• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高活性、可循環(huán)的Pt-Cu@3D石墨烯復(fù)合催化劑的制備和催化性能

    2017-06-21 12:33:11王美淞鄒培培黃艷麗王媛媛戴立益
    物理化學(xué)學(xué)報(bào) 2017年6期
    關(guān)鍵詞:高活性華東師范大學(xué)大孔

    王美淞 鄒培培 黃艷麗 王媛媛 戴立益

    (華東師范大學(xué)化學(xué)與分子工程學(xué)院,上海 200241)

    高活性、可循環(huán)的Pt-Cu@3D石墨烯復(fù)合催化劑的制備和催化性能

    王美淞 鄒培培 黃艷麗 王媛媛*戴立益

    (華東師范大學(xué)化學(xué)與分子工程學(xué)院,上海 200241)

    以氧化石墨烯為前驅(qū)體,通過氧化還原法制備了具有三維大孔穩(wěn)定結(jié)構(gòu)的Pt-Cu@3D石墨烯催化劑。作為載體,三維石墨烯的宏觀大孔結(jié)構(gòu)具有大比表面積,可以更好地促進(jìn)催化反應(yīng)中的傳質(zhì)過程。以對(duì)硝基苯酚的還原為模型反應(yīng),通過實(shí)驗(yàn)確定Pt與Cu的最佳質(zhì)量比為3 : 5,利用掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)、X射線光電子能譜(XPS)、X射線衍射(XRD)和能量色散X射線光譜(EDX)等方法對(duì)最優(yōu)催化劑的結(jié)構(gòu)進(jìn)行了表征。催化測(cè)試表明復(fù)合催化劑在對(duì)硝基苯酚還原反應(yīng)中具有高效穩(wěn)定、低成本、可循環(huán)的良好性能。

    三維石墨烯;Pt-Cu納米顆粒;催化反應(yīng);孔結(jié)構(gòu);復(fù)合材料

    1 Introduction

    Carbon-supported noble metal nanoparticles (NPs) have rapid development with wide applications in the field of catalysis, storage and energy conversion, and biomedicine1,2. As an important member of the carbon family, graphene have a variety of applications in catalysis and energy conversion andstorage3because of their unique 2D structures and excellent properties. It is generally believed that the graphene-based catalysts not only increase the nanosized catalyst surface area for electron transport but also provide better mass transport of reactants to catalysts4,5. However, irreversible agglomerates were easily driven by the strong van der Waals interaction consisting in graphene sheets, which greatly affect the superiority of the high specific surface area inherited from graphene. Self-assembling two dimensional graphene sheets into complex three dimensional macrostructures remains these superiority and further avoid a mass of aggregations6,7. Recently, three-dimensional graphene (3DG) has attracted a great deal of attention with its high specific surface area, strong mechanical strength, superior absorbability and thermal stability8-11. Such porous structures of 3DG could effectively avoid the stacking of the graphene sheets. 3DG materials keep the intrinsic physicochemical properties and endow the resulting materials with high specific surface area provided more anchoring sites for the catalyst12.

    Pt-based nanomaterials have been widely used for chemical industry. Considering its expensive price and limited availability, there is an urgent need to develop substitutes for pure Pt catalysts. Pt-based bimetallic alloy NPs as a kind of important catalyst attracts researchers′ interests immensely. Pt-based bimetallic alloy NPs not only keep great catalytic activity but also reduce the content of Pt NPs to help lower costs. Bimetallic NPs such as Pt-Ni13, Pt-Sn14and Pt-Co15NPs exhibit good catalytic activity and stability. Moreover, the difficulty in determining the effect of alloying is that the activity of a supported catalyst can have a wide range of values depending on its microstructure and preparation method16. It is difficult to fine control the composition of bimetallic alloy NPs with different standard redox potential (SRP) between Pt and transition metals17. For avoiding the effect of different SRPs, a simple and common approach is to co-reduce two metal precursors to use a strong reducing agent. The precise control of the compositions of alloy nanocrystals with well-defined morphology remains a great challenge.

    In this paper, we report the successful synthesis of the 3DG-based Pt-Cu NPs-containing (Pt-Cu@3DG) composite. Pt-based bimetallic alloy NPs not only keep good catalytic activity but also reduce the content of Pt NPs to lower the costs. The composite is prepared by introducing a stronger reductant. The accession of ascorbic acid achieves the chemical co-reduction of metal salts in the solution phase. The catalytic test indicates that the resulting composites can be used as an efficient, low costing, recyclable, and stability catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) under mild conditions.

    2 Experimental

    2.1 Materials and Reagents

    Natural Graphite (AR), H2PtCl6·6H2O (AR), Cu(NO3)2·3H2O (AR) was purchased from Aladdin Company, NaBH4(AR) was purchased from Sinopharm Chemical Reagent Co., Ltd. Other materials were obtained from local suppliers.

    2.2 Preparation of Pt-Cu@3DG composite hydrogel

    The graphite oxide was prepared by a modified Hummers method18. Natural Graphite powder (2.5 g) and sodium nitrate (4.0 g) were mixed with 140mL concentrated sulfuric acid under vigorous agitation for 30 min at the room temperature. Then the mixture above was cooled in an ice bath. Afterwards, 7.5 g potassium permanganate was slowly added to make the sufficient oxidation of graphite with the permanent stirring. Subsequently, the ice bath should be removed and the composite was heated until 35 °C for 2 h. Then 200 mL distilled water was added to dilute the paste. Finally, 30% H2O2was added to react with the residual potassium permanganate. The prepared brown solution was washed with HCl (10%) three times. In the end, the brown solution was centrifuged to remove the aggregates followed by dialysis for seven days. Then chloroplatinic acid, copper nitrate and ascorbic acid (0.6 g) were added to the above GO dispersion (0.2 mg·g-1, 10 g). Afterwards, the mixture was stirred for 3 h, and then transferred into the Teflon-lined autoclave (120 °C, 2 h). Then it was cooled to the room temperature. The Pt-Cu@3DG composite hydrogel was formed with a height of 1.2 cm and the diameter of 1 cm. Then large amount of ethanol and water were used to wash the catalyst to remove the residual ascorbic acid.

    2.3 Exploring of the best loading of bimetallic NPs

    Keeping the total mass of metal as 8% of graphene oxide and changing the mass ratio of Pt and Cu, a series of catalysts were synthesized, and used to catalyze the reduction of 4-NP. The absorbance of resultant was recorded by UV-Vis absorption spectra when the reaction was at 6 min. According to the formula: A = kc, (A: absorbance, c: concentration, k: absorption coefficient) conversion was calculated to obtain the change of the concentration. As shown in Table 1, the loading amount of Pt increased from 3% to 7%, while the amount of Cu gradually decreased from 5% to 1%. The conversion of 4-NP decreased from 98.6% to 76%, measured as the reaction proceeds at 6 min by UV-Vis absorption spectra. So, the best catalyst should be 3% Pt-5% Cu@3DG composite.

    2.4 General procedure for reduction of 4-NP

    In order to investigate the catalytic activity of Pt-Cu@3DGcatalyst, 6 mL 4-NP (0.033 mmol·L-1) and the freshly prepared 14 mL NaBH4(0.4 mmol·L-1) was mixed homogeneously at room temperature. Then the catalyst (Pt-Cu@3DG) was added into the mixture. The reduction progress was monitored with UV-Vis spectroscopy.

    Table 1 Loaded amount of Pt-Cu in different catalysts and the conversion

    2.5 Characterization

    X-ray diffraction (XRD) patterns of the Pt-Cu@3DG were performed on a Bruker D8 diffractometer with Cu Kαradiation with a scan speed 10 (°)·min-1. Transmitting electron microscopy (TEM) was performed on a JEOL 2100F instrument operating at 30 kV. Inductively coupled plasma emission spectroscopy (ICP-AES) measurements were obtained with the Thermo Scientific iCAP 6300 instrument. Scanning electron microscopy (SEM) was performed on a Philips XL 30 microscope operating at 30 kV.

    X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Versaprobe Phi 5000 ULVAC-PHI spectrometer with an Al Kα(1486.6 eV) radiator, and the vacuum in the analysis chamber was maintained at about 1000-900 Pa. The binding energy was calibrated by means of the C 1s peak energy of 284.6 eV.

    3 Results and discussion

    3.1 Stucture of Pt-Cu@3DG composite

    After the hydrothermal treatment of GO, Fig.1a shows a peak at 23.92°, meaning that the GO (10.92°)19has been reduced and the carbon sp2bonding restored. The Pt-Cu alloy NPs exhibits three characteristic diffraction peaks, corresponding to the (111), (200) and (220) planes around 41.9°, 48.0° and 71.2°. The diffraction peaks of the Pt-Cu@3DG shift to higher angles as compared to the Pt@3DG, indicating that a lattice contraction arises from the substitution of the smaller Cu atoms for the larger Pt atoms. The XRD pattern of Pt-Cu@3DG sample indicates that the material is polyphasic, with the strongest signal correlated with the (111) reflection of pure Pt, and no significant signal of a Pt-Cu alloy of any composition19,20.

    XPS is used to analyze the elemental composition and heterocarbon components of Pt-Cu@3DG (Fig.1(b-d)). In brief, the asymmetric C 1s spectrum of Pt-Cu@3DG hydrogel in Fig.1b shows four peaks at 284.6, 286.6, 287.7 and 289.0 eV, which are assigned to the sp2-hybridized C, the C in C―O bonds, the carbonyl C and the carboxylate C (O=C―O), respectively. The C―C functional group has the most content (57.95%), other oxidation species such as the carbonyl C (14.11%) and carboxylate C (4.28%) are presented with lower quantity. These results confirm that 3DG was mainly reduced from GO through the removal of most epoxide and hydroxyl functional groups. The XPS spectrum of Pt 4f of the Pt-Cu@3DG composite exhibits the presence of three pairs of doublets, as shown in Fig.1c. The most intense doublet with binding energies of 71.0 (Pt 4f7/2) and 74.5 eV (Pt 4f5/2) is attributed to Pt0(66.3%). Peaks at 72.2 (Pt 4f7/2), 75.6 eV (Pt 4f5/2) and 74.2 (Pt 4f7/2), 78.3 eV (Pt 4f5/2) could be assigned to Pt(II) and Pt(IV), that both of them anchored with the C―O groups on 3DG21. The Cu 2p spectrum exhibits peaks at 932.4 (Cu 2p3/2) and 952.4 eV (Cu 2p1/2), indicative of elemental Cu0(Fig.1d). Thus, XPS measurements demonstrate that Pt(IV) and Cu(II) precursors are reduced successfully. For the Pt-Cu@3DG composite hydrogel, the binding energies of Pt 4f shift to lower binding energies because of the presence of Cu, further confirming the formation of Pt―Cu alloy22. Theequilibrium potentials (E0) of the electrochemical reactions [PtCl6]2+ 2e → [PtCl4]2+ 2Cl , 0.68 V, and [PtCl4]2+ 2e → Pt + 4Cl , 0.755 V, are substantially higher than that of the equilibrium potential of the electrochemical reaction Cu2++ 2e → Cu, 0.34 V. The higher equilibrium potential for platinum indicates that platinum ions would be preferentially reduced when a reducing agent is added to an aqueous solution containing a mixture of platinum and copper ions. Hence, the formation of the Pt-Cu alloy NPs can be least favorable23,24.

    Fig.1 (a) XRD patterns of Pt-Cu@3DG and Pt@3DG, (b-d) XPS spectra of Pt-Cu@3DG in (b) C 1s, (c) Pt 4f and (d) Cu 2p regions

    A TEM image of Pt-Cu@3DG is shown in Fig.2a before the catalytic reaction. The homogenous and uniform distribution of Pt-Cu alloy NPs on the 3DG may be due to in situ reduction of metal salts with an average size of around 130 nm (Fig.2b). The lattice fringes are highlighted on a particle (Fig.2c), indicating the crystalline nature of the materials. In addition, the regular d-spacing (0.238 nm)of Pt-Cu alloy NPs is well matched with the (111) planes of XRD. The EDX spectrum in Fig.2d confirms the presence of Cu and Pt from the particles.

    3.2 Catalytic activity of Pt-Cu@3DG composite

    For exploring the influence of concentration of GO solution on the composite, a series of concentrations of GO solution: 1, 2, 4 mg·g-1were prepared for the synthesis of Pt-Cu@3DG. The SEM of resulting composites exhibited pore structure, as shown in Fig.3(a-c). The reduced graphene sheets assembled easily with the increasing concentration of GO. The aggregation of sheets made the 3D structure lose its advantage of porosity when the concentration of GO solution increased to 4 mg·g-1. Therefore, the number of effective oxygen-containing groups is decreasing and the size of metal NPs increases withthe growing concentration of GO. Three kinds of Pt-Cu alloy NPs distribution are investigated by TEM dispersing on the graphene uniformly, as shown in Fig.3(d-f).

    Fig.2 (a) TEM and (c) HR-TEM images of Pt-Cu@3DG catalyst, (b) diameter of particle size distribution of Pt-Cu alloy nanoparticles before the reaction, (d) EDX spectrum of Pt-Cu@3DG catalyst

    Fig.3 (a-c) SEM and (d-f) TEM images of Pt-Cu@3DG GO: (a, d) 1 mg·g-1; (b, e) 2 mg·g-1; (c, f) 4 mg·g-1. Inset shows the corresponding size distribution of Pt-Cu alloy NPs.

    To explore the influence of distribution of metal NPs, a series of concentrations of GO solution: 1, 1.5, 2, 3, 4, 5 mg·g-1were prepared for the synthesis of Pt-Cu@3DG and the catalysts were used in the reduction of the 4-NP. The effect of the catalyst was tested by the conversion of reactants when the reaction was at 6 min, as shown in Fig.4. When the concentration of GO solution is 1 mg·g-1, the conversion of reaction is 87.3% with a smaller NPs distribution. The concentration increases to 2 mg·g-1, the higher conversion 98.6% is achieved. It is found that the conversion is higher, although the size of NPs distribution is larger than the composite with 1 mg·g-1. Raising the concentration of GO solution to 4 mg·g-1, the conversion has no obvious change. When the concentration of GO solution is 5 mg·g-1, the conversion of reaction was 96%. The assembly of reduced graphene sheets influences the catalytic performance. We infer that the determining factor of reaction rate is not only the particle size, but also the appropriate concentration of catalyst carrier precursor and the interaction between the bimetallic alloy NPs24-26. The conversion of reactants using with Pt@3DG, Pt-Cu@3DG and Pt-Cu catalyst is showed in Fig.4b. The catalytic effect of Pt-Cu alloy NPs is better than Pt NPs with the same content of Pt. The conversion of reactants with Pt-Cu@3DG is larger than Pt-Cu catalyst and the Pt-Cu@3DG composite shows greater cyclicity.

    Fig.4 (a) Effects of the concentration of catalyst carrier precursor (GO) versus the conversion; (b) conversion of reactants using with Pt@3DG, Pt-Cu@3DG and Pt-Cu catalyst

    Fig.5 (a) Successive UV-Vis absorption spectra of the 4-NP by NaBH4in the presence of Pt-Cu@3DG; (b) shows the speed constant k (inset shows the recyclability of the Pt-Cu@3DG); (c) TEM image of the Pt-Cu@3DG catalyst after 5 cycles

    Fig.6 Successive UV-Vis absorption spectra of the 4-NP by NaBH4in the presence of 3%Pt@3DG (a), 8%Pt@3DG (b), 3% Pt-5% Cu (c) Inset shows the speed constant k.

    The catalytic performance of the Pt-Cu@3DG composite is studied by the reduction of 4-NP to 4-AP with NaBH4, a representative reaction to evaluate the catalytic activity of metal NPs. The reduction process could be easily monitored byUV-Vis spectra because of the feature absorption at 400 and 300 nm for 4-NP and 4-AP, respectively. The peak at 400 nm vanishes gradually when the catalysts have been added, and concomitantly the absorption peak at around 300 nm is emerged. It takes 6 min to complete the catalytic reduction as shown in Fig.5(a). To investigate the catalytic stability of the Pt-Cu@3DG, the catalyst is recycled up to 5 times and the TEM of Pt-Cu@3DG catalyst is showed in Fig.5(c) after 5 cycles. The obvious aggregation of metal NPs is the main reason for decrease of catalyst activity. It could be seen that Pt-Gu@3DG catalyst only displays a slight decrease after five cycles, indicating the excellent recyclability.

    Fig.5b indicates a linear correlation between lnA and reduction time, showing that the reaction is a pseudo-first-order. We calculated the speed constant k is 0.488 min-1. When the reduction is catalyzed by 4% Pt@3DG composite with the same content of Pt, the speed constant k is 0.184 min-1. When the reduction is catalyzed by 8% Pt@3DG composite with the same content of metal, the speed constant k is 0.389 min-1. When the reduction is catalyzed by Pt-Cu composite, the speed constant k is 0.430 min-1(Fig.6). These experimental data exhibited that Pt-Cu@3DG composite have better catalytic activity.

    4 Conclusions

    In a word, the Pt-Gu@3DG composite hydrogel, an efficient, low costing, recyclable, and stability catalyst is prepared successfully by a mild chemical reduction with ascorbic acid. The Pt-based bimetallic alloy NPs not only keep good catalytic activity but also lower the costs. The composite possesses interconnected macroporous structure, large specific surface area and thermal stability, resulting in excellent catalytic activity for reduction of 4-NP. Besides, the catalyst is recovered and reused easily, which could be recycled for 5 times. On the basis of the results, the Pt-Cu@3DG composite hydrogel has huge potential in industrial catalysis.

    (1) Bai, X. J.; Hou, M.; Liu, C.; Wang, B.; Cao, H.; Wang, D. Acta Phys. -Chim. Sin. 2017, 33, 377. [白雪君, 侯 敏, 劉 嬋, 王 彪,曹 輝, 王 東. 物理化學(xué)學(xué)報(bào), 2017, 33, 377.] doi: 10.3866/PKU.WHXB201610272

    (2) Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Nat. Mater. 2011, 10, 780. doi: 10.1038/nmat3087

    (3) Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S. B.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2012, 134, 19532. doi: 10.1021/ja308676h

    (4) Scheuermann, C. M.; Rumi, L.; Steurer, P.; Mvlhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262. doi: 10.1021/ja901105a

    (5) Subrahmanyam, K. S.; Manna, A. K.; Pati, S. K.; Rao, C. R. Chem. Phys. Lett. 2010, 497, 70. doi:10.1016/j.cplett.2010. 07.091

    (6) Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Nat. Commun. 2012, 3, 187. doi: 10.1038/ncomms2251

    (7) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z

    (8) Ji, X. L.; Lee, K. T.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286. doi: 10.1038/nchem.553

    (9) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. doi: 10.1038/nature04233

    (10) Li, Y. R; Chen, J.; Huang, L.; Li, C.; Shi, G. Q. Adv. Electron. Mater. 2015, 1, 1. doi: 10.1002/aelm.201500004

    (13) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi:10.1126/science.1135941

    (14) Liu, Y.; Li, D. C.; Stamenkovic, V. R.; Soled, S.; Henao, J. D.; Sun, S. H. ACS Catal. 2011, 1, 1719. doi: 10.1021/cs200430r

    (15) Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang. J. Y. Angew. Chem. Int. Edit. 2010, 49, 6848. doi: 10.1002/anie.201002888

    (16) Stamenkovic, V. R.; Mun, B.; Arenz, S. M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840

    (17) Jia, Y.; Su. J.; Chen, Z.; Tan, B.; Chen, Q.; Cao, Z.; Jiang, Y.; Xie, Z.; Zheng, L. RSC Adv. 2015, 5, 18153. doi: 10.1039/c4ra15673k

    (18) Nie, R.; Shi, J.; Du, W.; Hou, Z. Appl. Catal. A: Gen. 2014, 473, 1. doi: 10.1016/j.apcata.2013.12.029

    (19) Gümeci, C.; Cearnaigh, D. U.; Casadonte, D. J.; Korzeniewski, C. J. Mater. Chem. A 2013, 1, 2322. doi: 10.1039/c2ta00957a

    (20) Dai, L.; Mo, S. G.; Qin, Q.; Zhao, X. J.; Zheng, N. F. Small 2016, 12, 1572. doi: 10.1002/smll.201502741

    (21) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Can, L. M. Langmuir 2004, 20, 181. doi: 10.1021/la035204i

    (22) Yu, X.; Wang, D.; Peng, Q.; Li, Y. Chem. Eur. J. 2013, 19, 233. doi: 10.1002/chem.201203332

    (23) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Tseng, Y. L.; Liu, D. C.; Lee, J. F. J Phys. Chem. B 2004, 108, 20427. doi: 10.1021/jp0495592

    (24) Gong, M. X.; Fu, C. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. ACS Appl. Mater. Inter. 2014, 6, 7301. doi: 10.1021/am500656j

    (25) Mott, D.; Luo, J.; Smith, A. Nano. Res. Lett. 2007, 2, 12. doi: 10.1007/s11671-006-9022-8

    (26) Zhao, W. G.; Su, L.; Zhou, Z. N.; Zhang, H. J.; Lu, L. L.; Zhang, S. W. Acta Phys. -Chim. Sin. 2015, 31, 145. [趙萬國, 蘇 麗, 周振寧,張海軍, 魯禮林, 張少偉. 物理化學(xué)學(xué)報(bào), 2015, 31, 145.] doi: 10.3866/PKU.WHXB2014102

    Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst

    WANG Mei-Song ZOU Pei-Pei HUANG Yan-Li WANG Yuan-Yuan*DAI Li-Yi
    (College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China)

    A composite hydrogel consisting of well-dispersed Pt-Cu nanoparticles (NPs) supported on three-dimensional (3D) graphene (Pt-Cu@3DG) was successfully prepared by mild chemical reduction. The 3D interconnected macroporous structure of the graphene framework not only possesses large specific surface area that allows high metal loadings, but also facilitates mass transfer during the catalytic reaction. The Pt-Cu bimetallic alloy NPs show good catalytic activity compared with Pt NPs and reduce the content of Pt NPs used, thereby lowering costs. The morphology and composition of the Pt-Cu@3DG composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The catalysis studies indicate that the resulting composites can be used as an efficient, inexpensive, recyclable, and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol under mild conditions.

    Three dimensional graphene; Pt-Cu nanoparticle; Catalytic reaction; Pore structure; Composite

    December 12, 2016; Revised: March 8, 2017; Published online: March 31, 2017.

    O643

    Geim, A. K. Science 2009, 324, 1530.

    10.1126/science.1158877 (12) Zhang, M.; Lu, X.; Wang, H. Y.; Liu, X.; Qin, Y. J.; Zhang, P.; Guo, Z. X. RSC Adv. 2016, 6, 35945. doi: 10.1039/c6ra01772j

    doi: 10.3866/PKU.WHXB201703311

    *Corresponding author: Email: ecnu_yywang@163.com; Tel/Fax: +86-21-54340133.

    The project was supported by the Key Project of Shanghai Science and Technology Committee (14231200300) and Shanghai Key Laboratory of Green Chemistry and Chemical Processes.

    上海市重點(diǎn)工程科學(xué)和技術(shù)委員會(huì)(14231200300)及上海市綠色化學(xué)與化工過程綠色化重點(diǎn)實(shí)驗(yàn)室

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    高活性華東師范大學(xué)大孔
    “綠色碳科學(xué)”專輯編委會(huì)
    華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2022 年總目次(總第221—226 期)
    大孔ZIF-67及其超薄衍生物的光催化CO2還原研究
    不同方法提取杜仲中桃葉珊瑚苷等4種高活性成分的比較研究
    大孔鏜刀的設(shè)計(jì)
    低VOC高活性聚醚多元醇JQN-330NG的合成研究
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    高活性聚異丁烯生產(chǎn)、市場(chǎng)及發(fā)展趨勢(shì)*
    化工科技(2014年4期)2014-06-09 03:27:35
    華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版) 2014年總目次(總第173-178期)
    大孔吸附樹脂富集酯型兒茶素
    中文字幕av在线有码专区| 村上凉子中文字幕在线| 国产av不卡久久| 欧美成人a在线观看| 久久精品国产99精品国产亚洲性色| 亚洲人成网站高清观看| 精品熟女少妇av免费看| 婷婷六月久久综合丁香| 97热精品久久久久久| 成熟少妇高潮喷水视频| 日韩,欧美,国产一区二区三区 | 国产av在哪里看| 九色成人免费人妻av| 高清毛片免费观看视频网站| av黄色大香蕉| 亚洲色图av天堂| 久久欧美精品欧美久久欧美| 国产一区二区亚洲精品在线观看| 熟女人妻精品中文字幕| 久久久精品大字幕| 精品不卡国产一区二区三区| 亚洲综合色惰| 欧美xxxx黑人xx丫x性爽| 欧美另类亚洲清纯唯美| 亚洲成人av在线免费| 在线观看一区二区三区| 国产成人a∨麻豆精品| 特大巨黑吊av在线直播| 成年版毛片免费区| 亚洲综合色惰| 久久久久网色| 小蜜桃在线观看免费完整版高清| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| 99久国产av精品国产电影| 中文字幕人妻熟人妻熟丝袜美| 日韩国内少妇激情av| 国产精品福利在线免费观看| 免费大片18禁| 女的被弄到高潮叫床怎么办| 人妻制服诱惑在线中文字幕| 黄片wwwwww| 精品免费久久久久久久清纯| 91精品国产九色| 国产精品99久久久久久久久| 少妇人妻一区二区三区视频| 搡老妇女老女人老熟妇| 国产精品久久电影中文字幕| 网址你懂的国产日韩在线| 国产 一区精品| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 97超碰精品成人国产| 波多野结衣高清无吗| 国国产精品蜜臀av免费| 日本黄色片子视频| 久久精品国产亚洲av涩爱 | 亚洲图色成人| 精品熟女少妇av免费看| 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 中文资源天堂在线| 黄片wwwwww| 免费人成视频x8x8入口观看| 99久久人妻综合| 丝袜喷水一区| 日本黄大片高清| 欧美精品国产亚洲| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 热99re8久久精品国产| 中文字幕av在线有码专区| 久久久午夜欧美精品| 国产精品爽爽va在线观看网站| 久久人人爽人人片av| 97超碰精品成人国产| 国产精品福利在线免费观看| 69av精品久久久久久| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 男女边吃奶边做爰视频| 免费看av在线观看网站| 一个人看的www免费观看视频| 成人国产麻豆网| 亚洲高清免费不卡视频| 成人综合一区亚洲| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 熟妇人妻久久中文字幕3abv| eeuss影院久久| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 亚洲一区二区三区色噜噜| 又粗又硬又长又爽又黄的视频 | 免费av不卡在线播放| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 亚洲丝袜综合中文字幕| 亚洲精品久久久久久婷婷小说 | 国产成人影院久久av| 国产高清三级在线| 91午夜精品亚洲一区二区三区| a级毛片a级免费在线| 麻豆av噜噜一区二区三区| 日本熟妇午夜| 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩欧美精品在线观看| 欧美日韩精品成人综合77777| 免费搜索国产男女视频| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 亚洲va在线va天堂va国产| 国产日韩欧美在线精品| 只有这里有精品99| 狠狠狠狠99中文字幕| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 一级二级三级毛片免费看| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 欧美+日韩+精品| 日韩中字成人| 国产亚洲av嫩草精品影院| 国产 一区 欧美 日韩| 1000部很黄的大片| 超碰av人人做人人爽久久| 精品日产1卡2卡| 欧美最新免费一区二区三区| 国产成人精品婷婷| 国产精品伦人一区二区| .国产精品久久| 又粗又硬又长又爽又黄的视频 | 1000部很黄的大片| av视频在线观看入口| 高清在线视频一区二区三区 | 久久99蜜桃精品久久| 69av精品久久久久久| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 国产视频首页在线观看| 在线播放国产精品三级| 亚洲成人久久性| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看 | 国产黄片视频在线免费观看| 一本精品99久久精品77| av在线观看视频网站免费| 色播亚洲综合网| 最近最新中文字幕大全电影3| 久久热精品热| 日韩av在线大香蕉| 99热这里只有是精品50| 亚洲精品乱码久久久久久按摩| 午夜亚洲福利在线播放| 一本精品99久久精品77| 精品人妻视频免费看| 国模一区二区三区四区视频| 在线国产一区二区在线| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品电影小说 | 精品久久久噜噜| 精品久久久久久久久久免费视频| 中文字幕av成人在线电影| а√天堂www在线а√下载| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| av视频在线观看入口| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 卡戴珊不雅视频在线播放| 久久久久久久亚洲中文字幕| 欧美日本亚洲视频在线播放| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 欧美高清成人免费视频www| 男女下面进入的视频免费午夜| 亚洲四区av| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 精品久久久久久成人av| 只有这里有精品99| 99在线视频只有这里精品首页| 国产免费男女视频| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 中文字幕av成人在线电影| 91久久精品国产一区二区成人| 变态另类丝袜制服| 国产乱人偷精品视频| 国产乱人视频| 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 青春草国产在线视频 | 日韩成人av中文字幕在线观看| 一本精品99久久精品77| 国产一区二区三区av在线 | 日产精品乱码卡一卡2卡三| 97热精品久久久久久| 日韩欧美在线乱码| 九九久久精品国产亚洲av麻豆| 能在线免费观看的黄片| h日本视频在线播放| 欧美一区二区国产精品久久精品| 亚洲av不卡在线观看| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 日韩国内少妇激情av| 长腿黑丝高跟| 精品久久久久久成人av| 国产三级中文精品| videossex国产| 在线国产一区二区在线| 国产私拍福利视频在线观看| 久久久久性生活片| 国产免费一级a男人的天堂| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 午夜免费激情av| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 国产色婷婷99| 久久精品国产清高在天天线| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品综合一区二区三区| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| 中国国产av一级| 观看免费一级毛片| 男女做爰动态图高潮gif福利片| 国产黄色视频一区二区在线观看 | 丰满人妻一区二区三区视频av| 日本黄色片子视频| 久久久午夜欧美精品| 午夜福利视频1000在线观看| www.av在线官网国产| 欧美一区二区国产精品久久精品| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 成人特级黄色片久久久久久久| av在线播放精品| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 亚洲欧洲国产日韩| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 噜噜噜噜噜久久久久久91| 99久久成人亚洲精品观看| 日韩欧美精品v在线| 亚洲欧美中文字幕日韩二区| 国产极品精品免费视频能看的| 丝袜美腿在线中文| 国产成人freesex在线| 有码 亚洲区| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 成人鲁丝片一二三区免费| 国产爱豆传媒在线观看| 国产亚洲av嫩草精品影院| 国产白丝娇喘喷水9色精品| 欧美一区二区亚洲| 18+在线观看网站| 爱豆传媒免费全集在线观看| 又爽又黄a免费视频| 日韩中字成人| 亚洲欧美精品综合久久99| 亚洲av中文av极速乱| 久久久色成人| 身体一侧抽搐| 午夜精品在线福利| 插逼视频在线观看| 久久午夜福利片| 不卡视频在线观看欧美| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 国产成人福利小说| 免费观看精品视频网站| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 国产一区亚洲一区在线观看| 日韩欧美国产在线观看| 丰满的人妻完整版| 成年av动漫网址| 国产精品福利在线免费观看| 国产视频内射| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久久久毛片| 一区二区三区四区激情视频 | 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 久久6这里有精品| 熟妇人妻久久中文字幕3abv| 超碰av人人做人人爽久久| 看黄色毛片网站| 国产成人福利小说| 成人欧美大片| 精品久久国产蜜桃| 国产色婷婷99| 少妇的逼好多水| 真实男女啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂中文最新版在线下载 | 国产免费男女视频| 校园人妻丝袜中文字幕| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 亚洲在久久综合| 久久综合国产亚洲精品| 色5月婷婷丁香| 九九热线精品视视频播放| 免费观看精品视频网站| 精品久久国产蜜桃| 中文字幕av在线有码专区| 亚洲欧洲日产国产| 国产在线男女| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| av又黄又爽大尺度在线免费看 | 亚洲精华国产精华液的使用体验 | 九草在线视频观看| 99久久无色码亚洲精品果冻| .国产精品久久| 国产精品久久久久久av不卡| 国产黄片美女视频| av卡一久久| 国产精品国产高清国产av| 国产黄片视频在线免费观看| 少妇高潮的动态图| 亚洲高清免费不卡视频| 熟女电影av网| 99久久精品国产国产毛片| 国产精品久久久久久久电影| 国产精华一区二区三区| 我的老师免费观看完整版| 亚洲av免费高清在线观看| 亚洲国产色片| 色哟哟哟哟哟哟| 日韩亚洲欧美综合| 22中文网久久字幕| 午夜激情福利司机影院| 久久99蜜桃精品久久| 久久精品久久久久久久性| av在线观看视频网站免费| 青春草国产在线视频 | 能在线免费观看的黄片| 亚洲精品日韩在线中文字幕 | 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 国产精品伦人一区二区| 午夜a级毛片| 欧美高清性xxxxhd video| 草草在线视频免费看| 日本三级黄在线观看| 久久这里只有精品中国| av黄色大香蕉| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 色综合站精品国产| 亚洲成av人片在线播放无| 成人漫画全彩无遮挡| 尾随美女入室| 久久6这里有精品| 伦理电影大哥的女人| 欧美成人a在线观看| 变态另类成人亚洲欧美熟女| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 久久久久网色| 日日啪夜夜撸| 国产一级毛片在线| 日韩制服骚丝袜av| 欧美一级a爱片免费观看看| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 国产一区二区亚洲精品在线观看| 中文资源天堂在线| 日日摸夜夜添夜夜爱| 色综合色国产| 国产成人影院久久av| 永久网站在线| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 成人二区视频| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟人妻熟丝袜美| 爱豆传媒免费全集在线观看| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| 岛国毛片在线播放| 亚洲精品国产av成人精品| 色哟哟哟哟哟哟| 国产黄色视频一区二区在线观看 | 久久综合国产亚洲精品| 老熟妇乱子伦视频在线观看| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 久久久国产成人精品二区| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 国产av不卡久久| 国产午夜精品一二区理论片| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 午夜老司机福利剧场| 小说图片视频综合网站| 好男人在线观看高清免费视频| 欧美精品一区二区大全| 干丝袜人妻中文字幕| 午夜a级毛片| 久久久久久久久中文| 有码 亚洲区| 中文资源天堂在线| 国产精品久久久久久av不卡| 亚洲中文字幕一区二区三区有码在线看| 能在线免费观看的黄片| 深夜a级毛片| 校园春色视频在线观看| 深夜精品福利| 免费av观看视频| 国产黄色小视频在线观看| 国产黄片美女视频| 欧美色视频一区免费| 男女啪啪激烈高潮av片| 一级av片app| 搡女人真爽免费视频火全软件| 国产高清三级在线| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 一本久久中文字幕| 男女啪啪激烈高潮av片| 欧美极品一区二区三区四区| 国产精品人妻久久久影院| 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 精品不卡国产一区二区三区| 国产美女午夜福利| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 国产一区二区激情短视频| 欧美日韩国产亚洲二区| 在线观看午夜福利视频| 91久久精品电影网| 国产v大片淫在线免费观看| 亚洲av.av天堂| 国产av麻豆久久久久久久| 少妇裸体淫交视频免费看高清| 国产精品一区二区在线观看99 | 国产黄a三级三级三级人| av在线亚洲专区| 99久久无色码亚洲精品果冻| 1000部很黄的大片| 免费看日本二区| av免费在线看不卡| 97超碰精品成人国产| 卡戴珊不雅视频在线播放| 亚洲一区二区三区色噜噜| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 成人欧美大片| av在线播放精品| 精品熟女少妇av免费看| 夜夜夜夜夜久久久久| 亚洲美女视频黄频| a级一级毛片免费在线观看| 69人妻影院| 高清午夜精品一区二区三区 | 少妇丰满av| 精品久久久久久久久久免费视频| 深爱激情五月婷婷| 欧美日韩综合久久久久久| 亚洲人与动物交配视频| 久久亚洲精品不卡| 国产欧美日韩精品一区二区| 最近中文字幕高清免费大全6| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 亚洲av.av天堂| 久久久欧美国产精品| 一个人观看的视频www高清免费观看| 亚洲欧美精品自产自拍| 男人狂女人下面高潮的视频| 国产成年人精品一区二区| 国产午夜精品论理片| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕 | 成年女人永久免费观看视频| 黄色一级大片看看| 国产真实乱freesex| 欧美日韩精品成人综合77777| 国产日韩欧美在线精品| 精品免费久久久久久久清纯| 身体一侧抽搐| 99久国产av精品| 亚洲精品色激情综合| 欧美人与善性xxx| 禁无遮挡网站| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 观看美女的网站| 日本黄色视频三级网站网址| 女人被狂操c到高潮| 日韩三级伦理在线观看| 精品少妇黑人巨大在线播放 | 免费观看精品视频网站| av在线播放精品| 亚洲成人久久性| 午夜福利成人在线免费观看| 亚洲精品粉嫩美女一区| h日本视频在线播放| 最近的中文字幕免费完整| 久久婷婷人人爽人人干人人爱| 赤兔流量卡办理| videossex国产| 日产精品乱码卡一卡2卡三| 亚洲天堂国产精品一区在线| 国产精品精品国产色婷婷| 高清午夜精品一区二区三区 | 高清日韩中文字幕在线| 在线播放无遮挡| 久久久久九九精品影院| 亚洲欧美精品专区久久| 亚洲在线观看片| 国产黄片视频在线免费观看| 99久久久亚洲精品蜜臀av| 中文字幕免费在线视频6| 成年女人永久免费观看视频| 免费av不卡在线播放| 久久久久性生活片| 久久久久久久久久黄片| 搞女人的毛片| 久久午夜亚洲精品久久| 国产不卡一卡二| 国产精品野战在线观看| 18禁在线无遮挡免费观看视频| 此物有八面人人有两片| 国产 一区 欧美 日韩| 免费观看人在逋| 麻豆久久精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 成年女人永久免费观看视频| 国产高清不卡午夜福利| 99热这里只有是精品在线观看| 亚州av有码| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 美女国产视频在线观看| 欧美+日韩+精品| 精品一区二区三区视频在线| 午夜a级毛片| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 免费观看人在逋| 12—13女人毛片做爰片一| 久久精品国产亚洲av天美| 黄色视频,在线免费观看| 国产成人精品久久久久久| 中文字幕免费在线视频6| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 亚洲av不卡在线观看| 亚洲精品国产成人久久av| 夜夜看夜夜爽夜夜摸| 免费看av在线观看网站| 床上黄色一级片| 小说图片视频综合网站| 男人狂女人下面高潮的视频| 国产精品三级大全| 国产亚洲精品久久久久久毛片| 91精品国产九色| 一级毛片电影观看 | 国产免费一级a男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 美女xxoo啪啪120秒动态图| 成人毛片60女人毛片免费| 国内久久婷婷六月综合欲色啪| 欧美性猛交╳xxx乱大交人| 你懂的网址亚洲精品在线观看 | 国产精品乱码一区二三区的特点| 在线免费十八禁| www.色视频.com| 国产成人freesex在线| 美女 人体艺术 gogo| 亚洲一级一片aⅴ在线观看| 国产精品一区二区三区四区免费观看| 51国产日韩欧美|