• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of Irregular Wave Impact on Horizontal Plate Structures

    2017-06-22 14:44:11JINFeng
    船舶力學 2017年6期
    關鍵詞:金鳳板結構波浪

    JIN Feng

    (Naval Architecture and Ocean Engineering Department,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Simulation of Irregular Wave Impact on Horizontal Plate Structures

    JIN Feng

    (Naval Architecture and Ocean Engineering Department,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Using numerical simulation method,two-dimensional irregular wave numerical models were established based on the software FLUENT,then the mechanism of wave impact on horizontal plate structures was explored.RANS equations and standard k-ε equations were adopted in the models. VOF method was used to reconstruct the free surface.Through the process of wave slamming on horizontal plate structures,the models were verified by experimental data and the wave impact process could be displayed visually.With calculations and analysis,the characteristics of impact pressure and flow field during the process of wave impact were investigated,and the distribution rules of the impact pressure and flow field were obtained.The parametric studies were carried out for different wave steepness,relative clearances and relative structure widths,and the influences of the three parameters on the impact pressure and flow field were analyzed.Finally,the statistical relationship between the wave impact pressures and corresponding vertical velocities of fluid was analyzed,and the pressure formulas were improved based on the original calculation formulas of Hohai University.The results indicate that the peak impact pressure is proportional to the square of the corresponding vertical velocity and the revised formula is more reasonable and feasible.The work is significant for accurately predicting impact load and mastering more impact mechanism.

    irregular wave;horizontal plate structure;wave slamming; numerical simulation;FLUENT

    0 Introduction

    Determination of wave impact load is the most important issue for coastal and offshore engineering design,which directly affects the elevation of superstructure and further influences the cost and safety.About this problem,many studies were conducted and some wave impact load formulas were developed.Most of them adopted the semi-empirical and semi-theoretical method which was used to establish mathematical model with some basic suppositions to derive the empirical formulas and then to determine the coefficients in the formulas with experiment.Wang(1970)[1]put forward the impact pressure formulas with the momentum and airytheories.China National Harbor and Wharf Design Manual(1975)[2]provided the load formulas in which the pressure correction coefficient was supposed as a constant.Guo and Cai(1980)[3]took relative clearance of structures and wave surface height as the main factors to obtain the formulas.Wang and Ren(2002;2003)[4-5]through physical model tests developed the calculation methods for different plate structures.Bradner(2008)[6]carried out a series of tests and developed the formulas to determine the vertical force and horizontal force impacting on bridge structures.Chen et al(2009;2010)[7-8]studied the impact load on high-pile wharf structures under various situations and obtained corresponding formulas.Due to factors taken into account in each formula were not identical,the results of all existing empirical formulas presented great difference.In addition,the current test equipment and conditions still exist restrictions,for example the sampling frequency is lower so that the peak values during wave action can not be exactly obtained,therefore the results from tests are necessary to be verified and improved with other methods.

    With the development of computer and numerical calculation technique,numerical simulation has become another important method to study the problem of wave action.Comparing with physical model test,numerical simulation has many advantages such as the less investment,the short period and the easy changing of parameters.It overcomes a certain limitations of physical model test and gradually is taken as an effective method to study the wave slamming problems.The two methods also can be verified and complemented each other.So we should make full use of advantages of numerical simulation and take further researches to deeply understand the characteristics in the process of the wave slamming on the structures.

    This paper mainly used the method of numerical simulation,and combined with physical model test results of Chen et al(2009)[9]in the analysis.Two-dimensional irregular wave numerical models were established based on the software FLUENT and the process of wave slamming on horizontal plate structures was reproduced.In the simulation,the higher sampling frequency was adopted to get the peak values during wave slamming,the fluid vertical velocity under structures was taken as another important parameter into study.At last,the impact pressure formulas in Chen et al(2009)were improved and the statistical relationship between the wave impact pressures and corresponding vertical velocities of fluid was given.The work is significant for accurately predicting impact load and mastering more impact mechanism.

    1 Original calculation formulas

    In recent years,based on the scientific research projects,Chen et al(2009)carried out physical model tests of wave slamming on different types of high-pile wharves,and developed the formulas of wave peak impact pressures under structures,part of which had been included in the national new standards(2013).During their data analysis,the envelope curve fitting method with 90%assurance was adopted to make structures safe.

    Wherein,the irregular wave impact pressure on horizontal plate structures can be calcu-lated as follows:

    where H is the wave height,L is the wave length,d is the water depth,ch is the hyperbolic cosine,sh is the hyperbolic sine.

    2 Establishment and validation of numerical wave flume

    2.1 Governing equations

    During wave impact,the fluid is in turbulent motion and the turbulence effect cannot be neglected in wave breaking models.Therefore,the Reynolds Equations are used to solve the fluid flow and a k-ε model is used to close the Reynolds equations.The VOF method is used to track the free surface.

    The continuity equation and the RANS equations are as follows:

    where i=1,2,j=1,2,uiis the velocity vector of flow,ρ is the fluid density,t is the time,μ is the dynamic viscosity,fiis the volume force of fluid,and Fiis the additional source term.

    2.2 Boundary conditions

    The tank parameters of numerical model and physical model test are consistent.The computation domain is showed in Fig.1.The left,the right and the downside boundaries of the tank are the wall,the upside is the pressure inlet boundary.The length of the tank is 45 m,the water depth is 0.5 m.After the tank grid setting,the one unit width under static level of the left side is taken as the wave generation zone.The 10 m length of the right side is the wave absorbing zone.The thickness of the horizontal plate structure is 0.015 m and its length is 1.02 m.In the structure,20 measuring points are distributed horizontally,the space between adjacent points is 0.05 m,and the space on one end of the plate is 0.035 m.The test sampling frequency is nearly 300 Hz.The maximum simulation sampling frequency is 2 000 Hz so as to obtain the exact peak values.

    Fig.1 Schematic diagram of computation domain

    2.2.1 Wave generation

    JONSWAP spectrum is chosen as the irregular wave spectrum.Quality source method is used to generate needed wave.In this wave generation method,a kind of source term is added to the continuity equation,and for two-dimensional problems,the continuous equations should be written as:

    where S( x,y,t)is the source term,S( y,t)is the wave strength at wave generation position x=xs,S( y,t)=0 outside wave generation position.

    Depending on Eq.(5),the momentum equations become

    Because the arrangement of wave generation domain is along the water depth direction, two and opposite direction wave propagation would be produced,so

    2.2.2 Wave absorbing

    Wave absorbing uses the porous media model introduced by Dong(2009)[11].The model dissipates the wave energy by adding an attenuate source in the RANS equations.

    The attenuate source can be expressed as:

    2.3 Tank grid setting

    The mesh created for the computational model is a structured quadrilateral mesh with a higher concentration of cells at the structure’s location and zone of wave height.

    The basic mesh structure is shown in Fig.2.In the x-direction the mesh expands 60-100 cells for each wavelength from the left boundary to the right boundary,and a mesh of 30 cells is used at the structure’s location.In the y-direction the mesh expands at a rate of 1.03 to the upper and lower boundary from corresponding borderlines,and a mesh of 10-20 cells is used at the zone of wave height.

    Fig.2 Calculation meshes

    2.4 Mathematical model validation

    Fig.3 Comparison of numerical spectra and theoretical spectra

    Using the established mathematical models,a few typical cases of wave slamming on horizontal plate structures are reproduced.Fig.4 shows the impact pressure time history on the structures in one typical case(using the data of leftside measuring-point and the same below). t is the time,p is the impact pressure.It indicates that the simulation and the experiment curves are similar,the peak impact pressure changes irregularly and it is a random process. Tab.1 shows the most comparison results of simulation and experiment.In the table for each case the test repeats one time and the eigen values are calculated through the pressure peak values of successive 12 wave periods.Except the maximum value,the average peak value,the 1/3 average peak value and 1/2 average peak value are relatively stable so the 1/3 average peak value is taken as the eigen value to analyze the characteristics of impact.Hereinafter it refers to as peak impact pressure.

    Fig.4 Impact pressure time history of the structures in one typical case

    More extensive validation work is carried out.Figs.5 and 6 show the comparison of simulation and experiment results about peak impact pressure and its distribution under situations.Simulation values often present a little larger.The reasons are that the maximum sampling frequencies of simulation and experiment are different,and the simulation’s is much higher so as to catch the accurate instant slamming pressures.Through the comparisons above, it shows that the wave tank can work well to simulate the wave slamming.

    Fig.5 Comparison of simulation and experiment results about peak impact pressure distribution

    Fig.6 Comparison of simulation and experiment results about peak impact pressure

    3 Simulations of wave impact

    3.1 Distribution of peak impact pressure

    The distributions of peak impact pressure under various wave heights,clearances and periods are presented in Figs.7-9.The ordinate represents the impact pressure or relative impact pressure,the abscissa represents the distance of measuring point away from plane leftside,0 represents the plane leftside.

    The figures show that the impact pressure distribution is similar under different wave height conditions.The increasing range of the impact pressure is nearly corresponding to the height values.It is the same to the different clearance conditions,moreover the even distribution generally happens in the middle of the structures.When wave period is relatively small, the maximum impact pressure happens in the foreside of the structures,and when the period gradually increases,the maximum impact pressures will move to the tail.

    Fig.7 Influence of wave height on distribution of peak impact pressure

    Fig.8 Influence of clearance on distribution of peak impact pressure

    Fig.9 Influence of wave period on distribution of peak impact pressure

    3.2 Characteristics of peak impact pressure

    The influences of wave steepness on peak impact pressure are presented in Fig.10.In most simulation groups,when the wave steepness exceeds a certain value,the relative impact pressure decreases with steepness increasing,when the wave steepness is less than this value,the relative impact pressure decreases with the steepness decrease.

    Fig.10 Relationship between peak impact pressure and wave steepness

    The influence of relative clearance on peak impact pressure is presented in Fig.11.The relative clearances corresponding to the maximum impact pressures are generally below 0.3.With the same wave period,as the wave height is larger,the relative clearances corresponding to the maximum impact pressures are generally larger.Structure clearance and wave steepness are associated which affect the wave impact angle size.It causes when wave height is very small(H=5 cm),the maximum impact pressure does not appear in the minimum relative clearance,but appears in values 0.1-0.2.

    Fig.11 Relationship between peak impact pressure and relative clearance

    The influence of relative structure width on peak impact pressure is presented in Fig.12,L is the wave length,B is the longitudinal structure width. With the increase of relative structure width,the relative impact pressure trends to increase.The maximum impact pressures often appear in the middle position(about values 2-3)of curves.

    3.3 Peak impact pressure formula

    According to the simulation results and experimental data of Hohai University,using the same envelope method shown in Fig.13,the peak impact pressure formula is improved as follows:

    Fig.12 Relationship between peak impact pressure and relative structure width

    Fig.13 Peak impact pressure enveloping curve

    Viewed from above,the maximum relative impact pressure of original envelope curve generally occurs between longitudinal coordinate values 2.0-2.5,the maximum of new envelope curve occurs between values 2.5-3.0 and the corresponding relative clearance occurs between values 0.3-0.4.For original envelope curve, a few data can not be included which indicates the original formula is not completely applicable and its result is less.The new envelope curve contains the majority of physics experiment and numerical data,and the improved formula should be more reasonable.

    4 Simulations of fluid flow

    4.1 Distribution of vertical velocities

    The 1/3 average peak value is also taken as the eigen value to analyze the fluid flow.The distributions of the vertical velocities under various wave heights,clearances and wave periods are presented in Figs.14-16.The vertical velocity distributions are similar under different wave height conditions.The increasing range of vertical velocities is nearly corresponding to the wave height values.Under different clearances,at head and tail ends of structures the velocities increase rapidly.Under different wave period, the maximum velocities happen in the foreside or afterside of the structures,and in the middle the distribution is uniform and wide.

    4.2 Characteristics of vertical velocities

    Fig.17 shows the characteristics of vertical velocities under various wave steepness. When the wave steepness is greater or less than a certain value,the vertical velocities decrease from this value with the variation of wave steepness.

    Fig.14 Distribution of vertical velocities on subface of structure

    Fig.15 Distribution of vertical velocities on subface of structure

    Fig.16 Distribution of vertical velocities on subface of structure

    Fig.17 Relationship between vertical velocities and wave steepness

    Fig.18 shows the characteristics of vertical velocities under various relative clearance. For the curves,the relative clearance valuescorresponding to the maximum vertical velocities are generally below 0.3,and mostly locate in 0.2.With the same period,it is often that the higher wave height and the maximum vertical velocity happen at the larger relative clearance.

    Fig.18 Relationship between vertical velocities and relative clearance

    Fig.19 shows the characteristics of vertical velocities under various structure width.For different relative clearances,the influence of relative structure width on the vertical velocities is less.In general,with the increasing of relative structure width,the curves of the vertical velocities have a certain trend to increase.

    Fig.19 Relationship between vertical velocities and relative structure width

    4.3 Statistical relationship between peak impact pressures and corresponding vertical velocities

    海洋油氣資源開發(fā)是服務海洋強國戰(zhàn)略和“一帶一路”倡議的具體體現(xiàn),對實現(xiàn)國家能源戰(zhàn)略、維護國家權益等具有重要意義?;葜莺J戮直痔峁I(yè)優(yōu)質高效的海事服務理念,積極采取多種有效措施,不斷提高海事監(jiān)管服務水平,與有關企業(yè)共同努力解決存在的安全隱患,大力助推海洋石油勘探事業(yè)的發(fā)展。

    Based on numerical simulation results,the relationship between the peak impact pressure P and the square of corresponding vertical velocity V2can be statistic.Fig.20 shows the value histograms of P/ρV2appearance frequency,wherein kPa is the pressure unit, m/s is the unit of speed,ρ is the density of water.The longitudinal coordinate shows the statistical appearance amount.Through analysis the maximum appearance frequency is about value 0.1,the probability that P/ρV2value is located between 0.05-0.15 is greater than 0.75.It shows that in most cases the peak impact pressure P under structures can be counted as 0.05-0.15ρV2.

    Fig.20 Statistical distribution histogram for P/ρV2

    5 Conclusions

    Numerical simulation method was mainly used,and combined with physical experiment data,the irregular waves impacting on Horizontal Plate Structures were studied.The distribution of peak impact pressure and vertical velocities under structures were analyzed.The influence of each factor including wave steepness,clearance and structure width on peak impact pressure and vertical velocities was studied.The statistical relationship between peak impact pressure and vertical velocities was proposed.The improved formula of the peak impact pressure was put forward.The main conclusions are as follows:

    (1)Under different wave heights,the increasing range of peak impact pressure and vertical velocities is nearly corresponding to the wave height values.Under different clearances,the even distribution generally happens in the middle of the structures.Under different wave periods,the maximum values often happen in the foreside or afterside of the structures.

    (2)When the wave steepness is greater or less than a certain value,the peak impact pressures and vertical velocities decrease from this value with the variation of wave steepness. The relative clearances corresponding to the peak impact pressures and vertical velocities are generally below 0.3.With the increase of relative structure width,the relative impact pressures and vertical velocities trend to increase.

    (3)Combined with numerical simulation and experimental results,the original peak impact pressure formula of Hohai University was revised.The calculated value with the original formula was smaller in some cases so it was not fully applicable,and the revised formula was proved more reasonable and feasible.

    (4)The characteristics of peak impact pressure and flow field were explored,the relationship between the peak impact pressure and the flow field was presented.For irregular wave, the peak impact pressure P was about 0.05-0.15 ρV2.

    [1]Wang H.Water wave pressure on horizontal plate[J].Journal of the Hydraulics Division,ASCE,1970,96(10):1997-2017.

    [2]The Ministry of Communications First Navigational Engineering Design Institute.Harbor and wharf design manual[M]. Beijing:China Communications Press,1975.(in Chinese)

    [3]Guo D,Cai B H.Calculation of uplift forces of wave on plates for hollow trussed structures[J].Journal of East China Technical University of Water Resources,1980(1):14-33.(in Chinese)

    [4]Ren B,Wang Y X.Spectral analysis of irregular wave impact on the structure in splash zone[C]//Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Oslo:OMAE.2002:149-154.

    [5]Ren B,Wang Y X.Experimental study of irregular wave impact on the structures in splash zone[J].Ocean Engineering, 2003,30(18):2363-2377.

    [6]Bradner C.Large-scale laboratory observations of wave forces on a highway bridge superstructure[D].Ph.D.Dissertation.USA:Oregon State University,2008.

    [7]Meng Y Q,Chen G P.Wave-in-deck uplift force on detached high-piled wharf[J].Journal of PLA University of Science and Technology(natural science edition),2010,11(1):72-78.(in Chinese)

    [8]Meng Y Q,Chen G P.The effect of jetty structure on uplift forces of irregular wave[J].Port Engineering Technology,2009, 46(5):l-4.(in Chinese)

    [9]Chen G P,Meng Y Q.Experimental study on uplift forces of irregular wave under high-piled wharf[M].Nanjing:Hohai University,2009.(in Chinese)

    [10]Guo L D,Sun D P.A new numerical wave flume combining the 0-1 type BEM and the VOF method[J].Journal of Hydrodynamics,Ser.B,2012,24(4):506-517.

    [11]Dong Z,Zhan J M..Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank[J]. Journal of Hydrodinamics,Ser.A,2009,24(1):15-21.(in Chinese)

    [12]The Ministry of Communications First Navigational Engineering Design Institute.Code of Hydrology for Sea Harbour (JTS145-2-2013)[M].Beijing:China Communications Press,2013.(in Chinese)

    [13]Meng Bo,Jin J.Uplift wave load on the superstructure of coastal bridgs[C]//2007 Structures Congress:New Horizons and Better Practices,Long Beach,CA,United States:ASCE.2007:1969-2015.

    [14]Hirdaris S E,Bai W.Loads for use in the design of ships and offshore structures[J].Ocean Engineering,2014,78(1): 131-174.

    [15]Ren B,Wang Y X.Laboratory study of random wave slamming on a piled wharf with different shore connecting structures [J].Coastal Engineering,2005,52(5):463-471.

    [16]Meng Y Q,Chen G P.An experimental study of impact loading on deck of shore-connecting jetties exposed to oblique waves and current[J].Journal of Hydrodynamics,2014,26(2):216-225.

    [17]Baarholm R.A simple numerical method for evaluation of water impact loads on decks of large-volume offshore platforms [C]//24th International Conference on Offshore Mechanics and Arctic Engineering.Halkidiki,Greece:ASME,2005: 203-211.

    不規(guī)則波對平板沖擊作用數(shù)值模擬研究

    金鳳
    (江蘇科技大學船舶與海洋工程學院,江蘇鎮(zhèn)江212003)

    文章采用數(shù)值模擬方法,建立了基于FLUENT軟件的二維不規(guī)則波浪數(shù)值模型,探討了波浪對水平板結構的作用機理。模型中采用RANS方程和標準k-ε方程,采用VOF方法重建自由液面。通過數(shù)值模擬復演了波浪沖擊水平板結構的過程,將數(shù)值模擬結果與實驗數(shù)據(jù)進行比較,驗證了模型的可靠性。經過計算和分析,研究了波浪沖擊平板過程中的沖擊壓力和流場特性,得到了沖擊壓力和流場的分布規(guī)律。分析了波陡,凈空及板寬等參數(shù)對沖擊壓力和流場的影響。最后,給出了波浪沖擊壓力與相應水質點垂直速度間的統(tǒng)計關系,并對河海大學原有沖擊壓力的計算公式進行了改進,提出了新的沖擊壓力公式。研究結果表明:沖擊壓力峰值與相應的水質點垂直速度的平方成正比,修正后的沖擊壓力公式更為合理、可行。論文工作將對準確預測沖擊載荷,掌握更多的沖擊機理具有重要意義。

    不規(guī)則波;平板結構;波浪沖擊;數(shù)值模擬;FLUENT

    O35

    :A

    金鳳(1980-),女,博士,江蘇科技大學船舶與海洋工程學院副教授。

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.005

    1007-7294(2017)06-0698-13

    date:2017-03-22

    Supported by the Doctor Science Foundation of Jiangsu University of Science and Technology(Grant No.1012921415)

    Biography:JIN Feng(1980-),female,lecturer,E-mail:jflook@126.com.

    猜你喜歡
    金鳳板結構波浪
    波浪谷和波浪巖
    環(huán)氧樹脂基復合材料加筋板結構吸濕行為研究
    波浪谷隨想
    當代陜西(2020年24期)2020-02-01 07:06:46
    甜蜜合伙人
    去看神奇波浪谷
    “田園都市”山水美 “五彩金鳳”展翅飛
    綠揚引金鳳:揚州人才引進計劃
    波浪中并靠兩船相對運動的短時預報
    中國航海(2014年1期)2014-05-09 07:54:24
    板結構-聲場耦合分析的FE-LSPIM/FE法
    彈性邊界板結構拓撲優(yōu)化聲輻射
    国产男女内射视频| 国产在线视频一区二区| 国产淫语在线视频| 另类精品久久| 18禁在线无遮挡免费观看视频| 亚洲精品久久午夜乱码| 最后的刺客免费高清国语| 九色亚洲精品在线播放| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 一区二区日韩欧美中文字幕 | 最新的欧美精品一区二区| 日产精品乱码卡一卡2卡三| 大话2 男鬼变身卡| 国产精品国产三级专区第一集| 美女主播在线视频| 日本wwww免费看| 日日撸夜夜添| 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 男女高潮啪啪啪动态图| 丰满乱子伦码专区| 看非洲黑人一级黄片| 男人操女人黄网站| 国产一区二区激情短视频 | 午夜免费鲁丝| 夫妻午夜视频| 国产成人免费观看mmmm| 高清av免费在线| 高清黄色对白视频在线免费看| 亚洲精品美女久久av网站| 夜夜爽夜夜爽视频| 人妻系列 视频| 99久久综合免费| 精品少妇黑人巨大在线播放| 少妇熟女欧美另类| 午夜影院在线不卡| 少妇被粗大猛烈的视频| 男女无遮挡免费网站观看| 91精品伊人久久大香线蕉| 桃花免费在线播放| 国产精品久久久久久久电影| 十八禁高潮呻吟视频| 久久99热这里只频精品6学生| 九九在线视频观看精品| 久久久精品区二区三区| 久久人妻熟女aⅴ| 9191精品国产免费久久| 波多野结衣一区麻豆| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 97精品久久久久久久久久精品| 免费久久久久久久精品成人欧美视频 | 天堂中文最新版在线下载| 麻豆精品久久久久久蜜桃| 最近中文字幕高清免费大全6| 在线观看美女被高潮喷水网站| 中文乱码字字幕精品一区二区三区| 久久久精品区二区三区| 国产亚洲精品第一综合不卡 | 男女边摸边吃奶| 精品福利永久在线观看| 中文天堂在线官网| 寂寞人妻少妇视频99o| 国产欧美亚洲国产| 精品一品国产午夜福利视频| 日日啪夜夜爽| 51国产日韩欧美| 国产片特级美女逼逼视频| 国产免费视频播放在线视频| 多毛熟女@视频| 色吧在线观看| 日本av免费视频播放| 香蕉丝袜av| 国产男女超爽视频在线观看| 久久久欧美国产精品| 亚洲精华国产精华液的使用体验| 在线观看一区二区三区激情| 男女无遮挡免费网站观看| 丁香六月天网| 热99久久久久精品小说推荐| 久久精品国产a三级三级三级| 国产精品久久久久久精品古装| 精品久久久精品久久久| 亚洲av免费高清在线观看| 国语对白做爰xxxⅹ性视频网站| 99久久综合免费| 国产免费一区二区三区四区乱码| 亚洲国产精品成人久久小说| 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| www.av在线官网国产| 尾随美女入室| 天堂俺去俺来也www色官网| 美女国产高潮福利片在线看| av电影中文网址| 最新中文字幕久久久久| 视频在线观看一区二区三区| 黑丝袜美女国产一区| 久久人妻熟女aⅴ| 久久久亚洲精品成人影院| 国产精品 国内视频| 国产精品蜜桃在线观看| 黄色视频在线播放观看不卡| 久久久精品94久久精品| 成人国语在线视频| 久久人妻熟女aⅴ| 欧美97在线视频| 晚上一个人看的免费电影| 看免费av毛片| 色吧在线观看| 精品人妻偷拍中文字幕| 制服丝袜香蕉在线| 午夜日本视频在线| av免费观看日本| 天堂中文最新版在线下载| 精品一品国产午夜福利视频| 国产精品熟女久久久久浪| 精品福利永久在线观看| 日韩制服丝袜自拍偷拍| 久久久久精品性色| 少妇的逼好多水| 欧美激情国产日韩精品一区| 最近2019中文字幕mv第一页| 在线观看国产h片| 搡女人真爽免费视频火全软件| 黄片无遮挡物在线观看| 国产黄色免费在线视频| 亚洲精品视频女| 桃花免费在线播放| 婷婷色麻豆天堂久久| 国产女主播在线喷水免费视频网站| 亚洲第一区二区三区不卡| 一级片免费观看大全| 九九在线视频观看精品| 日韩制服骚丝袜av| 中国三级夫妇交换| 夫妻午夜视频| 中文精品一卡2卡3卡4更新| 亚洲av电影在线观看一区二区三区| 大码成人一级视频| 国产男女内射视频| 国产激情久久老熟女| 亚洲欧洲国产日韩| 国产精品偷伦视频观看了| 精品人妻偷拍中文字幕| 免费人妻精品一区二区三区视频| 免费高清在线观看视频在线观看| 丝袜人妻中文字幕| 欧美精品国产亚洲| 国产男女内射视频| 国产高清国产精品国产三级| 成人漫画全彩无遮挡| 亚洲精品色激情综合| 桃花免费在线播放| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 久久久久精品性色| 女性生殖器流出的白浆| 亚洲天堂av无毛| 美女内射精品一级片tv| 丝袜在线中文字幕| 高清毛片免费看| 日韩一区二区视频免费看| 丝瓜视频免费看黄片| 国产精品一二三区在线看| 中文字幕制服av| 三级国产精品片| 国产爽快片一区二区三区| 中文字幕制服av| 免费大片黄手机在线观看| 亚洲精品中文字幕在线视频| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠躁躁| 精品人妻一区二区三区麻豆| 岛国毛片在线播放| 久久久久久久久久久免费av| 国产有黄有色有爽视频| 捣出白浆h1v1| 在线天堂中文资源库| 日本免费在线观看一区| 久久精品国产亚洲av天美| 午夜福利视频精品| 在现免费观看毛片| 久久精品国产鲁丝片午夜精品| 国产日韩欧美亚洲二区| 久久国产精品男人的天堂亚洲 | 90打野战视频偷拍视频| 岛国毛片在线播放| 免费女性裸体啪啪无遮挡网站| 欧美xxⅹ黑人| www.色视频.com| 久久人人爽人人爽人人片va| 天美传媒精品一区二区| 亚洲国产av新网站| 国产熟女午夜一区二区三区| 这个男人来自地球电影免费观看 | 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 日韩制服丝袜自拍偷拍| 女的被弄到高潮叫床怎么办| 18禁国产床啪视频网站| 人体艺术视频欧美日本| av.在线天堂| 交换朋友夫妻互换小说| 寂寞人妻少妇视频99o| 91午夜精品亚洲一区二区三区| 成人黄色视频免费在线看| 国产av码专区亚洲av| 午夜福利在线观看免费完整高清在| 边亲边吃奶的免费视频| 成人国产av品久久久| 日韩大片免费观看网站| 精品人妻偷拍中文字幕| 99视频精品全部免费 在线| 大话2 男鬼变身卡| 成人亚洲精品一区在线观看| 久久人妻熟女aⅴ| 高清毛片免费看| 亚洲人成77777在线视频| 久久这里只有精品19| 久久 成人 亚洲| 久久久精品区二区三区| 91成人精品电影| 国产av码专区亚洲av| 在线观看免费日韩欧美大片| 国产极品粉嫩免费观看在线| 七月丁香在线播放| 精品国产国语对白av| 丝袜脚勾引网站| 久久精品国产a三级三级三级| 欧美成人午夜精品| 国产亚洲av片在线观看秒播厂| 亚洲精华国产精华液的使用体验| 久久狼人影院| 性高湖久久久久久久久免费观看| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 人成视频在线观看免费观看| 免费人妻精品一区二区三区视频| 国产极品粉嫩免费观看在线| 自拍欧美九色日韩亚洲蝌蚪91| 天美传媒精品一区二区| 黄网站色视频无遮挡免费观看| 日韩制服丝袜自拍偷拍| 另类亚洲欧美激情| 亚洲激情五月婷婷啪啪| 日本vs欧美在线观看视频| 九色成人免费人妻av| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 在线免费观看不下载黄p国产| 如何舔出高潮| 国产爽快片一区二区三区| 亚洲精品视频女| 免费看av在线观看网站| 久久97久久精品| 夜夜骑夜夜射夜夜干| 自线自在国产av| 国产探花极品一区二区| 97超碰精品成人国产| 亚洲,一卡二卡三卡| 欧美国产精品一级二级三级| 国产精品三级大全| 亚洲天堂av无毛| 亚洲综合色惰| 国产亚洲精品久久久com| 亚洲国产欧美日韩在线播放| 午夜视频国产福利| 精品酒店卫生间| 亚洲成人av在线免费| 精品久久蜜臀av无| 久久 成人 亚洲| videossex国产| 亚洲人成网站在线观看播放| 精品国产露脸久久av麻豆| av在线观看视频网站免费| 两性夫妻黄色片 | 国产免费又黄又爽又色| 色94色欧美一区二区| 日产精品乱码卡一卡2卡三| 亚洲精品乱久久久久久| 丰满乱子伦码专区| 国产日韩一区二区三区精品不卡| 在线观看国产h片| 欧美国产精品va在线观看不卡| 免费人妻精品一区二区三区视频| 69精品国产乱码久久久| 男女边吃奶边做爰视频| 视频中文字幕在线观看| 在线亚洲精品国产二区图片欧美| 又黄又爽又刺激的免费视频.| 亚洲国产日韩一区二区| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 成年人免费黄色播放视频| av网站免费在线观看视频| 精品久久久精品久久久| 天天躁夜夜躁狠狠躁躁| 最黄视频免费看| 男女国产视频网站| 免费人成在线观看视频色| 欧美xxⅹ黑人| 亚洲精华国产精华液的使用体验| 久久久国产一区二区| 中国国产av一级| 成年动漫av网址| 九草在线视频观看| 人人澡人人妻人| 精品少妇内射三级| 久久久久精品人妻al黑| 国产av精品麻豆| 久久久亚洲精品成人影院| 欧美人与性动交α欧美精品济南到 | 日韩,欧美,国产一区二区三区| 国产av精品麻豆| 久久精品久久精品一区二区三区| 黄色一级大片看看| 制服丝袜香蕉在线| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| 大码成人一级视频| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花| 啦啦啦在线观看免费高清www| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 亚洲美女视频黄频| 一二三四在线观看免费中文在 | 久久久久精品久久久久真实原创| 看免费av毛片| 女的被弄到高潮叫床怎么办| 在线观看免费高清a一片| 色哟哟·www| 日韩伦理黄色片| 亚洲精品色激情综合| 久久精品久久精品一区二区三区| 熟女人妻精品中文字幕| 亚洲伊人色综图| 99久久人妻综合| 成年人免费黄色播放视频| 免费高清在线观看视频在线观看| 99久久人妻综合| 亚洲精品中文字幕在线视频| 99久久精品国产国产毛片| xxx大片免费视频| 99久久中文字幕三级久久日本| 国产精品人妻久久久影院| 成年人午夜在线观看视频| 成人影院久久| 91精品国产国语对白视频| 国产精品久久久久久av不卡| 国产成人av激情在线播放| 男女边吃奶边做爰视频| 亚洲情色 制服丝袜| 精品一区在线观看国产| 亚洲欧洲日产国产| 久久久精品94久久精品| 人妻人人澡人人爽人人| tube8黄色片| 一区在线观看完整版| 宅男免费午夜| 美女大奶头黄色视频| 色哟哟·www| 热re99久久国产66热| 乱人伦中国视频| 亚洲国产看品久久| 色5月婷婷丁香| 汤姆久久久久久久影院中文字幕| videossex国产| 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 欧美精品高潮呻吟av久久| kizo精华| 国产国语露脸激情在线看| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 热99国产精品久久久久久7| 国产成人精品无人区| 国语对白做爰xxxⅹ性视频网站| 在线 av 中文字幕| 国精品久久久久久国模美| 精品第一国产精品| 免费观看av网站的网址| 在线观看www视频免费| 最近中文字幕高清免费大全6| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 久久精品人人爽人人爽视色| 精品第一国产精品| 老女人水多毛片| 一二三四在线观看免费中文在 | 女人精品久久久久毛片| 建设人人有责人人尽责人人享有的| 久久久久久久国产电影| 欧美97在线视频| 国产精品久久久av美女十八| 亚洲在久久综合| 免费在线观看完整版高清| 香蕉精品网在线| 久久久久网色| 日韩大片免费观看网站| 国产黄频视频在线观看| 日本欧美国产在线视频| 九色亚洲精品在线播放| 啦啦啦啦在线视频资源| 熟女人妻精品中文字幕| 成年动漫av网址| 色吧在线观看| 婷婷色综合大香蕉| 伦理电影免费视频| 一二三四在线观看免费中文在 | 99re6热这里在线精品视频| 黄色配什么色好看| 男女高潮啪啪啪动态图| 91精品国产国语对白视频| av天堂久久9| 国产精品一区二区在线不卡| 巨乳人妻的诱惑在线观看| 久久av网站| 亚洲人成77777在线视频| 我的女老师完整版在线观看| 2021少妇久久久久久久久久久| 婷婷色综合www| 亚洲色图综合在线观看| 欧美少妇被猛烈插入视频| 一级黄片播放器| a级毛色黄片| 亚洲精品美女久久久久99蜜臀 | av视频免费观看在线观看| 国产毛片在线视频| 99视频精品全部免费 在线| 亚洲精品视频女| 美女国产视频在线观看| av电影中文网址| 日韩精品免费视频一区二区三区 | 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三区在线| 成人免费观看视频高清| 只有这里有精品99| 日韩 亚洲 欧美在线| 久久久久国产网址| 亚洲性久久影院| 亚洲精品乱码久久久久久按摩| 看免费av毛片| 国产精品久久久久久精品古装| videosex国产| 国产精品国产三级国产av玫瑰| 亚洲欧美中文字幕日韩二区| 97超碰精品成人国产| 五月伊人婷婷丁香| 日韩av不卡免费在线播放| 人人妻人人澡人人看| av女优亚洲男人天堂| 久久精品人人爽人人爽视色| 七月丁香在线播放| av在线播放精品| 久热久热在线精品观看| 久久亚洲国产成人精品v| 少妇的丰满在线观看| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 国产av精品麻豆| 美女主播在线视频| 久久99热这里只频精品6学生| 欧美日韩av久久| 午夜福利,免费看| 午夜av观看不卡| 精品午夜福利在线看| 9色porny在线观看| 在线观看www视频免费| 美女大奶头黄色视频| 一级a做视频免费观看| 亚洲第一av免费看| 国产成人精品久久久久久| 日韩精品有码人妻一区| 国内精品宾馆在线| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| 欧美bdsm另类| 亚洲欧美日韩卡通动漫| 色视频在线一区二区三区| 国产成人欧美| 国产精品一区二区在线观看99| 国产福利在线免费观看视频| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 国产精品久久久久久av不卡| 精品99又大又爽又粗少妇毛片| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看日韩| 国产1区2区3区精品| 国产毛片在线视频| 91国产中文字幕| av免费在线看不卡| 一区二区三区四区激情视频| 中文乱码字字幕精品一区二区三区| av卡一久久| 亚洲五月色婷婷综合| 人妻一区二区av| 一区二区三区精品91| 十分钟在线观看高清视频www| 久热久热在线精品观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩一区二区三区精品不卡| 国产精品久久久久成人av| 激情视频va一区二区三区| 黄色配什么色好看| av.在线天堂| 人人妻人人添人人爽欧美一区卜| h视频一区二区三区| 最新中文字幕久久久久| 国产成人aa在线观看| 亚洲第一av免费看| 伊人亚洲综合成人网| 国产激情久久老熟女| 欧美成人午夜免费资源| 国产精品人妻久久久久久| 亚洲精品视频女| 久久午夜综合久久蜜桃| 国产精品一区www在线观看| 最近最新中文字幕大全免费视频 | 国产亚洲精品久久久com| 高清在线视频一区二区三区| 亚洲欧美成人精品一区二区| 欧美最新免费一区二区三区| 亚洲综合色网址| 最后的刺客免费高清国语| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲 欧美一区二区三区| 亚洲国产精品成人久久小说| 久久婷婷青草| 亚洲国产精品一区二区三区在线| 天天操日日干夜夜撸| 精品国产一区二区久久| 蜜桃国产av成人99| 精品国产一区二区三区久久久樱花| 亚洲av男天堂| 妹子高潮喷水视频| 日韩在线高清观看一区二区三区| 国产有黄有色有爽视频| 哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 国产极品天堂在线| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 嫩草影院入口| 免费av不卡在线播放| 国产在视频线精品| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花| av在线播放精品| 女人久久www免费人成看片| 亚洲婷婷狠狠爱综合网| 久久久久久久久久人人人人人人| 美女内射精品一级片tv| 亚洲成人av在线免费| 亚洲高清免费不卡视频| 国产成人精品在线电影| videossex国产| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 亚洲成色77777| 咕卡用的链子| 午夜福利网站1000一区二区三区| 久久久久网色| 交换朋友夫妻互换小说| 久久精品夜色国产| 欧美xxⅹ黑人| 精品一区二区三区视频在线| 色5月婷婷丁香| 这个男人来自地球电影免费观看 | 99九九在线精品视频| 老熟女久久久| 香蕉丝袜av| 成人18禁高潮啪啪吃奶动态图| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 中国三级夫妇交换| 丰满饥渴人妻一区二区三| 婷婷成人精品国产| 黄色 视频免费看| 久久精品国产亚洲av天美| 亚洲精品日本国产第一区| 亚洲国产精品成人久久小说| 国产毛片在线视频| av片东京热男人的天堂| 中文字幕av电影在线播放| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看| 国产精品国产三级国产av玫瑰| 久久久国产一区二区| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃 | 欧美人与性动交α欧美软件 | 中国国产av一级| 亚洲国产精品999| 久久精品人人爽人人爽视色| av片东京热男人的天堂|