν2′=4 in the fi rst electronically excited state (A?(1A′2′))[33,34].The nascent H-atom products were detected using 2+1 resonance-enhanced multiphoton ionization(REMPI)at 243.1 nm(~6μJ/pulse).By systematically changing the delay between the pum p and probe lasers,the time-resolved TKER spectrum is derived.The H-atom signal w ith pum p or probe laser only was also recorded and subtracted as background. TheT0and the cross-correlation between pump and probe laser pu lses were measured using the delay dependence of the total NH3cation yield which gave a cross-correlation of200 fs.It has to be em phasized that while a resolution of 200 fs is suffi cient for the current study amuch short cross-correlation is expected if both laser pulses have been compressed w ith prism pairs.

    FIG.4 Tim e-resolved TKER spectrum of the H+NH2fragm ents resu lting from the photodissociation of NH3at 200 nm. The energetic lim its for generating the ground state NH2eX(2B1)and the fi rst excited state NH2?A(2A1)are indicated w ith dash arrow s.

    In FIG.4,the time-resolved TKER spectrum is shown.At negative delays where the probe pulse proceeds the pum p pulse,there isno appreciable H+signal, suggesting the H+signalat positive delays is generated by the pum p pulse(asneutralH atom)and then probed by the probe pulse.Att>0,the H+signal rises quickly and then approachesa p lateau at 1 psand remains constant beyond,indicativeofa fast H atom elim ination.A cut of this time-and energy-resolved distribution along the delay coordinate at 1 ps is also p lotted beneath the 2D data,which represents the kinetic energy distribution of H atom productswhen the reaction is com p leted entirely.At 200 nm,there are two channels open:the ground state NH2eX(2B1)and the fi rst excited state NH2eA(2A1).The energetic lim its for generating these two electronic states of NH2are indicated w ith dash arrows in FIG.4.This distribution is very sim ilar to that derived in previous photodissociation study[32], except a lower energy resolution in current study due to amuch broader bandw idth of the fs laser pulses used here.M ost interestingly,it is very clear from FIG.4 that the appearance time of the H+signal is dependent on the kinetic energy of the H+ion:the H+ionsw ith higher kinetic energiesappearmore prom ptly and those w ith lower kinetic energies relatively slow ly,indicating that the H atom s produced at different delays have a different kinetic energy distributions.The H+signal transients integrated over a low and high kinetic energy ranges are p lotted at the left figurewhich clearly shows the kinetic energy dependence of the time scales for H atom elim ination.Using an error function,convoluted w ith the Gaussian cross-correlation between pum p and probe pulsem easured independently,these two curves arewell fi tted,giving appearance time of 322 and 91 fs for“slow”and“fast”H atom products,respectively. The im p lications of these observation to the photodissociation dynam ics of NH3and the nonadiabatic coup ling between the fi rst excited and ground states are exp lained in detail in previous study[20]by Stavros and coworkers.We are not going to reiterate here.

    IV.CONCLUSION

    A new VM I spectrometer has been constructed for molecular reaction dynam ics studies using a tim eresolved photoelectron/ion spectroscopy m ethod.By combining a kHz pulsed valve and an ICCD camera, thisVM Ispectrometer can be run at a repetition rateof 1 kHz,totally com patible w ith the fs Ti:Sapphire laser system,facilitating time-resolved studies in gas phase which are usually time-consum ing.A fully automated data acquisition program was also developed for this TRVM I spectrometer.In a test experiment,TRVM I study of NH3photodissociation at 200 nm was performed.The time-resolved TKER spectrum of H+NH2products shows that the elim ination time of the H products is clearly dependent on their kinetic energy, suggesting a rich dynam ics in the photodissociation of NH3.These results show that this new apparatus is a powerful tool for investigating the m olecular reaction dynam ics using time-resolved m ethods.

    V.ACKNOW LEDGM ENTS

    This work was supported by the National Basic Research Program of China(No.2013CB922200), the M inistry of Science and Technology of China (No.2012YQ12004704),and the National Natural Science Foundation of China(No.21573228).

    [1]M.Dantus,M.J.Rosker,and A.H.Zewail,J.Chem. Phys.87,2395(1987).

    [2]T.S.Rose,M.J.Rosker,and A.H.Zewail,J.Chem. Phys.88,6672(1988).

    [3]A.H.Zewail,J.Phys.Chem.A 104,5660(2000).

    [4]J.H.D.Eland,Photoelectron Spectroscopy,2nd Edn., Southam pton:Butterworths,(1985).

    [5]I.Fischer,D.M.V illeneuve,M.J.J.Vrakking,and A. Stolow,J.Chem.Phys.102,5566(1995).

    [6]C.C.Hayden and A.Stolow,in Photoionization and Photodetachm ent,Vol.10A,C.Y.Ng Ed.,Singapore: World Scientific Pub lishing Com pany,91(2000).

    [7]W.Rad lo,in Photoionization and Photodetachm ent, Vol.10A,C.Y.Ng Ed.,Singapore:World Scientific Publishing Com pany,127(2000).

    [8]K.Takatsuka,Y.A rasaki,K.H.W ang,and V.M cKoy, Faraday Discuss.115,1(2000).

    [9]D.M.Neum ark,Annu.Rev.Phys.Chem.52,255 (2001).

    [10]T.Suzuki and B.J.W hitaker,Int.Rev.Phys.Chem. 20,313(2001).

    [11]T.Seideman,Annu.Rev.Phys.Chem.53,41(2002).

    [12]K.L.Reid,Annu.Rev.Phys.Chem.54,397(2003).

    [13]A.Stolow,Annu.Rev.Phys.Chem.54,89(2003).

    [14]A.Stolow,A.E.Bragg,and D.M.Neum ark,Chem. Rev.104,1719(2004).

    [15]M.Wollenhaup t,V.Engel,and T.Baum ert,Annu. Rev.Phys.Chem.56,25(2005).

    [16]I.V.Hertel and W.Rad loff,Rep.Prog.Phys.69,1897 (2006).

    [17]T.Suzuki,Annu.Rev.Phys.Chem.57,555(2006).

    [18]A.Stolow and J.G.Underwood,in Adv.Chem.Phys.Vol.39,S.A.Rice Ed.,New York:John W iley&Sons, Inc.,497(2008).

    [19]G.Wu,P.Hockett,and A.Stolow,Phys.Chem.Chem. Phys.13,18447(2011).

    [20]K.L.Wells,G.Perriam,and V.G.Stavros,J.Chem. Phys.130,074308(2009).

    [21]R.A.Livingstone,J.O.F.Thom pson,M.Iljina,R. J.Donaldson,B.J.Sussm an,M.J.Paterson,and D. Townsend,J.Chem.Phys.137,184304(2012).

    [22]T.Horio and T.Suzuki,Rev.Sci.Instrum.80,013706 (2009).

    [23]B.Y.Chang,R.C.Hoetzlein,J.A.M ueller,J.D. Geiser,and P.L.Houston,Rev.Sci.Instrum.69,1665 (1998).

    [24]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum. 68,3477(1997).

    [25]A.Stolow,J.Vac.Sci.Technol.A 14,2669(1996).

    [26]U.Even,Adv.Chem.2014,11(2014).

    [27]A.T.J.B.Eppink,S.M.Wu,and B.J.W hitaker,in Imaging in M olecular Dynam ics:Technology and Applications,B.J.W hitaker Ed.,Cambridge:Cambridge University Press,(2003).

    [28]V.D ribinski,A.Ossadtchi,V.A.M andelshtam,and H. Reisler,Rev.Sci.Instrum.73,2634(2002).

    [29]G.A.Garcia,L.Nahon,and I.Pow is,Rev.Sci.Instrum. 75,4989(2004).

    [30]F.Renth,J.Riedel,and F.Tem ps,Rev.Sci.Instrum. 77,033103(2006).

    [31]Y.T.Cho and S.J.Na,Meas.Sci.Technol.16,878 (2005).

    [32]J.Biesner,L.Schnieder,G.Ahlers,X.Xie,K.H.Welge, M.N.R.Ash fold,and R.N.Dixon,J.Chem.Phys.91, 2901(1989).

    [33]L.D.Ziegler,J.Chem.Phys.82,664(1985).

    [34]V.Vaida,M.I.M cCarthy,P.C.Engelking,P.Rosmus, H.J.Werner,and P.Botschw ina,J.Chem.Phys.86, 6669(1987).

    ceived on February 19,2017;Accepted on March 14,2017)

    ?These authors contributed equally to this work.

    ?Author to whom correspondence shou ld be addressed.E-m ail: wugr@dicp.ac.cn

    精品人妻熟女av久视频| 亚洲精品日本国产第一区| 青春草国产在线视频| 在线观看一区二区三区激情| 久久女婷五月综合色啪小说 | 精品久久久精品久久久| 精品亚洲乱码少妇综合久久| 国产精品一区二区三区四区免费观看| 久久99精品国语久久久| 深爱激情五月婷婷| 少妇 在线观看| videos熟女内射| 精品酒店卫生间| 汤姆久久久久久久影院中文字幕| 久久影院123| 99久国产av精品国产电影| 99热这里只有精品一区| 特级一级黄色大片| 亚洲精品日韩在线中文字幕| 国产亚洲91精品色在线| 国产精品久久久久久精品电影小说 | 欧美性猛交╳xxx乱大交人| 下体分泌物呈黄色| a级一级毛片免费在线观看| 免费观看在线日韩| 国产黄片美女视频| 成人国产麻豆网| 免费观看性生交大片5| 人妻系列 视频| 成人一区二区视频在线观看| 麻豆久久精品国产亚洲av| 我的女老师完整版在线观看| 午夜老司机福利剧场| 久久久久久久国产电影| 亚洲成色77777| 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 国产成人福利小说| 日韩一区二区三区影片| 在线精品无人区一区二区三 | 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 国产综合懂色| 国产有黄有色有爽视频| 国产成人福利小说| 免费黄色在线免费观看| 欧美人与善性xxx| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久久免| .国产精品久久| 99久久精品热视频| 日本欧美国产在线视频| 亚洲人成网站在线观看播放| 国产乱人视频| 一级毛片久久久久久久久女| 免费看日本二区| 99re6热这里在线精品视频| 亚洲欧美精品专区久久| 国精品久久久久久国模美| 国产精品久久久久久久久免| 99精国产麻豆久久婷婷| 国产精品三级大全| 国产视频内射| 色综合色国产| 免费电影在线观看免费观看| 黄色视频在线播放观看不卡| 91狼人影院| 亚洲自拍偷在线| 综合色丁香网| 国产欧美日韩一区二区三区在线 | 亚洲精品国产av成人精品| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 少妇人妻精品综合一区二区| 伊人久久精品亚洲午夜| 亚洲综合色惰| 99久久精品国产国产毛片| 观看免费一级毛片| 在线观看av片永久免费下载| 国产亚洲最大av| 国产精品福利在线免费观看| 国内揄拍国产精品人妻在线| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 波多野结衣巨乳人妻| 亚洲欧美一区二区三区黑人 | 男人添女人高潮全过程视频| 国产av码专区亚洲av| eeuss影院久久| 99九九线精品视频在线观看视频| 亚洲欧美日韩另类电影网站 | 亚洲精品乱码久久久v下载方式| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 下体分泌物呈黄色| 赤兔流量卡办理| 2021天堂中文幕一二区在线观| 丰满乱子伦码专区| 99热全是精品| 黄色一级大片看看| 日韩中字成人| 嫩草影院入口| 亚洲av在线观看美女高潮| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 中文字幕亚洲精品专区| 国产精品一区二区三区四区免费观看| 九九久久精品国产亚洲av麻豆| 插阴视频在线观看视频| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 午夜精品一区二区三区免费看| 高清午夜精品一区二区三区| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | 人体艺术视频欧美日本| 七月丁香在线播放| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 久久久久九九精品影院| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 各种免费的搞黄视频| 高清欧美精品videossex| 男女那种视频在线观看| 交换朋友夫妻互换小说| 99九九线精品视频在线观看视频| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 99热全是精品| 91狼人影院| 日韩精品有码人妻一区| 亚洲精品日本国产第一区| 国产探花在线观看一区二区| 大话2 男鬼变身卡| 国产精品三级大全| a级毛色黄片| 亚洲性久久影院| 91aial.com中文字幕在线观看| 少妇裸体淫交视频免费看高清| 超碰97精品在线观看| 十八禁网站网址无遮挡 | 亚洲av中文字字幕乱码综合| 只有这里有精品99| 毛片一级片免费看久久久久| 成人美女网站在线观看视频| 欧美激情久久久久久爽电影| 亚洲av男天堂| 成年人午夜在线观看视频| 成人一区二区视频在线观看| 日韩一本色道免费dvd| 综合色av麻豆| 婷婷色av中文字幕| 亚洲国产日韩一区二区| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 国产精品一区二区三区四区免费观看| 亚洲综合色惰| 亚洲欧美一区二区三区国产| 国产伦在线观看视频一区| 国产精品秋霞免费鲁丝片| 国模一区二区三区四区视频| 免费黄频网站在线观看国产| 两个人的视频大全免费| 久久影院123| 美女视频免费永久观看网站| 黄色配什么色好看| 丰满人妻一区二区三区视频av| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 一区二区三区乱码不卡18| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 777米奇影视久久| 99热6这里只有精品| 国产在线男女| 看非洲黑人一级黄片| 六月丁香七月| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 日韩三级伦理在线观看| 校园人妻丝袜中文字幕| 建设人人有责人人尽责人人享有的 | 在线观看三级黄色| 狂野欧美激情性bbbbbb| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| av天堂中文字幕网| 又粗又硬又长又爽又黄的视频| 亚洲精品456在线播放app| 三级经典国产精品| 我的女老师完整版在线观看| 51国产日韩欧美| 91狼人影院| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 热re99久久精品国产66热6| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 成年人午夜在线观看视频| 波多野结衣巨乳人妻| 国产黄频视频在线观看| 97热精品久久久久久| 天堂网av新在线| 日韩欧美 国产精品| 啦啦啦中文免费视频观看日本| 别揉我奶头 嗯啊视频| 99精国产麻豆久久婷婷| 欧美日韩视频高清一区二区三区二| 日本三级黄在线观看| av在线蜜桃| 女人十人毛片免费观看3o分钟| 直男gayav资源| 国产成人精品久久久久久| 国产一区二区亚洲精品在线观看| 亚洲精品456在线播放app| 精品国产一区二区三区久久久樱花 | 在线观看免费高清a一片| 国产在线男女| 国产精品久久久久久精品电影| 国产片特级美女逼逼视频| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 人妻少妇偷人精品九色| 黄色一级大片看看| 97在线视频观看| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 国产日韩欧美亚洲二区| 久久热精品热| 美女内射精品一级片tv| 九草在线视频观看| 日韩av免费高清视频| 国产v大片淫在线免费观看| 国产永久视频网站| 男男h啪啪无遮挡| 夜夜爽夜夜爽视频| 少妇人妻一区二区三区视频| 丰满少妇做爰视频| 中国美白少妇内射xxxbb| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 青春草亚洲视频在线观看| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 国产一区亚洲一区在线观看| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 六月丁香七月| 18+在线观看网站| 黄片wwwwww| 亚洲综合精品二区| kizo精华| 精品一区二区免费观看| 久久久色成人| 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 老师上课跳d突然被开到最大视频| 国产 一区精品| 午夜爱爱视频在线播放| 永久网站在线| 久久精品久久精品一区二区三区| 国产淫语在线视频| 日韩伦理黄色片| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 欧美另类一区| 欧美极品一区二区三区四区| 国产永久视频网站| av卡一久久| tube8黄色片| 久久99精品国语久久久| 国产精品嫩草影院av在线观看| 国产白丝娇喘喷水9色精品| 国产欧美另类精品又又久久亚洲欧美| 欧美3d第一页| 三级国产精品欧美在线观看| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频 | 男人狂女人下面高潮的视频| 国产男女超爽视频在线观看| 久久久精品欧美日韩精品| 香蕉精品网在线| 成年女人看的毛片在线观看| 午夜福利视频精品| 三级经典国产精品| 美女xxoo啪啪120秒动态图| 精品亚洲乱码少妇综合久久| av播播在线观看一区| 亚洲欧美清纯卡通| 久热这里只有精品99| 精品人妻视频免费看| 能在线免费看毛片的网站| 精品视频人人做人人爽| 99久久精品热视频| 一本一本综合久久| 国产老妇女一区| 免费观看无遮挡的男女| 欧美潮喷喷水| 久久久久久伊人网av| 建设人人有责人人尽责人人享有的 | 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 97在线人人人人妻| 亚洲美女视频黄频| 久久精品久久久久久久性| 夜夜看夜夜爽夜夜摸| 观看美女的网站| 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 性色avwww在线观看| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂 | 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花 | 精品酒店卫生间| 午夜激情久久久久久久| 精品人妻一区二区三区麻豆| 日本wwww免费看| 又爽又黄无遮挡网站| 三级国产精品欧美在线观看| av国产久精品久网站免费入址| 亚洲,欧美,日韩| 国产成人精品婷婷| 成人综合一区亚洲| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 91久久精品电影网| av国产久精品久网站免费入址| 成人欧美大片| 欧美少妇被猛烈插入视频| 国产高清三级在线| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 亚洲av日韩在线播放| 欧美激情在线99| 免费大片黄手机在线观看| 色哟哟·www| 别揉我奶头 嗯啊视频| 国产亚洲5aaaaa淫片| 一本一本综合久久| 久久久久久久久久久免费av| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 中国三级夫妇交换| 如何舔出高潮| 欧美日韩视频精品一区| 日韩一区二区三区影片| 成人毛片60女人毛片免费| 国产老妇伦熟女老妇高清| 三级男女做爰猛烈吃奶摸视频| 男男h啪啪无遮挡| 久久久久久久久久成人| 午夜激情久久久久久久| 波多野结衣巨乳人妻| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看| 乱码一卡2卡4卡精品| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 成人国产麻豆网| 国产精品久久久久久精品古装| 神马国产精品三级电影在线观看| 免费黄色在线免费观看| 久久精品人妻少妇| 在线 av 中文字幕| 午夜日本视频在线| 亚洲欧美日韩另类电影网站 | 人妻 亚洲 视频| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 成年av动漫网址| 免费观看a级毛片全部| 少妇熟女欧美另类| 国产精品偷伦视频观看了| 国产 精品1| 一级毛片黄色毛片免费观看视频| 精品一区二区三区视频在线| 国产午夜福利久久久久久| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 91久久精品国产一区二区三区| 日日啪夜夜爽| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| h日本视频在线播放| 黄色怎么调成土黄色| 久久久欧美国产精品| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线 | 美女内射精品一级片tv| www.av在线官网国产| 国产高清国产精品国产三级 | 看免费成人av毛片| 亚洲av一区综合| 国产精品人妻久久久久久| 一本色道久久久久久精品综合| 成人鲁丝片一二三区免费| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 高清午夜精品一区二区三区| 丰满少妇做爰视频| 国产熟女欧美一区二区| 久久午夜福利片| 亚洲欧美日韩东京热| 视频中文字幕在线观看| 国产高清不卡午夜福利| 欧美日韩国产mv在线观看视频 | 色综合色国产| 国产av国产精品国产| 99精国产麻豆久久婷婷| 一区二区三区免费毛片| 99re6热这里在线精品视频| 深爱激情五月婷婷| 中文资源天堂在线| 久久久精品94久久精品| 午夜精品一区二区三区免费看| 日日撸夜夜添| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 欧美成人午夜免费资源| 免费看a级黄色片| 国产v大片淫在线免费观看| 国产真实伦视频高清在线观看| 性色av一级| 亚洲av成人精品一区久久| 久久久久久久久大av| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| www.色视频.com| 欧美成人午夜免费资源| 日本与韩国留学比较| 97精品久久久久久久久久精品| 日本色播在线视频| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 狠狠精品人妻久久久久久综合| 日本午夜av视频| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站| 国产精品一二三区在线看| freevideosex欧美| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 男女那种视频在线观看| 又粗又硬又长又爽又黄的视频| 中文字幕久久专区| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色怎么调成土黄色| 国产伦在线观看视频一区| 69人妻影院| 99久久精品一区二区三区| 2018国产大陆天天弄谢| 久久久久久久久久成人| 欧美zozozo另类| 99久久九九国产精品国产免费| 色播亚洲综合网| 老司机影院毛片| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 亚洲最大成人手机在线| 只有这里有精品99| 欧美 日韩 精品 国产| 日韩伦理黄色片| 中文字幕制服av| 又大又黄又爽视频免费| 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| 久久久久九九精品影院| 国产成人精品久久久久久| 熟女人妻精品中文字幕| 熟女电影av网| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 国产精品一区www在线观看| 神马国产精品三级电影在线观看| 色视频www国产| 亚洲精品视频女| 高清毛片免费看| 精品一区二区免费观看| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 免费观看性生交大片5| 女人久久www免费人成看片| 在线观看免费高清a一片| 亚洲av二区三区四区| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 国产亚洲5aaaaa淫片| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 中文字幕人妻熟人妻熟丝袜美| 91久久精品国产一区二区三区| 欧美日本视频| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 好男人在线观看高清免费视频| 亚洲精品自拍成人| 美女视频免费永久观看网站| 欧美精品国产亚洲| 国产精品不卡视频一区二区| 69av精品久久久久久| 久久久久久九九精品二区国产| 青春草国产在线视频| 亚洲成人中文字幕在线播放| 新久久久久国产一级毛片| 少妇丰满av| 成人欧美大片| 日韩成人av中文字幕在线观看| 亚洲成色77777| 男人和女人高潮做爰伦理| 免费观看av网站的网址| 少妇人妻精品综合一区二区| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 午夜福利视频精品| 永久网站在线| 亚洲精品国产av蜜桃| av免费在线看不卡| 国产毛片在线视频| 高清欧美精品videossex| 91久久精品电影网| 99久久人妻综合| xxx大片免费视频| 黄色一级大片看看| 国产精品熟女久久久久浪| 哪个播放器可以免费观看大片| 伊人久久国产一区二区| xxx大片免费视频| 日韩成人伦理影院| 精品久久久久久久末码| av在线观看视频网站免费| 99热这里只有精品一区| 亚洲综合色惰| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 国产精品福利在线免费观看| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| 亚洲精华国产精华液的使用体验| 大片免费播放器 马上看| 免费高清在线观看视频在线观看| av线在线观看网站| 嫩草影院精品99| av天堂中文字幕网| 日本黄色片子视频| 99热网站在线观看| 欧美+日韩+精品| 亚洲va在线va天堂va国产| 我的老师免费观看完整版| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 免费看光身美女| 日本欧美国产在线视频| 国产黄色免费在线视频| 国产91av在线免费观看| 亚洲精品色激情综合| 女人久久www免费人成看片| 国产淫片久久久久久久久| 久久99热这里只有精品18| 人妻 亚洲 视频| 日韩免费高清中文字幕av| av在线观看视频网站免费| 国产色婷婷99| 日本爱情动作片www.在线观看| 国产av码专区亚洲av| 少妇熟女欧美另类| 久久久久精品久久久久真实原创| 在线播放无遮挡| 亚洲精品影视一区二区三区av| 中文欧美无线码| 亚洲天堂国产精品一区在线| av在线播放精品| 永久免费av网站大全| 精品亚洲乱码少妇综合久久| 国产亚洲最大av|